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Abstract: The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional 
reduced differential transform method (FRDTM) for computation of approximate solution of time-fractional gas dynamics equation 
(TFGDE) arising in shock fronts. In this approach, the fractional derivative is described in the Caputo sense. Four numeric 
experiments have been carried out to confirm the validity and the efficiency of the method. It is found that the exact or a closed 
approximate analytical solution of a fractional nonlinear differential equations arising in allied science and engineering can be 
obtained easily. Moreover, due to its small size of calculation contrary to the other analytical approaches while dealing with a 
complex and tedious physical problems arising in various branches of natural sciences and engineering, it is very easy to implement. 
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1. Introduction

In the recent years, several physical phenomena 
arising in engineering as well as in allied sciences can 
be explained successfully by developing models with 
the help of the fractional calculus theory. The 
fractional order equations response ultimately 
converges to the integer order equations, and so, it has 
achieved a special attention. The fractional 
differentiations are very effective and find its wide 
range of applications for the description of the 
mathematical modeling of real world problems, e.g. in 
the earthquake modeling, the traffic flow model with 
fractional derivatives, diffusion models, measurement 
of viscoelastic material properties, control, relaxation 
processes and so on [1-11]. In the beginning of 
twentieth century, a great deal of effort has been 
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expanded in trying to find the robust and stable 
analytical approaches for the exact (approximate) 
solution of fractional differential equations of physical 
interest. However, several analytical schemes, for 
instance, Adomian decomposition methods [12-13], 
differential transform methods [14-16], homotopy 
perturbation methods [17-20], homotopy analysis 
methods [21-22], etc. have been developed for the 
analytical solutions of fractional differential equations 
but the major disadvantage of these schemes is their 
complicacy and huge calculation. To overcome from 
such type of the drawbacks, a semi-analytical 
approach so called the fractional reduced differential 
transform method (FRDTM) has been developed by 
Keskin and Oturanc [23]. It is demonstrated that the 
proposed FRDTM is the most easily implemented 
analytical method which provides the exact solution 
for both the linear and nonlinear differential equations. 
It is very effective, reliable and efficient, and very 
powerful analytical approach, see [24-28].  
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The gas dynamics equation is the mathematical 
expressions of conservation laws, e.g. in the 
conservation of mass, momentum, and energy etc.  

This paper is concerned with approximate analytical 
solution of the time fractional nonlinear gas dynamics 
equations (1) below, using FRDTM.  

( )1 1 0,  , 0 1,t xD u uD u u xα α+ − − = ∈ < ≤  (1) 

subject  to  the  initial  condition  ( ) ( ),0u x f x= , 

where 1, ,t x
u uD u D u

t x

α
α

α

∂ ∂
= =

∂ ∂
α is a parameter 

describing the order of the time fractional derivatives. 
For 1α = , Eq. (1) reduced into the classical gas 
dynamics equation. In the recent articles, the 
approximate analytical solutions of the few different 
types of gas dynamics equations arising in physics, in 
terms of infinite series, have been obtained using 
several analytical and numerical approaches [29-36]. 
The homogenous and non-homogenous nonlinear gas 
dynamics equations were solved by implementing the 
differential transform method (DTM) [37-38] and 
Fractional homotopy analysis transform method 
(FHATM) [39]. In this paper our main aim is to 
reconsider the analytical approximate solution of 
time-fractional gas dynamics equations of order α  
(0 1)α< ≤  in series form converges to the exact 
solution rapidly, applying directly the FRDTM. It is 
demonstrated that the obtained FRDTM approximate 
results are much better approximations and 
convergence much faster than those given by using 
DTM and FHATM [38-39]. 

The rest of the paper is organized as follows: in 
Section 2, basic preliminaries and notations on 
fractional calculus theory are reviewed, which is used 
for further study. Section 3 represents the basic of 
FRDTM which we use to find the exact solution of the 
time-fractional gas dynamics equation. In Section 4, 
exact solutions of four test problems time-fractional 
homogenous and non-homogeneous fractional gas 
dynamics equations are presented and compared with 
the exact solutions available, in the literature. The 
concluding remarks are presented in Section 5. 

