
Journal of Materials Science and Engineering B 6 (1-2) (2016) 1-13 
doi: 10.17265/2161-6221/2016.1-2.001 

 

Two Forms of Experimental Simulation Analysis for 
Multiaxial Drilling Efforts in the Time Domain Model 

Dionísio José Rodrigues da Costa1*, Jose Flávio Feiteira2, Jorge A. R. Duran1, 2 and Ladário da Silva1, 3 
1. Department of Metallurgical and Mechanical Engineering, Fluminense Federal University, Volta Redonda, 27255-125, Brazil 

2. Department of Mechanical Engineering, Fluminense Federal University, Volta Redonda, 27255-125, Brazil 

3. Department of Physics, Exact Sciences Institute, Fluminense Federal University, Volta Redonda, 27213-145, Brazil 

 
Abstract: This study proposes an analysis of the machining efforts based on experimental strains results, in the time domain. We 
have developed the design and construction of two prototypes: a DP (Dynamic prototype) and a SP (Static prototype), which were 
submitted simultaneously to the same conditions of efforts produced during a full drilling operation with twist drill. Machining tools 
and electric resistive SGs (Strain gauges) were adapted in the tepped rotary shaft DP. In order to form electrical contacts in a dynamic 
way, a set of SR (Slip rings) was designed. A SP (Second prototype), developed for fixing the specimen, had a static shaft, without 
geometric variation, allowing a straightforward electrical connection with the SGs. The prototypes were adjusted to the center line of a 
radial drilling machine. The differentiated ways that SGs were arranged and interconnected to the WB (Wheatstone bridge) have 
established the condition, so that the DP only strains produced by twisting. In SP, on the other way, the SGs were adjusted in order to 
assimilate all the influence efforts influences produced during a machining process. The acquired analogic signal reproduced strains in 
both shafts, in a consistent way, with multi-axial loading patterns, which are satisfactorily related to the analytical results. 
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1. Introduction  

Several studies regarding the drilling operation have 
been developed in order to predict more accurately on 
these fundamental efforts, tooling behavior and its 
vibration influence on the process and quality of the 
finishing operation. The work presented by CASTRO 
et al. [1] proposed an original method to measure 
dynamic forces using a commercial piezoelectric 
dynamometer. This approach is based on the 
construction of a correction function, taking into 
account the dynamic behavior of the mechanical 
environment. It allows the measurement of shear 
forces to a large frequency domain, which has 
application in high-speed machining and cutting 
processes instabilities. KARABY [2] has studied the 
criteria and results in strain gages position. These strain 
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fields: stress and dynamic strains based on not destructive 
experimental analysis.   

gates were connected by static contacts in specially 
designed dynamometers, appropriated for analysis of 
basic forces in various machining processes. DU et al. 
[3], in his paper, presented a computer simulation 
model for drilling and reaming processes. The model is 
made of four parts: 1) The force model for the cutting 
lips; 2) The force model for the chisel edge; 3) The 
dynamic model for the machine tool (including the 
cutter) and 4) The regenerative correlation between 
the force and machine tool vibration. The models for 
the forces and the machine tool are similar to the 
existing models. The key to the model is the 
regeneration correlation between cutting forces and 
machine tool vibration. The model can predict the 
dynamic forces and chatter limit. It also reveals several 
interesting phenomena, such as how the feed and the 
point angle of the drill affect the chatter limit. The 
simulation results are validated experimentally by both 
drilling and reaming under various cutting conditions. 
MOUSAVI [4] analyzed the drilling deep holes with 
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small diameters, to adopt an alternative answer to the 
chip evacuation problem. In order to use a vibratory 
drill head, self-vibratory cutting conditions are set 
focusing drill geometry parameters and the cutting 
twist effect on impulse power. ROUKEMA, et al. [5, 
6], in their articles, produced a model in the time 
domain of torsional and axial vibrations in the drilling. 
A cutting force model is used to predict torque as 
function of the feed rate, the radial depth of cut and 
the drill geometry. The distribution of the chip 
thickness is affected by the rigidity and by the drill 
body motion and structural vibrations. Force, torque, 
power and error dimensional shape left on the surface 
are taken into account in the dynamic kinematic model 
for foreseeing the chip thickness. The stability of the 
drilling process is also evaluated using the simulation 
model in the time domain. A irregular surface 
finishing can be simulated for actual drilling 
considering the damping process. SANTOS et al. [7] 
applied to electrical contacts, statically in the 
twisting machine design, with low manufacturing 
cost, in order to evaluate Young’s modulus by 
torsion tests for materials. STRENKOWSKI, J. S. et 
al. [8] have made a comprehensive study of the 
dynamic kinematic modelling and stability in the 
drilling operations. Their study has focused on the 
stability of the drilling in the frequency domain. 
Considering the motion of the rigid body, 
torsional-axial and lateral vibrations in the drilling and 
formation of the resulting hole drilling operation, an 
analytical finite element technique was developed to 
predict the feed force and torque in drilling. HUANG 
et al. [9] analyzed the quality of drilling by varying 
the vibration in the drill tip for a drilling process in 
machining at high speed. Thus, they used a 
pre-twisted bar to simulate a drill bit. They proposed a 
drilling process analysis that is grounded by an elastic 
movement Winkler type – Type which elastic 
movement. This movement is characterized by one 
boundary condition at the drill tip in the bore. Due to 
the variation of the depth of drilling, a dynamic model 

