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Abstract: This study investigates calendar anomalies: day-of-the-week effect and seasonal effect in the Value-at-Risk (VaR) analysis 
of stock returns for AAPL during the period of 1995 through 2015. The statistical properties are examined and a comprehensive set 
of diagnostic checks are made on the two decades of AAPL daily stock returns. Combing the Extreme Value Approach together with 
a statistical analysis, it is learnt that the lowest VaR occurs on Fridays and Mondays typically. Moreover, high Q4 and Q3 VaR are 
observed during the test period. These results are valuable for anyone who needs evaluation and forecasts of the risk situation in 
AAPL. Moreover, this methodology, which is applicable to any other stocks or portfolios, is more realistic and comprehensive than 
the standard normal distribution based VaR model that is commonly used.  
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1. Introduction

Into the maelstrom of digital revolution came a 

greatly innovative digital company: Apple Inc.. The 

company designs, manufactures, and markets mobil 

communication, media devices, personal computers, 

and portable digital music players, and sells a variety 

of related software, services, accessories, networking 

solutions, and third-party digital content and applications. 

America’s favorite pastime used to be baseball, but 

during the last couple of years, that has changed. The 

new American pastime has become getting long Apple 

Inc. stock (NASDAQ:AAPL) any way that you can, 

and wait for the profits to accumulate. While the 

above saying may not be absolute true, increasing 

numbers of investors to AAPL trading, make the 

current topic about AAPL risk in a certain time frame 

is indeed worthy to be studied thoroughly.  

For a rational financial decision maker, expected 

returns constitute only one part of the decision making 

process. Another part that must be taken into 
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consideration is the volatility or risk of returns. 

Therefore, understanding the risks and volatility 

involved in stock investing is essential.  

It is helpful to know whether there are variations in 

the risk of stock returns by the day-of-the-week as 

well as during different seasons. If investors can identify 

a certain pattern in the risk, then it would be easier to 

make investment decisions based on both returns and 

risk. It is also important to know whether a high stock 

performance is associated with a correspondingly high 

risk taking behavior. For example, there have been 

extensive studies of the relation between aggregate 

volatility and expected returns of the market, see 

Campbell and Hentschel (1992) [29], Campbell (1996) 

[28], and Guo and Whitelaw (2003) [30]. Uncovering 

certain volatility or risk patterns in returns might also 

benefit investors in option pricing, portfolio 

optimization, and risk management.  

It is well known that the financial institutions with 

significant amounts of trading activity are vulnerable 

to extreme market movements. Hence risk quantification, 

i.e. estimations of probabilities of large losses in 

financial markets, has become a primary concern for 

regulators and also for internal risk control. Ideally, 
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the best and most informative risk measure of 

financial vulnerability is given by the whole tail of the 

loss distribution. A popular method of risk measurement 

is the Value-at-Risk (VaR for short), which is defined 

as the loss level that will not be exceeded with a 

certain confidence level during a certain period of 

time. The VaR was firstly used as an internal 

management tool by a number of banks after the 1987 

crash,then improved by J.P. Morgan who designed its 

Risk Metrics System in 1994. It has emerged as one of 

the most used risk measures in the financial industry, 

mostly because of its simplicity and intuitive 

interpretation. Details can be found on the homepage 

of MSCI. To make the risk measurement coherent, the 

quantity of Expected Shortfall (ES) is also widely 

used. The ES of an asset or a portfolio is the average 

loss, given that VaR has been exceeded. Thus, it is 

also called conditional value at risk. The advantage of 

ES is that it is not only sensitive to the shape of the 

loss distribution in the tail of the distribution, but also 

possesses the properties required for a coherent risk 

measure as defined by Artzner (1999) [10].  