2. Fractional Calculus Theory 

In this section, the basic definitions and notations 
are revisited that will be used for further ongoing 
study. Fractional calculus theory is more than twenty 
decades years’ old theory present in the literature. In 
fractional integrals and derivatives, several definitions 
are proposed but the first major contribution to give a 
proper and most meaningful definition goes to 
Liouville [2]. 

Definition 2.1 A real valued function 
( )x , x>0f ∈  

is said to be in the space 

, Cµ µ ∈
 
if there exists a real number ( )q >µ  

such that ( ) ( )qx =x g x ,f  where ( )g x C[0, )∈ ∞ , 

and is said to be in the space mCµ  
if 

( ) , mmf Cµ∈ ∈ . 

Definition 2.2 For any given function f ∈ , 
Riemann-Liouville fractional integral operator [3] of 
order 0α ≥ is defined by 

( ) ( ) ( ) ( )

( ) ( )

x
1

0

0

1= x-t dt, 0,

= .

x

x

J f x f t

J f x f x

αα α
α

−
> Γ




∫

 

(2) 

In his work, Caputo and Mainardi [3] proposed a 
modified fractional differentiation operator xDα  on 
the theory of visco-elasticity to overcome the 
discrepancy of Riemann-Liouville derivative [2] while 
modeling the real world problems using the fractional 
differential equations. They further, demonstrated that 
their proposed Caputo fractional derivative allow the 
utilization of initial and boundary conditions 
involving integer order derivatives, a straightforward 
physical interpretations.  

Definition 2.3 The fractional derivative of 
( )f x ∈ , in Caputo sense [3] is defined as 

( ) ( )

( ) ( ) ( ) ( )
x

1

0

=

1 x-t dt,

m m
x x x

m m

D f x J D f x

f t
m

α α

α

α

−

− −=
Γ − ∫  

(3) 

For 11 ,  , 0, mm m m x f Cα −− < ≤ ∈ > ∈ . The 
basic properties of the Caputo fractional derivative 
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can be given by the following 
Lemma 2.1 If 1 ,  m m m Nα− < ≤ ∈  and 

,  -1,mf Cµ µ∈ ≥  then 

( ) ( )

( ) ( ) ( ) ( )
0

= ,  x>0,

= 0 ,  x >0,
!

x x

km
k

x x
k

D J f x f x

xJ D f x f x f
k

α α

α α +

=





−


∑
 

(4) 

In the present work, the Caputo fractional derivative 
is considered because it allows the traditional initial 
and boundary conditions to be included in the 
formulation of the physical problems, for further 
important characteristics of fractional derivatives, see 
[1-11]. 

3. The Basic Idea of FRDTM 

In this section, the basic properties of the fractional 
reduced differential transform method are described. 
Let ( ),w x t  be a function of two variables, which 
can be represented as a product of two single-variable 
functions, that is ( ) ( ) ( ),w x t F x G t= . Using the 
properties of the one-dimensional differential 
transform (DT) method, ( ),w x t  can be written as 

( ) ( ) ( ) ( )
0 0 0 0

, , ,i j i j

i j i j
w x t F i x G j t W i j x t

∞ ∞ ∞ ∞

= = = =

= =∑ ∑ ∑∑ (5) 

where ( ) ( ) ( ),W i j F i G j=  is referred to as the 

spectrum of ( ),w x t . Assume that DR
 and 1

DR−

 

denotes operators for fractional reduced differential 
transform (FRDT) and inverse FRDT, respectively. 
The basic definition and properties of the FRDTM is 
described below. 

Definition 3.1 If ( ),w x t is analytic and 
continuously differentiable with respect to space 
variable x  and time variable t  in the domain of 
interest, then the t -dimensional spectrum function  

( ) ( ) ( )( )
0

1 ,
1

k
k t t t

W x D w x t
k

α

α =
 =  Γ +

   (6) 

is referred to as the FRDT function of ( ),w x t , 

where α  is a parameter, which describes the order 
of time-fractional derivative. Throughout the paper, 

( ),w x t  (lowercase) is used for the original function 
and ( )kW x  

(uppercase) stands for the fractional 
reduced transformed function. 