dependent on the time was proposed. Simulated 
results from this proposed model indicated that sudden 
natural frequencies identified as problematic will take 
place resulting in a severe induced vibration. 
ZEILMANN et al. [10] reported a study of the effects 
of the absence of using of cutting fluids in 
steel-fast-M2 HSS tools, in machining steel AISI P20. 
The main objective of this paper is to produce analysis 
based on strains generated by drilling efforts. The 
shaft that transmits torque behaves like a torsional 
spring, which depending on the applied dynamic 
loading and natural system frequencies may cause 
cyclic vibration. In this context, based on the studies 
referenced above, this study established two different 
experimental dynamic analysis. One analysis uses SGs 
and SRs system while the other one used only SGs. 
Both analysis measure, strains in transmission power 
shaft surface under multiaxial loading produced by 
machining process. Initially, two prototypes were 
designed with a main SP and a DP shaft, considering 
theoretical drilling efforts, specified in Eqs. (1-3), 
resulting in two distinct forms of analysis and 
assembly. One produced by static electrical contact 
applied to SP and another one that requires a dynamic 
electrical contact applied to the DP. This form of 
dynamic contact that based on SRs system was 
designed and manufactured exclusively for this 
purpose, as exhibited in Fig. 1. 

In the process of experimental analysis, strain 
graphics proportional to machining efforts were 
produced, variable in time, which determined an 
actual combined loading cyclic compression and 
torsional moment. These strains were acquired in a 
single point of SP and DP shaft surface. 

For the analysis phase of each experimental 
procedure, it was considered the following parameters 
referenced in Table 1. Setting a limit of machining 
forces, minimum and maximum, in the drilling process, 
where, Fc represents the cutting force and it was 
related to the torsional moment Eqs. (1-5). Thus, these 
equations establish the form request multiaxial composed 
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and the chip with the drill exit surface, Fig. 2b. 
F୰f୧ ൌ Fୡ୧ ൅ F୮୧ ൅ Ff୧         (1) 

Because of the resistance forces, the total final 
moment was represented by the equation: 

M୲୧ ൌ M୰f୧ ൅ M୮୧ ൅ Mୟ୲୧        (2) 
M୲୧൫kୱభ, f, a୮, χ୰, D൯ ՜ M୲ሺtሻ

ൌ kୱభ ቆ
ሺfሺtሻሻ

2 · senχ୰ቇ
ଵି୸ a୮

senχ୰
·

D
2

՜ Cଵ ൌ kୱభ

ሺsenχ୰ሻଵି୸

4 · senχ୰
 

M୲୧ሺtሻ ൌ Cଵ ൈ ሺfሺtሻሻଵି୸ ൈ Dଶ         (3) 
M୲୧ሺf, Cଵ, yଵ, xଵ, Dሻ ՜ M୲ሺtሻ ൌ Cଵ ൈ f ୷భሺtሻ ൈ D୶భ (4) 

F୤Dሺf, yଶ, xଶ, Dሻ ՜ F୤ୢሺtሻ ൌ Cଶ ൈ f ୷మሺtሻ ൈ D୶మ  (5) 
where, Mti was the produced time due to cutting 
resistance strength of the material by the main cutting 
edges, Mpi was produced time due to the shear 
strength of the material strength by transverse cutting 
edges, Mati was the moment produced due to the 
frictional force produced by surface hole and the chip 
with the drill exit surface.  