Hence, the goal of this paper is to characterize the 

VaR of AAPL relative returns. Based on 

investigations of the day-of-the-week effect and 

seasonal effect in extreme event risk, we also provide 

valuable and applicable analysis for investors who are 

interested in Apple Inc. stock. The major obstacle to 

this investigation is a viable measure of tail risk over 

time. Ideally, one would directly construct a measure 

of aggregate tail risk dynamics from the time series of 

stock returns in analogy to dynamic volatility 

estimated from a GARCH model. But dynamic tail 

risk estimates are infeasible in a univariate time 

seriesmodel due to the infrequent nature of extreme 

events. In this paper, by using the Extreme Value 

Theory, we not only overcome this problem, but also 

analyze the week effect as well as the seasonal effect 

based on our computation of the small quantile 

(usually 5% or 1%) of VaR. However, we should be 

aware of various layers of uncertainty in extreme 

value analysis; for example, the parameter uncertainty, 

model uncertainty, and data uncertainty. In a sense, it 

is never possible to have enough data in an extreme 

value analysis.  

Here we first examine certain statistical properties 

of the time series of stock returns, including 

stationarity, correlations as well as non-normal 

distributions. Thereafter, we apply the extreme value 

analysis on the tested AAPL returns sample set. The 

calendar effect in stock market returns includes 

day-of-the-week effect, weekend effect, January effect, 

and holiday effect, etc. It has been widely studied and 

investigated in finance literature. Studies by Cross 

(1973) [1], and Rogalski (1984) [2] demonstrate that 

there are differences in distribution of stock returns for 

each day of the week. Studies by Baillie and 

DeGennaro (1990) [3], Berument and Kiymaz (2001) 

[4] posit that day-of-the-week effect has an impact on 

stock market volatility. In recent years, another stream 

of research has considered seasonality in stock returns 

and volatility, see Saunders (1993) [5], Bouman and 

Jacobsen (2002) [6], Hirshleifer and Shumway (2003) 

[7], Kamstra, Kramer and Levi (2003) [8], and Cao 

and Wei (2005) [9], etc. These studies generally report 

that calendar anomalies are present in both returns and 

volatility equations in the stock market. None of these 

studies, however, test for the possible existence of 

day-of-the-week and seasonal variation in stock return 

VaR. 

Empirical findings in this paper show that both the 

day of the week effect and seasonal effect are present 

in the AAPL VaR. In the empirical results of the 

day-of-the-week effect on AAPL tail risk, we observe 

the lowest VaR of AAPL returns on Fridays and 

Mondays. We also find that the lower VaR occur on 

Q1 and Q2 during the test period. AAPL VaR and 

SPY VaR were compared, the AAPL was found to 

have its own personality.  

In terms of the organization of this paper, we first 

introduce the dataset and present a comprehensive set 

of diagnostic checks on it in section 2. We review 
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certain aspects of Value-at-Risk and introduce the 

extreme value approach to VaR in section 3. We apply 

the extreme value approach to get the estimation of 

VaR of the given datasets in section 4. Section 5 

contains the empirical tests and results on the AAPL 

datasets by day-of-the-week. The seasonal effect on 

AAPL returns VaR and economic implications of the 

empirical results are examined in section 6. The 

comparisons between AAPL returns VaR and SPY 

returns VaR are discussed in both section 5 and 6.  

2. Data Exploration and Statistical Analysis 

1. Data Description 

In this study, we examine the daily AAPL stock 

price activity over the twenty-year period, July 3, 

1995 to July 2, 2015. The collection of AAPL daily 

adjusted closing price was from Yahoo Finance1. The 

adjusted closing price is used to develop an accurate 

track record of the stock’s performance.  

Further, use the negative log return to examine 

extreme losses of the stock. Let tp  denote the 

adjusted closing price of a stock on day t , then the 

daily percentage change on the day is defined by  

1

1

100 log 100 logt t
t

t t

p p
r

p p




     (1) 

The reason for using the negative returns is that we 

are mainly interested in the possibility of large losses 

rather than large gains. 

Fig.1 shows the time plots of adjusted closing price 

and negative daily log returns of AAPL stock from 

July 3, 1995 to July 2, 2015. The upper plot shows 

that AAPL stock price has skyrocketed over 100 times 

since 2005. The lower plot shows AAPL negative 

daily log return time series. 

We also observe that there are more pronounced 

peaks than one would expect from Gaussian data. 