The inverse FRDT of ( )kW x  is defined by 

( ) ( )( )0
0

, .k
k

k
w x t W x t t α

∞

=

= −∑       (7) 

From Eq. (6) and Eq. (7), it can be found that 

( ) ( ) ( ) ( )
0

0
0

1, , .
1

kk
t t t

k
w x t D w x t t t

k
αα

α

∞

=
=

 = − Γ +∑
 

(8) 

In particular, for 0 0t = , Eq. (8) reduces to 

( ) ( ) ( )
0

0

1, , .
1

k k
t t

k
w x t D w x t t

k
α α

α

∞

=
=

 =  Γ +∑
 

(9) 

This shows that FRDTM is advanced form of 
power series expansion. Let  

( ) ( )1, D ku x t R U x−=    , ( ) ( )1, D kv x t R V x−=     

and the convolution ⊗  denotes the FRDTM version 
of the multiplication, then the fundamental operations 
of the FRDT are illustrated in Table I, where Γ  
denotes Gamma function, defined by 

( ) 1

0

: ,t zz e t dt z
∞

− −Γ = ∈∫  , is the continuous extension 

to the factorial function, where 

1    if   0
( ) : .

0    otherwise
k

kδ
=

= 
  

Definition 3.2 The Mittag-Leffler function ( )E zα  
where 0α >  is defined by the following series 
representation, is valid in the whole complex plane 
[40]  

( ) ( )0
E :

1

k

k

zz
kα α

∞

=

=
Γ +∑  (10) It is an advanced 

form of ( )exp z . In particular, ( ) ( )
1

exp lim E .z zαα →
=  
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Table 1  Basic properties of FRDT method. 

( )( ),w x t  { } ( )( , )D kR w x t W x=  

( ) ( ), ,u x t v x t  

( ) ( )

( ) ( )
0

k k

k

r k r
r

U x V x

U x V x−
=

⊗

= ∑
 

( ) ( )1 2, ,a u x t a v x t±  ( ) ( )1 2k ka U x a V x±  

( ),m nx t u x t  
( ) ,     if   

0, .

m
k nx U x k n

else
− ≥




 

( ),l
xD u x t  ( )l

x kD U x  

( )( ),N
tD u x tα  

( )
( ) ( )1 ( )
1 k N

k N
U x

k
α

α +

Γ + +
Γ +

 

mx
 

( )mx kδ
 teλ  !k kλ  

( )sin wt c+  sin
! 2!

kw k c
k

π + 
 

 

( )cos wt c+  cos
! 2!

kw k c
k

π + 
 

 

 

4. Numerical Experiments and Discussions 

This section describes FRDTM as explained in 
Section 3 by taking four examples of the TFGDE to 
validate its efficiency and reliability. 

Example 4.1 Consider a homogenous nonlinear 
TFGDE as 

( )1 1 0,  0 1,t xD u uD u u uα α+ − − = < ≤   (11) 

subject to the initial condition  

( ),0 .xu x e−=              (12) 

Applying FRDTM on Eq. (11), we obtain the 
following recurrence relation 

( )
( )

k
1

1
r=0

k r
0

1
( ) ( ) ( ( ))

1

+U ( )- U ( ) ( ).

k r x k r

k

k r
r

k
U x U x D U x

k

x x U x

α α
α + −

−
=

Γ + +
= −

Γ + ∑

∑
 

(13) 
Using FRDTM to Eq. (12), we have 

( )0 . xU x e−=             (14) 
Utilizing Eq. (14) into the recurrence relation (13), 

( )kU x  
values are given  

( ) ( ) ( ) ( )1 2
1 1, ,

1 1 2
x xU x e U x e

α α
− −= =

Γ + Γ +


( ) ( )
1 ,...

1
x

kU x e
kα

−=
Γ +

     (15) 

Therefore, from Eq. (7) the analytical approximate 
solution of the nonlinear homogenous equation (11) 
can be derived as 

( )

( ) ( ) ( )

( ) ( )

( )
( ) ( )

0 1
0

0

,

...