In the above equations, the parameters x1, x2, y1, y2, 
C1, C2 and 0.7 ≤ (1 – z) ≤ 0.8 were empirical constants 
based on the material shaft (SAE 1020), and 
referenced by DINIZ [11]; where, χr was the tip angle 
of the drill tip in relation to its longitudinal axis, D 
was the drill diameter, ap was the tool radius and KS1 
was the specific cutting pressure. Constants C1 = 15.1 
± 0.4 and C2 = 32.5 ± 0.4 showed tolerance’s 
variations in relation to their nominal values. For this 
reason, it was generated Table 2. In this table, 
torsional moment variation and cutting force based on 
Kronenberger Eq. (4) and Kienzle Eq. (3) were set as 
maximum and minimum values. This condition was 
allowed to consider in this study, the highest Mt and 
the lower value of Mt value as limit, invariable on 

time, to be applied to the graphs obtained from efforts 
experimentally way. The same proposition was 
applied to the thrust force FfD based on Daar Eq. (5).  

2. Methods and Materials 

The dynamic operation process was set by dry 
drilling which used a full radial drilling machine and 
tooling of the type twist drill ((Φ) = 12.5 mm) type. 
The shafts strains produced in rotational and static 
way were identified and processed by analog signal 
into a digital signal device, using a signal conditioner 
manufactured by HBM model Spider 8-SR-30. The 
Catman Easy 3.0 software allowed acquisition and 
processing of the digital data. Programs made in 
Matlab, allowed independent graphics production for 
the behavior of forces in relation to the torcional 
moment and the thrust force. The strain gages 
arrangement in the DP shaft, Fig. 4a, examines only 
specific strains related to torcional moment in order to 
compare its results with the limits established by the 
timeless Kienzle-Kronenberg equation. SP’s shaft, Fig. 
4b, considered all biaxial effect request. 

2.1 SP Arrangement 

For attachment of the specimen to be machined by 
drilling (50 mm diameter and 60 mm high, 
manufactured in SAE 1020 steel), a SP was designed 
and developed to be adapted on the basis of radial 
drilling machine, submitting it, simultaneously, to the 
same DP machining efforts. This prototype, in its 
physical configuration, had a stationary shaft with no 
geometric variations, Fig. 3b. Although formed and 
fixed to the drill differently than another prototype, 
analysis parameters set of similarity between them. 
This condition was crucial since the SP, Fig. 4a,   
was also used in monitoring the effectiveness of the DP 

 

Table 2  Theoretical maximum and minimum machining parameter values.  

Mti –(Kienzle) Mti –(Kronenberg) FC (Kienzle) FC (Kronenberg) FfD (Daar) 
Nmm Nmm Nmm Nmm KN KN KN KN KN 
2430 3480 4250 4480 0.382 0.436 0.701 0.887 1.26 1.30 
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Fig. 3  Forces produced by drilling tools and their directions process and reaction: (a) DP and (b) SP.  

 
(a)                                              (b) 

Fig. 4  (a) PE’s general arrangement and (b) the rosette strain graph.  
 

strain. In SP shaft were fixed superficially, three 
uniaxial strain gages, brand KYOWA, 120 Ω, G. F. 
2.12. Its electrical interconnection was produced using 
a 1/4 WB circuit for each SG, yielding specifies three 
types of deformation: εa, εb εc,. The form of strain 
acquisition through rosettes clearly showed a 
compression force (represented by strain εb) and a 
torsion (represented by strains εa and εc), Fig. 4b. 

2.2 DP Arrangement 

The general setup of the prototype is basically 
composed by a rotating shaft, where SGs were 
adjusted, pre-retirement plans and tooling to produce 
a machining operation. Its overall arrangement, Fig. 
5a, believed that the tools to be adapted on the shaft 
is a universal chuck for shape Ø12 mm drill fixation 
with use of internal Morse cone. This standard 
commercial element was essential to the geometric 
measurements of the PD spindle, which made of 
steel SAE 1020. Fig. 4b showed the result of shaft 

strain related to the moment. 

2.3 DP and SP Final Results in Experimental Way  

Through SP strains set thrust force in Fig. 6, the 
strain identified εb = εx strain. From this strain (εx), a 
variable force (Ff(t)) was determined using Eqs. (7-9), 
and is exhibited in Fig. 6. The thrust force, determined 
analytically by the Daar’s Equation (Eq. (5)) shown in  
Table 2, was used as a reference line experimental 
result, obtained by Eqs. (6-8). 