Table 1 summarizes the basic statistical characteristics 

of the whole AAPL stock negative daily log return 

                                                           
1http://finance.yahoo.com/ 

series. Note that the expected AAPL log returns 

during the test period is 0.09. The skewness and 

kurtosis measures are highly significant, and those 

indicate substantial departures from normality. 

In statistics, skewness and kurtosis, which are 

normalized third and fourth central moments of a 

process, are often used to summarize the extent of 

asymmetry and tail thickness. For the normal 

distribution, kurtosis is 3. 

Since the possibility of time-varying variance and 

non-normal behavior are noticed, we provide a formal 

test to check the stationarity and normality of the 

return process. 

2. Test for Stationary Property 

The invariance of statistical properties of the return 

process in time corresponds to the stationarity 

hypothesis that the joint probability distribution of the 

returns does not change when shifted in time. It is not 

obvious whether AAPL returns verify this property in 

calendar time since financial time series data often 

have non-stationary behaviors, such as trends, and 

cycles. Here we use the KPSS test [24], to verify the 

hypothesis of weak stationarity, i.e. time invariance of 

the mean value and the autocorrelation function of 

AAPL returns. 

Proceeding in the spirit of Kwiatkowski, Phillips, 

Schmidt and Shin (1992) [24], we assume that the 

series 1{ }T
t tr   can be decomposed into the sum of a 

deterministic trend, a random walk and a stationary 

error. We express this symbolically by writing 

t t tr t                 (2) 

where the constant   is the trend; t  is assumed to 

be stationary; and t  is a random walk, i.e. 

1t t tu      

Here { }tu  is a white noise series with zero mean 

and variance 
2
u . 

The hypothesis for the KPSS test is 

2 2
0 10 0u uH vs H       
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Fig. 1  Time plots of AAPL stock from 1995-07-03 to 2015-07-02. The upper panel is for adjusted closing price, and the 
lower panel is for negative daily log returns. 
 

Table 1  Summary statistics of the AAPL negative daily log returns July 3, 1995 - July 2, 2015 

Mean Range Std dev Skewness Kurtosis Observations 

-0.09 (-28.69, 73.12) 3.05 2.55 70.82 5035 
 

Assume ˆ( )ˆ tt te r t     as residuals of the 

regression of tr  on an intercept and time trend, 

1

t

t ii
S e


  , 1 2t T      as the partial sum 

process of the residuals. The KPSS test statistics is 

2 2

1
2

T

tt
T S

KPSS
s


 

          (3) 

where 2s  is a consistent estimator of the long-run 

variance of t . 

The rejection rule is that if the value of the KPSS  

statistic in Eq.(3) exceeds the critical values estimated 
in [24], or the p -value is less than or equal to the 

significance level  , we reject 0H . 

The results of applying the KPSS test on the AAPL 

negative daily log returns from July 3, 1995 to July 2, 

2015 are shown in Table 2. For the null hypothesis 

which claims that the series follows a straight line 

time trend with stationary errors,i.e. 0   in Eq.(2), 
the p -value is 0.1 and the corresponding KPSS  

statistic is 0.080433. In addition, for the null 

hypothesis that the series is stationary around a 

constant rather than a trend with stationary errors, i.e. 
0   in Eq.(2), the p -value is 0.1 and the 

corresponding KPSS  statistic is 0 20611 . In 

conclusion, the KPSS test result indicates that the 

AAPL negative daily log returns is stationary from 

July 3, 1995 to July 2, 2015. 
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Table 2  Tests for the AAPL negative daily log returns from July 3, 1995 to July 2, 2015 

 
 

 
Fig. 2  Quantile-quantile plot of AAPL negative log returns from 1995-07-03 to 2015-07-02 against the normal distribution. 
 

3. Test for Normality 

In studying the financial time series, one common 

assumption is that the process follows normal 

distribution. However, it is barely true in the real stock 

return series. Our study shows that the AAPL stock 

returns are not normally distributed. 

We begin by forming a QQ-plot of the AAPL 

negative daily log returns sample set against the normal 

distribution, in order to confirm that an assumption of 

normality is unrealistic, and that the innovation 

process has fat tails or is leptokurtic – see Fig.2. 

