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Abstract: The magnetization of two interacting electrons confined in a quantum dot presented in a magnetic field had been 
calculated by solving the relative Hamiltonian using variational method. We had investigated the dependence of the magnetization on 
temperature, magnetic field strength and confining frequency. The singlet-triplet transitions in the ground state of the quantum dot 
spectra and the corresponding jumps in the magnetization curves had been shown. The comparisons show that our results are in very 
good agreement with reported works. 
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1. Introduction 

QDs (Quantum dots), or artificial atoms, had been 

the subject of interest research due to its physical 

properties and great potential device applications such 

as quantum dot lasers, solar cells, single electron 

transistors and quantum computers [1-5]. The 

application of a magnetic field perpendicular to the 

dot plane will introduce an additional structure on the 

energy levels and correlation effects of the interacting 

electrons confined in a quantum dot. 

Different approaches had been used to solve the two 

electrons QD Hamiltonian, including the effect of an 

applied magnetic field, to obtain the eigenenergies and 

eigenstates of the QD-system. Wagner, Merkt and 

Chaplik [6] had studied this interesting QD system 

and predicted the oscillations between spin-singlet (S) 

and spin-triplet (T) ground states. 

Taut [7] had managed to obtain the exact analytical 

results for the energy spectrum of two interacting 

electrons through a coulomb potential, confined in a 

QD, just for particular values of the magnetic field 

strength. In Refs. [8, 9] the authors had solved the 

QD-Hamiltonian by variational method and obtained 
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the ground state energies for various values of 

magnetic field ሺωୡሻ, and confined frequency ሺω଴ሻ. In 

addition, they had performed exact numerical 

diagonalization for the Helium QD-Hamiltonian and 

obtained the energy spectra for zero and finite values 

of magnetic field strength. Kandemir [10, 11] had 

found the closed form solution for this QD 

Hamiltonian and the corresponding eigenstates for 

particular values of the magnetic field strength and 

confinement frequencies. Elsaid [12-16] had used the 

dimensional expansion technique, in different works, 

to study and solve the QD-Hamiltonian and obtain the 

energies of the two interacting electrons for any 

arbitrary ratio of coulomb to confinement energies and 

gave an explanation to the level crossings. 

Maksym and Chakraborty [17] had used the 

diagonalization method to obtain the eigenenergies of 

interacting electrons in a magnetic field and show the 

transitions in the angular momentum of the ground 

states. They had also calculated the heat capacity 

curve for both interacting and non-interacting 

confined electrons in the QD presented in a magnetic 

field. The interacting model shows very different 

behavior from non-interacting electrons, and the 

oscillations in these magnetic and thermodynamic 

quantities like magnetization ሺࣧሻ and heat capacity 
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ሺC୴ሻ  are attributed to the spin singlet-triplet 

transitions in the ground state spectra of the quantum 

dot. De Groote, Hornos and Chaplik [18] had also 

calculated the magnetization, susceptibility and heat 

capacity of helium like confined QDs and obtained the 

additional structure in magnetization. In a detailed 

study, Nguyen and Peeters [19] had considered the 

QD helium in the presence of a single magnetic ion 

and applied magnetic field taking into account the 

electron-electron correlation in many quantum dot. 

They had shown the dependence of these thermal and 

magnetic quantities: C୴, ࣧ and χ on the strength of 

the magnetic field, confinement frequency, magnetic 

ion position and temperature. They had observed that 

the cusps in the energy levels show up as peaks in the 

heat capacity and magnetization. In Ref. [20], the 

authors had used the SFA (static fluctuation 

approximation) to study the thermodynamic properties 

of two dimensional GaAs/AlGaAs parabolic QD in a 

magnetic field. 

Boyacioglu and Chatterjee [21] had studied the 

magnetic properties of a single quantum dot confined 

with a Gaussian potential model. They observed that 

the magnetization curve shows peaks structure at low 

temperature. Helle, Harju and Nieminen [22] had 

computed the magnetization of a rectangular QD in a 

high magnetic field and the results show the 

oscillation and smooth behavior in the magnetization 

curve for both, interacting and non-interacting 

confined electrons, respectively. 

In an experimental work [23], the magnetization of 

electrons in GaAs/AlGaAs semiconductor QD as 

function of applied magnetic field at low temperature 

0.3 K had been measured. They had observed 

oscillations in the magnetization. To reproduce the 

experimental results of the magnetization, they found 

that the electon-electron interaction should be taken 

into account in the theoretical model of the QD 

magnetization.  