εୟ୧ሺtሻ ൌ ε୶౟
ሺtሻcosଶθୟ୧ ൅ ε୷౟

ሺtሻsenଶθୟ୧

൅ γ୶୷୧ሺtሻsenθୟ୧ · cosθୟ୧ 
εୠ୧ሺtሻ ൌ ε୶౟

ሺtሻcosଶθୠ୧ ൅ ε୷౟
ሺtሻsenଶθୠ୧

൅ γ୶୷୧ሺtሻsenθୠ୧ · cosθୠ୧ 
εୡ୧ሺtሻ ൌ ε୶౟

ሺtሻcosଶθୡ୧ ൅ ε୷౟
ሺtሻsenଶθୡ୧

൅ γ୶୷୧ሺtሻsenθୡ୧ · cosθୡ୧ 
(6) 
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ଶ
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ቁ
ଶ
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Fig. 9  Final result of torcional moment in time domain, its limits and their respective trend lines for DP/SP.  
 

behavior considering the system as one freedom 
degree damping forced system, represented by the 
thrust force (Ff) and force cutting (Fc) using a simple 
differential equation that defines the set of vibration 
parameters, defined in Eqs. (15-16), and presented in 
Table 4 for DP and SP. Fig. 10 presented three 
different levels to indicate the point surface analysis 
about whirling marks. 
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     (16) 

where, m was the total mass, J was the mass moment 
of inertia with respect to the central axis, Li is the 
length of each shaft section and Jp was the polar 
moment of inertia. 

In Table 4, the prototype vibration parameters were 
presented. G was the shear modulus, K was the 
stiffness coefficient, c was the damping coefficient, ζ 

was the damping ratio, ωn was the natural angular 
frequency, fn was natural oscillation frequency, fn was 
natural oscillation frequency, w was the excitation 
frequency, wd is natural damped frequency, f was the 
oscillation frequency and r was the frequency ratio. 
This results demonstrated that resonance did not take 
place (w ≠ wn). The system behavior for the DP 
presented a large variation of intensity amplitudes 
(∆Mc) in relation to the SP, shown in Table 5, 
although r < 1 (DP and SP). Thus, considering Eq. 16, 
it was clear that the increased stiffness SP causes 
lesser amplitude variation((∆Fa) than the PD one. 

After the first hole, there was prepared a new 
specimen which nine holes were made in the same 
way as the first was produced, including the same 
tooling without modification. The rotational marks 
vibration presented the first hole were repeated in the 
remaining nine. It was then made a roughness surface 
analysis of each hole in each level shown in Fig. 10. It 
was noticed that the (longitudinal and transverse) 
roughness was the result of vibration and not the cause 
of vibration, showing no regularity from one hole to 
another, one as shown in Fig. 11, Tables 7 and 8. All 
holes had different shapes and different average values  
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(a)                                           (b) 

Fig. 12  Analysis of Thrust force vibration in the frequency domain (a) and in the time domain (b).  

 
(a)                                            (b) 

Fig. 13  Vibration analysis in the frequency domain (a) and time domain (b) SP.  
 

 
(a)                                           (b) 

Fig. 14  Vibration analysis in the frequency domain (a) and in time domain (b) DP.  
 

4. Conclusions 

This study proposes an analysis of the machining 
efforts based on experimental strains results, in the 

time domain, taking into consideration the design and 
construction of two prototypes. Although Figs. 7-9 
showed a graph with different behavior between SP 
and DP in drilling process, the acquired analogic 
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signal of the reproduced strains, in both shafts, were 
consistent with multi-axial loading patterns, which 
were satisfactorily related to the analytical results. The 
lower stiffness was the fundamental condition for the 
most irregular behavior of the DP momentum 
intensity variation. A greater shaft rigidity allowed a 
greater rotation speed of the drilling process, yielding 
a better surface quality and a reduced amplitude 
variation of the surface deformations. Both prototypes 
(SP and DP) present the same fundamental frequency 
with different amplitudes, as shown in Figs. (13-14). 
DP torsional moment had the largest amplitude 
variation of intensity regarding the SP one in time 
domain. 

The differentiated way SGs were arranged and 
interconnected to the Wheatstone Bridge (WB) have 
established the condition so that the DP only 
assimilates strains produced by twisting. In the SP, on 
the other way, the SGs were adjusted in order to 
assimilate all the influence strains produced during a 
machining process, as showed in Figs (4a-5b). So it 
was possible to analyze the vibration behavior 
considering the system as a damped forced system 
with one degree of freedom, using a simple 
differential equation that defines the set of vibration 
parameters, represented by Eqs. (15-16). 

The main objective of the analysis of the machining 
efforts was exhibited in Figs. (6) and (9). These 
figures allowed us to make considerations about the 
surface roughness represented in Figs. (10) and (11) 
and Tables 5, 7 and 8, where it could be noticed and 
proved that the (longitudinal and transverse) surface 
roughness was the result of vibration and not the cause 
of vibration although the transverse profile had been 
always larger than longitudinal one. 
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