We also use one of the most powerful formal 

normality tests2, the Shapiro-Wilk test [25], to verify 

an empirical fact that the AAPL stock returns do not 

have the normality property. 

                                                           
2 Razali and Wah (2011) demonstrate it in [26]. 

The Shapiro-Wilk test utilizes the null hypothesis 

principle to check whether the series 1{ }T
t tr   comes 

from a normally distributed population. The 

Shapiro-Wilk test statistic is defined as 

2

1

2

1

( )

( )

T

t tt
T

tt

a r
W

r r




 





          (4) 

where tr  is the t-th order statistic; r  is the sample 

mean; 1 2( )Ta a a    are the weights. 
1

1 1 1 21 2 ( )
( )

T

T
m V

T m V V m
a a a



      ; 

1 2( )T
nm m m m    , 1 2 nm m m    are the 

expected values of the order statistics of independent 

and identically distributed random variables sampled 

from the standard normal distribution, and V  is the 

covariance matrix of those order statistics. 
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The value of W  lies between zero and one. Small 

values of W  lead to the rejection of normality 

whereas a value of one indicates the normality of data. 
We reject the null hypothesis if the p -value of the 

test is less than the predetermined significance level. 

Applying the Shapiro-Wilk test on the AAPL 

negative daily log returns, we get the Shapiro-Wilk 
statistic 0 86W   . The p -value is less than 2.2 e

-16, see Table 2. Hence, we reject the null hypothesis 

at the significant level 1% and conclude that the 

AAPL returns are not normally distributed during 

above time period. 

4. Test for Correlations 

In the finance literature, testing for zero 

autocorrelations has been used as a tool to verify the 

efficiency of the market hypothesis. Since applying 

extreme value theory on a data set suggests that the 

time series are highly uncorrelated with a 

commoncumulative distribution function, we need to 

check the correlations of the AAPL returns. 

We begin by considering the autocorrelation 

function of a time series { }tr . The correlation 

between tr  and its past values t lr   is called the lag-

l  autocorrelation of { }tr  and is commonly denoted 

by l . Under the weakly stationary assumption, we 

assume l  is a function of l  only, i.e. 

1 1

1 0

( ) ( )

( )( ) ( )
t t l l l

l

t t l

Cov r r Cov r r

Var rVar r Var r




 



 
     (5) 

where the property 1 0( ) ( )tVar r Var r    for a 

weakly stationary series is used. 

For a given sample of returns 1{ }T
t tr  , let 

1
( )

T

tt
r r T


   is the sample mean. The lag- l  

sample autocorrelation of { }tr  can be represented as: 

1

2

1

( )( ) ( 1)
ˆ

( ) ( 1)

0 1

T

t t lt l
l T

tt

r r r r T l

r r T

l T

  



    
 

  

   


    (6) 

If a time series is not autocorrelated, then estimates 

of ˆ l  will not be significantly different from 0. 

Fig.5 shows the sample autocorrelation coefficient 
ˆ l  plotted against different lags l  (measured in 

days), along with the 95% confidence band around 

zero for AAPL negative daily log returns, for the 

period July 3, 1995 to July 2, 2015. The dashed lines 

represent the upper and lower 95% confidence bands 

1 96
T
 , where the time length for our AAPL returns is 

5036T   days. Fig.5 shows a small autocorrelation 

in AAPL daily log price changes. Even in the cases 

where the autocorrelations are outside the confidence 

bands, the autocorrelation coefficients are quite small, 

less than 5%. 

Besides  using  the  graphical  plot  to  check 

autocorrelation, we also apply a formal statistic test: 

the Ljung-Box test by Ljung and Box (1978) [27], 

 

 
Fig. 3  Sample autocorrelation coefficients up to 100 lags for AAPL returns from 1995-07-03 to 2015-07-02. 
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which checks serial correlation of the time series. The 

null and alternative hypothesis of the Ljung-Box test 

is 

0 1

1

0

0 for {1 2 }

m

i

H

vs

H i m

 



   

     




 

As Ljung and Box [27] proposed, under the 

assumption that 1{ }T
t tr   is an i.i.d. sequence with 

certain moment conditions, the modified Portmanteau 

statistic is defined as 

2

1

ˆ
( ) ( 2)

m
l

l

Q m T T
T l




  
         (7) 

It is asymptotically a chi-squared random variable 

with m  degrees of freedom, i.e. 2( ) mQ m   

under the null hypothesis 0H . In the definition of 

( )Q m , T  is the sample size, ˆ l  is the sample 

autocorrelation at lag l , and m  is the number of 

lags being tested. 