1 ... ...
1 1

,
1

k
k

k

k
x

k

x x

k

u x t

U x t U x U x t

t te
k

t
e e E t

k

α α

α α

α
α

α

α α

α

∞

=

−

∞
− −

=

= = + +

 
= + + + +  Γ + Γ + 

= =
Γ +

∑

∑

  (16) 
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Where ( )E tα  is well known Mittag-Leffler function 
as defined in Eq. (10). As ,1=α  the exact solution 
(16) has the closed form txetxu +−=),(  which is an 
exact solution of the given gas dynamics equation (11) 
for standard value 1α =  and the same solution is 
obtained by Kumar et al. [39] using FHATM. It is 
observe that the solution ( ), t xu x t e −= grows 
exponentially with time t .  

Fig.1 shows the behavior of the approximate 
solution for different fraction Brownian motion 

9.0,8.0,7.0,6.0=α  and for standard motion ( 1α = ) 
in Ex. 4.1. Fig. 2 shows the comparison between the 
well-known exact solution (line) and solution (star) 
obtained by FRDTM for different values of x  at 

1t =  (and also different values of t  at 1x = ). Fig. 2 
shows that the FRDTM solution is identical with the 
exact solution. Fig. 3 depicts the physical solution 
profile obtained by FRDTM for 1α = .  

Example 4.2 Consider the following homogenous 
nonlinear time fractional gas dynamics equation as 
given by: 

( )1 1 log 0,t xD u uD u u u aα + − − =     (17) 

where 0 1, 0aα< ≤ >  together with the initial 
condition  

( ),0 .xu x a−=             (18) 

Applying the aforesaid FRDTM to Eq. (17), we 
obtain the following recurrence relation: 

( )
( )

( ) ( )

k
1

1
r=0

r
0

1
( ) ( ) ( )

1

log ( ) - log U ( ) ( ). 

k r x k r

k

k k r
r

k
U x U x D U x

k

a U x a x U x

α α
α + −

−
=

Γ + +
= −

Γ +

+

∑

∑
(19) 

Using the aforesaid FRDTM to the initial condition 
(18), we obtain 

( )0 .xU x a−=             (20) 

Utilizing the transformed initial conditions (20) into 
Eq. (19), the ( )xkU  

values are given as 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

2

1 2

loglog , ,
1 1 2

log
...,

1

x x

k
x

k

aaU x a U x a

a
U x a

k

α α

α

− −

−

= =
Γ + Γ +

=
Γ +

(21) 

Using the differential inverse reduced transform of 
( )xkU , we have 

( ) ( )

( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )

0
2

0 1 2

2

0

,

...

log log log
1 ... ...

1 1 2 1

log
log .

1

k
k

k

k

x

k

x x

k

u x t U x t

U x U x t U x t

t a t a t a
a

k

t a
a a E t a

k

α

α α

α α α

α
α

α

α α α

α

∞

=

−

∞
− −

=

=

= + + +

 
 = + + + +
 Γ + Γ + Γ +
 

= =
Γ +

∑

∑

 

(22) 
 

 
Fig. 1  Plot of FRDTM solutions ),( txu  for different value of .α  
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Fig. 2  Comparison between exact solution (line) and FRDTM solution (star) 
 

 
Fig. 3  Surface solution by FRDTM for 1=α . 
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The same solution was obtained by Kumar et al. [39] 
using FHATM. When 1α → in Eq.(22), we obtain 

( ) ( )
( )0

log
, .