Furthermore, the DFT (density functional method) 

had been used to investigate the magnetization of a 

rectangular QD in the applied external magnetic field 

[24]. 

Climente, Planelles and Movilla had studied the 

effect of coulomb interaction on the magnetization of 

quantum dot with one and two interacting electrons 

[25]. 

Very recently, Avetisyan, Chakraborty and 

Pietilainen [26] had studied the magnetization of 

anisotropic QD in the presence of the Rashba 

spin-orbit interaction for three interacting electrons in 

the dot. 

In this work, we had calculated the magnetization 

as a thermodynamic quantity for a quantum dot 

helium atom in which both the magnetic field and the 

electron-electron interaction are fully taken into 

account. Since, the eigenvalues of the electrons in the 

QD are the starting point to calculate the physical 

properties of the QD system [27], we had, first, 

applied the variational method to solve the QD 

Hamiltonian and obtain the eigenenergies. The 

variational calculation method is used as an efficient 

technique to study the electronic properties of coupled 

quantum dot [29]. Second, we had used the computed 

eigenenergies spectra to display theoretically the 

behavior of magnetization and magnetic susceptibility 

of the QD as a function of magnetic field strength, 

confining frequency and temperature. 

The rest of this paper is organized as follows: the 

Hamiltonian theory and computation variational 

technique of the interacting quantum helium     

atom are presented in Section 2. In Section 3, we 

show how to calculate the magnetization and 

susceptibility from the mean energy expression. Final 

section will be devoted to numerical results and 

conclusions. 

2. Theory 

In this section, we will describe in detail the main 

three parts of the theory, namely: quantum dot 

Hamiltonian, variational method and the 

magnetization. 
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2.1 Quantum Dot Hamiltonian 

The effective mass Hamiltonian for two interacting 

electrons confined in a QD by a parabolic potential in 

a uniform magnetic field of strength B, applied along 

z direction is given by: 
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where ω଴  and Ԗ  are defined as the confining 

frequency and the dielectric constant for the GaAs 

medium respectively. rଵand rଶ describe the positions 

of the first and second electron in the xy plane. ωୡ is 

the cyclotron frequency and the symmetric gauge 

A ൌ
ଵ

ଶ
B ൈ r is used. 

The quantum dot Hamiltonian can be decoupled 

into center of mass and relative parts by using the 

standard coordinate transformation. 

The center of mass Hamiltonian is a harmonic 

oscillator type with well-known eigenenergies: 
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where nୡ୫, mୡ୫ are the radial and angular quantum 

numbers respectively. 

However, the relative motion Hamiltonian part 

(H୰୫), given by the following equation: 
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where μ ൌ
୫כ

ଶ
. This Hamiltonian Eq. (3) does not have 

an analytical solution for all ranges of ω଴ and ωୡ. 

2.2 Varaitional Method Calculations  

Dyblaski, in a recent work [30], had used 

successfully the variational method to study the 

electronic structure of the quantum dot. Encouraged by 

the accuracy of the variational method used in Ref. [28], 

we shall apply the variational technique to calculate  

the complete eigenenergy spectra of the QD 

hamiltonian and the exchange energy (J) as functions 

of confining frequency and magnetic field strength. In 

this work, we adopted one-parameter variation wave 

function as, 
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All the mathematical steps which lead to the energy 

expression will be given in details just to make the 

work self-contained. We can write Schrödinger 

equation with complete Hamiltonian form and full 

variational wave function as,  
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In our calculations, we have used the following 

Atomic Rydberg units 

݁ଶ ൌ 2, ԰ ൌ 1, ݉ ൌ 1, ߳ ൌ 1 

Finally, the equation for a relative coordinate part is 
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We have normalized our wave function, 
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by calculating the normalizing constant as, 
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The above normalization constant can be rewritten 

in terms of new constant parameters, 
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We have found the energy spectra of the relative part 

Hamiltonian in a closed analytical form: 
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which can be rewritten as, 
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The parameters: d, e, f which are defined previously 

in Eqs. (12)-(14) respectively. 