The decision rule is to reject 0H  if 

2
1( ) mQ m     for significance level  , where 

2
1 m    denotes the 100(1 ) th percentile of a 

chi-squared distribution with m  degrees of freedom. 

Also, one should reject 0H  if the p -value of 

( )Q m  is less than or equal to the significance level 

 . 

The test result in Table 2 confirms that the AAPL 

returns series does not have strong serial correlations 
during the test period. The p -values of lag 5, lag 10 

and lag 15 Ljung-Box test for AAPL returns are all 

less than significant level 1%. 

Based on the statistical analysis for AAPL negative 

daily log returns, we discovered that the AAPL returns 

is a stationary, and uncorrelated time series, yet is not 

normally distributed. Some computations of VaR are 

based on the assumption that the series { }tr  is 

normally distributed, or has t -distribution, see 

reference [15] [32] [33] [34] [35]. That is the main 

reason why these study can use volatility to estimate 

VaR. However, the real time series { }tr  may not 

follow any known distributions, such as the normal or 

t -distribution. To overcome the difficulty of { }tr  

having an unknown distribution, we compute the VaR 

of AAPL returns by applying Extreme Value Theory, 

which avoid making assumptions of the distribution of 

{ }tr . 

3. Methodology 

While exposure to risk can be summarized as a 

single number by estimating the VaR, which is 

defined by Jorion [11] as “the worst expected loss 

over a great horizon within a given confidence level”, 

it is crucial to have an accurate estimate on VaR. 

Following the approach by Longin (1999a, b) [12] 

[13], and Ruey S. Tsay [14], we introduce the 

statistical principles behind VaR as well as the VaR 

estimation methodology in this section. 

3.1 VaR of a time series 

VaR is the amount that might be lost in a portfolio 

of assets over a specified time period T  with a 

specified small failure probability  , usually set as 

0.01 or 0.05. Suppose a random variable X  

characterizes the distribution of negative returns of a 

portfolio over a certain time horizon T , the right-tail 

 -quantile of the portfolio is then defined to be the 

VaR  such that 

( VaR ) 1Pr X              (8) 

The VaR  is the largest value for X  such that 

the probability of a loss over the time horizon T  is 

no more than 1  . Although the parameters T  

and   are arbitrarily chosen, the analysis in this 

study does not refer to the process of choosing the two 

parameters of VaR which were considered to be 

1day {0 01 0 05 0 1}T         . 

The crux of being able to provide an accurate 

estimate for VaR is in estimating the cutoff return 

VaR . Studies of VaR are essentially concerned with 

the estimation of the cumulative distribution function 
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(CDF) of portfolio negative returns and/or its quantile, 

especially the upper tail behavior of the loss CDF. 

Therefore, the CDF of { }tX  is the focus of 

econometric modeling. Different methods for 

estimating the CDF give rise to different approaches 

to VaR estimation. 

3.2 Extreme Value Theory approach to Value-at-Risk 

In this paper, we further estimated the upper tail 

behavior of the AAPL returns CDF by using the 

extreme value approach. Extreme Value Theory (EVT) 

is experiencing a boom in the financial field, 

especially with respect to its application to the market 

risk. Its appearance as a popular instrument for 

estimating VaR can be explained as a consequence of 

two factors. On the one hand, the assumption of the 

normality of financial markets does not reflect the 

reality of the situation. As a consequence, the VaR 

estimation methods which are based on the normality 

assumption underestimates the risk. Historical or 

Monte Carlo simulation methods arise as alternative 

methods. But given the difficulties and the 

inefficiencies of these methods, EVT is sought out as 

a new solution. 