1

k
x x t

k

t a
u x t a a

k

∞
− − +

=

= =
Γ +∑    (23) 

Eq. (23) is same as the exact solution for the 
classical gas dynamics equation (17) with 1α = .The 
above result is complete agreement with Kumar et al. 
[39]. Fig. 4 shows the comparison of the exact and 
approximate FRDTM solution for different values of 

10,20,30,40a =  with standard Brownian motion 
( 1α = ) in Ex. 4.2. Fig. 4 confirms that exact and 
approximate solutions are in good agreement for 
different values of .a  Fig. 5 shows the physical 
solution profile obtained by FRDTM for 

10, 1a α= = .  
Example 4.3 Consider the following inhomogeneous 

time fractional gas dynamics equation: 

( )21 2 21 ,  0 1,t xD u uD u t u xα α+ + + = < ≤  
 (24) 

subject to the initial condition  

( ),0 .u x x=              (25) 

Applying the FRDTM to Eq. (24), we obtain the 
following iteration formula 

( )
( ) ( )

( ) ( )

2
1

21 2
-

0

1
( )

1

( ) 1 . 

k

k

r x k r D
r

k
U x x k

k

U x D U x R t u

α α
δ

α +

=

Γ + +
= −

Γ +

 − + ∑
(26) 

The non-linear term ( )2 21DR t u +   treated as 

( )2 2 2

1 2

1  2

 2 , 
D D

k k k

R t u R v tv t v

V V V− −

   + = + +  
= + +    (27) 

where ( ) ( ) ( ), , , ,v x t u x t u x t=  and so, 

( ) ( ) ( )
0

.
k

k r k r
r

V x U x U x−
=

= ∑
 

Using FRDTM to Eq. (28), we get
 ( )0 .U x x=              (28) 

Using Eq. (28) in Eq. (26) and Eq. (27), the 
following ( )kU x  

values are obtained successively 

( ) ( )

( ) ( ) ( )
( )

( )

( ) ( )
( )

( ) ( )( )

( )
( )

( )
( )

( ) ( )( )
( )

( ) ( )
( )
( )

( )
( )
( )

1

2
2

3 2

2

2

3

,
1

12 12 , 
1 2 1 2 1 2

1 24
1 3 1 3 1

6 1 1 210
1 3 1 3 1 3 1

-
4 1 2 1 2

1 3 1 1 3

11-4 ,...
1 3 1 3

xU x

xU x x

U x x

x

x

α

α
α α α

α
α α α

α α
α α α α

α α
α α α

α
α α

−
=

Γ +

 Γ +
= + −  Γ + Γ + Γ + 

 Γ + = − +
 Γ + Γ + Γ + 

 Γ + Γ + 
− + Γ + Γ + Γ + Γ + 

 
Γ + Γ + − + Γ + Γ + Γ + 

 Γ +
−  Γ + Γ + 

(29) 

 

 
Fig. 4  Comparison between exact solution (dotted line) and FRDTM solution (stars) for 10,20,30,40a =  and 1.t =  
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Fig. 5  Physical solution profile using FRDTM for 10, 1a α= = . 
 

Continuing this process, ( )  for 4kU x k ≥  
can be 

obtained and then by using the differential inverse 
reduced transform of ( )xkU , we get 

( ) ( )

( ) ( ) ( )
0

2
0 1 2

,

...

k
k

k
u x t U x t

U x U x t U x t

α

α α

∞

=

=

= + + +

∑
  (30) 

( ) ( )

( ) ( )
( )

( )

( )
( )

( ) ( )( )

( )
( )

( )
( )

( ) ( )( )
( )

( ) ( )
( )
( )

( )
( )

2 2

2

2

2

3

,
1

12 12
1 2 1 2 1 2

1 24
1 3 1 3 1

6 1 1 210
1 3 1 3 1 3 1

+
4 1 2 1 2

1 3 1 1 3

11     +4
1 3 1

xu x t x t

x x t

x

x

x

α

α

α

α
α α α

α
α α α

α α
α α α α

α α
α α α

α
α

= −
Γ +

  Γ + + + −   Γ + Γ + Γ +   
  Γ +  − +  Γ + Γ + Γ +  

 Γ + Γ + 
− + Γ + Γ + Γ + Γ + 

 
Γ + Γ + − + Γ + Γ + Γ + 

Γ +
−

Γ + Γ( )
...             (31)

3α

  +  +  

As 1α →  in Eq. (31), we have  

( ) ( )
0

2 3

, x

... .
1

k
k

k
u x t U t

xx xt xt xt
t

α
∞

=

=

= − + − + =
+

∑
    (32) 

which is the same exact solution as obtained by Das 
and Kumar [38]. Fig. 6(a) shows the comparison of 
the exact solution ( , )u x t  and approximate solution 

4 ( , )u x t obtained by FRDTM for the standard 
Brownian motion and 1α =  for Example 4.3, 
depicting the good agreement between the exact and 
approximate solution. The absolute error is given in 
Table II. From Table II, it is observed that at a fixed 
value of ,α  absolute error increases with time t  
increase. Fig. 6(b) shows the physical solution  
profile of the standard Brownian motion obtained by 
FRDTM. 