The energy eigenvalues of ܪ௥ can be obtained by 

minimizing the energy expression eq. (16) with respect 

to the variational parameter ߚ namely, 
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The value of the parameter ߚ  which satisfies the 

minimum energy requirement is, 
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So, the final energy expression in terms of the 

variational parameter value which satisfies the 

minimization condition is 
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Having obtained the eigenenergies for the QD 

system for any state labeled by ݊, ݉ quantum number, 

we are able to calculate the exchange energy ሺJሻ 

define as: 

ܬ ൌ ௧௥௜௣௟௘௧ܧ െ ௦௜௡௚௟௘௧ (23)ܧ 

for any range of a magnetic field and confining 

potential. 

2.3 Magnetization of the Quantum Dot 

The magnetization of the QD system is evaluated as 

the magnetic field derivative of the mean energy of 

the QD. 
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where the statistical average energy is calculated as: 

,EሺTۃ B,ω଴ሻۄ ൌ
∑ EαୣషEα ౡBT⁄N
αసభ

∑ ୣషEα ౡBT⁄N
αసభ

       (25) 

and the sum is taken over energy levels of the QD. 

The dependence of the computed magnetization on 

the magnetic field ωୡ, confining frequency ሺ ω଴ሻ and 

temperature (T) will be displayed. 

3. Results and Conclusions 

The results for two interacting electrons in a 

quantum dot made from GaAs material (effective 

Rydberg Ry*ൌ 5.825 ܸ݉݁) are presented in Figs. 1 to 

5. In Fig. 1, we had displayed our computed energy 

spectra results for two interacting electrons confined 

parabolically in a QD as a function of the strength of 

the magnetic field for various values of angular 

momentum (m) and fixed value of confining frequenc 

 ω଴ ൌ
ଶ

ଷ
 yRy*. The comparison with Ref. [30] clearly 

shows excellent agreement between both works.  

Fig. 1 shows the transition in the angular 

momentum of the ground state of the QD system as 

the magnetic field increases. The origin of these 

transitions is due to the effect of coulomb interaction 

energy in the QD Hamiltonian. These transitions in 

the angular momentum of the QD system correspond 

to the (S-T) transitions manifest themselves as cusps 

in the magnetization curve of the QD. In Fig. 2, we 

had shown the dependence of the magnetization on the 

magnetic field strength for fixed values of the 

confining frequency ω଴ ൌ
ଶ

ଷ
 and T=0.01K, for both כܴ

interacting and non-interacting electrons in a QD. The 

non-interacting curve (solid line) shows a smooth 

behavior while the interacting curve (dashed line) 

shows a saw tooth behavior. The magnetization shows 

a peak structure which is a result of the transition in 

the angular momentum of the ground state energy as 

shown and discussed previously. For example, the 

first peak corresponds to the transition in the angular 

momentum of the ground state from: m୰ ൌ 0 

tom୰ ൌ 1. 
 

 
Fig. 1  The computed results of two interacting electron quantum dot against the strength of the magnetic field for ૑૙ ൌ
૛

૜
 Ry*.  
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Fig. 4  The magnetization of two interacting electrons quantum dot as function of magnetic field strength at T= 0.01 K and 

various confinement frequencies ࣓૙: (࣓૙ ൌ ૙. ૜ solid; ࣓૙ ൌ ૙. ૞ dashed and ࣓૙ ൌ ૙. ૠ dotted). 
 

In Fig. 3, we had shown the behavior of the 

magnetization against the magnetic field strength at 

fixed value of confining frequency ߱଴ ൌ
ଶ

ଷ
כܴ  and 

different temperature values  T ൌ ܭ 0.01  (dashed 

curve) and 1.0 K (solid curve). It is observed that the 

heights of the peak due to transition jumps are reduced, 

broadened and shifted to higher magnetic value as the 

temperature increased.  

In Fig. 4, we had shown the effect of confinement 

frequency on the magnetization curve, while the 

temperature is kept unchanged. The curve clearly 

shows the gradual shift of the magnetization jumps to 

higher magnetic field as the confining frequency ߱଴ 

enhanced. This behavior for the magnetization is in 

agreement with the results of Refs. [21, 25].  

In conclusion, we had applied the variational 

method to solve the Hamiltonian for two interacting 

electrons confined parabolically in a quantum dot 

subjected to a magnetic field in order to study 

theoretically the details of the dependence of the 

magnetization on the magnetic field, confining 

frequency and temperature of the QD system. The 

investigations clearly show that the oscillations in 

magnetization are due to the role of electron-electron 

interaction, as reported in previous works.  
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