The mathematical foundation of EVT is based on 

the class of extreme value limit theories, originally 

posited by Fisher and Tippett (1928) [16] and later 

derived rigorously by Gnedenko (1943) [17]. The 

central result in EVT is that the extreme tail of a wide 

range of distributions can approximately be described 

by the Generalized Pareto distribution (GPD), which 

is derived by Smith (1989) [18], Davison and Smith 

(1990) [21]. 

For a random variable X, we first fix some high 
threshold   and consider the distribution of excess 

values Y X   , which is defined as: 

( ) ( )

( ) ( )

1 ( )

F y Pr X y X

F y F

F

  

 


    

 
 



      (9) 

where F  is the underlying distribution of X , F  

is the conditional excess distribution function. In fact, 

Pickands (1975) [22] introduced the GPD as a two 

parameter family of distributions for exceedance over 

a threshold. 

Extreme Value Theory. Assume { }tX  is a 

sequence of stationary, uncorrelated random 

variables with distribution F . For any 0  , let 
F  be the conditional excess distribution function, 

for random variables defined in (9) with 

t tY X   . Let { ( ) 1}F sup x F x    , then 

lim ( ) ( )
F

F y H y
    

  

where ( )H y
   is called GPD, specified as 

1

( ) 1 1
y

H y




 





 





 
     

 
     (10) 

The parameters of GPD are the scale parameter 

  and the shape parameter  . 

Although we may not know the distribution of each 

individual random variable tX , EVT specifically 

describes the tail distribution. The tail fatness of a 

distribution is reflected by the shape parameter: 

0   refers to thin tails; 

0   implies that the kurtosis is 3  as for a 

standard normal distribution; 

0   implies fat tails. 

Therefore, the shape parameter measures the speed 

with which the distribution’s tail approaches zero. The 

fatter the tail, the slower the speed and the higher the 

shape parameter. Using GPD, EVT models the right 

tail of the distribution, i.e. the returns in excess of a 

threshold. Because we are interested in extreme loss, 

the EVT analysis is developed on negative stock 

returns. As tested in section 2 that AAPL returns are 

stationary and serially uncorrelated, its VaR is 

analyzed by using EVT. 

In the literature, an optimal threshold is selected by 

employing graphical methods, the mean excess plot3 

                                                           
3Details about the mean excess plot are described in Davison 
and Smith (1990)[31]. 
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and Hill plot4. The mean excess plot for threshold 

exceedance is a diagnostic plot drawn before fitting 

any model and can therefore give guidance about what 

threshold to use. One difficulty with this method is 

that the sample mean excess plot typically shows very 

high variability, particularly at high thresholds. This 

can make it difficult to decide whether an observed 

departure from linearity is in fact due to the failure of 

the GPD or is just sample variability. As an alternative 

approach to choose threshold, the Hill plot has some 

advantages. It displays the estimated values of the 

shape parameter   as a function of the cut-off 

threshold, so that one can easily find some interval of 

candidate cut-off points that yields stable estimates of 

the shape parameter  . Here we use both approaches 

to choose a reasonable threshold, see Figure 4. 

According to the research of Hosking and Wallis 

(1987) [20], for the shape parameter 0 5    , it is 

shown that maximum likelihood regularity conditions 

are fulfilled and that maximum likelihood estimates 
ˆ{ ( ) }ˆ nn    based on a sample of n  excesses are 

asymptotically normally distributed. Therefore, we 

choose to use the parametric approach, maximum 

likelihood method (MLE) to estimate the two 

parameter in GPD, which are the shape parameter   

and the location parameter  . 

Next, we make explicit the relationship between 

excess value and a observed return series { }tr . 