Example 4.4 Consider the following homogenous 
non-linear time fractional-order gas dynamics equation: 

( )1 1 ,  0 1,x t
t xD u uD u u u eα α− ++ − − = − < ≤  (33) 

subject to the initial condition 

( ),0 1 .xu x e−= −           (34) 

Applying the FRDTM to Eq. (33), we obtain  

( )
( )

1
1 -

0

-
0

1
( ) ( ) ( )

1

( ) ( ) ( ) .
!

k

k r x k r
r

xk

k r k r
r

k
U x U x D U x

k

eU x U x U x
k

α α
α +

=

−

=

Γ + +
= −

Γ +

+ − −

∑

∑
 

(35) 
Using the FRDTM to Eq. (34), we get 

0 1 .xU e−= −             (36) 
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Fig.6  (a) Comparison between exact solution and solution obtained by FRDTM for 1α =  and 0.2;t = (b) Physical solution 
profile obtained by FRDTM for 1α =  and 0.5t ≤ . 
 

Table 2  Error between exact and approximate solution for different values of x  and t  in Example 4.3 with 1α =  

x  0.2t =  0.4t =  0.8t =  
x  

0.2 0.0533E-003 0.0015  0.0364 0.100 
0.4 0.1067 E-003 0.0029  0.0728 0.200 
0.6 0.1600E-003 0.0044  0.1092 0.300 
0.8 0.2133E-003 0.0059  0.1456 0.400 
1.0 0.2667E- 003 0.0073 0.1820 0.500 
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Fig.8  Comparison between exact solution and solution (curves in c) obtained by FRDTM for 1α =  and 1t = ; and 
FRDTM solution at 1t =  for different values of 0.9α ≤ . 
 

Using Eq. (36) in Eq. (35), the following values are 
obtained successively 
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(37) 

Using the differential inverse reduced transform of 

( )kU x , we get 
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(38) 

where  

( )( )
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1, 0,

1 1
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When 1α → in Eq. (38), we obtain 

( )
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, 1 1 ,
!

k
x x t

k

tu x t e e
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∞
− − +

=

= − = −∑
 

which is an exact solution of the given classical gas 
dynamics equation (33) for standard value 1=α  and 
this result is complete agreement with Das and Kumar 
[38].  

Curve C in Fig. 8 depicts the comparison of the 
exact solution (dotted line) and approximate solution 
(stars) obtained by FRDTM for the standard Brownian 
motion 1α =  of Ex. 4.4 and the behavior of the 
approximate FRDTM solutions for different fraction 
Brownian motion 0.6,0.7,0.8,.09α =  is also 
depicted in Fig. 8. 

5. Conclusions 

In this paper, FRDTM has been implemented for 
the Caputo time-fractional order gas dynamics 
equation arising in shock fronts. The proposed 
approximated solutions of gas dynamics equations 
with an appropriate initial condition are obtained in 
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terms of a power series, without using any kind of 
discretization, perturbation, or restrictive conditions, 
etc.  

Four examples are illustrated to study the 
effectiveness and accurateness of FRDTM. It is found 
that FRDTM solutions are in excellent agreement with 
those obtained using DTM and FHATM. However, 
computations show that the FRDTM is very easy to 
implement and needs small size of computation 
contrary to DTM and FHATM. This shows that 
FRDTM is very effective and efficient powerful 
mathematical tool, which is easily applicable in 
finding out the approximate analytic solutions of a 
wide range of real world problems arising in 
engineering and allied sciences. 
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