Assume that { }tr  have distribution F , and a high 
enough threshold   is given. We define the number 

of exceedance of the threshold   within 

1{ }nr r   as: 

{ 1 }tN card t r t n          

Then the conditional excess distribution function 

can be presented as: 

( ) ( )
( ) ( )

1 ( )t t

F y F
F y Pr r y r

F
  


 

      


 

                                                           
4 Technical details about Hillplot can be found in Hill 
(1975)[19]. 

Denote ( ) 1 ( )y F yF    , then 

( )
( ) ( )

( )
t t

F y
y Pr r y rF

F


 



        

which is equivalent to 

( ) ( ) ( )F y F u yF      

Consequently, the estimators of ( )F u  and 

( )yF   can be written as: 





1

ˆ1

ˆˆ

1
( ) ( )

ˆ( ) 1 ( ) 1
ˆ

n

i
i

N
F u I X

n n
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y H yF
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



 









 




   

 
     

 


 

where   and ˆ   are (maximum likelihood) 

estimators of the shape parameter   and location 

parameter  . Therefore the tail estimator can be 

written as: 


ˆ1

ˆ( ) 1
ˆ

N y
F y

n






 


 



 
    

 
    (11) 

This relationship between probabilities allows us to 

obtain VaR for the original asset return series { }tr . 

More precisely, for a specified small probability   

( ) ( )tPr r y F y         

where the  -th upper tail quantile VaR of { }tr  is 

y  . Consequently, for a given small probability 

 , one can check that the VaR of holding a long 

position in the asset underlying return { }tr  is 

ˆˆ ˆ( ) 1 0
ˆ

VaR
ˆ ˆln( ) 0

n

N

n

N

 






  


  


  

         
   


  (12) 

We preferred to use the extreme value approach, or 

named GPD approach in this study to tail estimation 

mainly for three reasons. One is that in finite samples 

of the order of points from typical return distributions, 
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EVT quantile estimators are more efficient than the 

historical simulation method. Second, considering the 

fact that most financial returns series are asymmetric, 

the EVT approach is advantageous over models which 

assume symmetric distributions such as t
-distributions, or generalized error distribution. Third, 

comparing with Hill method which is designed 

specifically for the heavy tail ( 0  ) data, the EVT 

approach to VaR has larger applicability since it also 

applicable to light tail ( 0  ) cases or even short tail 

( 0  ) cases. 

4. VaR analysis of AAPL and SPY 

In this section, one-day-ahead VaR forecasts are 

adopted along with the 5%, 1% and 0.1% level of 

significance in the empirical investigation. In order to 

make a comparison, we use AAPL as well as SPDR 

S&P 500 ETF (AMEX:SPY) daily negative log 

returns to compute the VaR and related statistical 

properties. The daily AAPL negative log returns data 

set is introduced in section 2.1. The SPDR S&P 500 

ETF is the first and most popular ETF in the U.S.. It 

tracks one of the most popular indexes in the world, 

the S&P 500 Index. The objective of the SPY is to 

duplicate as closely as possible, before expenses, the 

total return of the S&P 500 Index. Since the 

performance of SPY is thought to be representative of 

the stock market as a whole, we compare VaR 

between AAPL returns and SPY returns to find the 

characteristics of AAPL. The daily SPY negative log 

returns are examined for the period of July 3, 1995 to 

July 2, 2015, which is the same test period as AAPL 

returns. We also ran Shapiro-Wilk test and Ljung-Box 

test in SPY returns and found no evidence against the 

non-normal and non-correlated assumptions for the 

series. 

Before applying the extreme value approach to VaR 

on our data sets, it is necessary to choose a specific 

threshold, confining the estimation to those 

observations that are above the given threshold. As 

mentioned in section 3, we chose the threshold 

through graphical procedures: Mean Excess plot and 

Hill plot. 

Fig.4 shows the Hill plots and Mean Excess plots, 

with 95% confidence bands, for the AAPL returns and 

SPY returns respectively. Since for the generalized 

pareto distribution, a possible choice of threshold is 

given by the value, above which the empirical mean 

excess value is approximately linear. The right-hand 

plots of Fig.4 indicate a reasonable choice for AAPL 

returns where threshold should around 5, and SPY 

returns threshold should around 2. The Hill estimator 

estimates the shape parameter   in the GPD model 

as a function of the N  exceedances upper order 

statistics in the return sample. The estimate is taken in 

the N –region where the plot does not change much. 

For the AAPL returns, 280N  , with 

corresponding threshold 4 153575   ; for SPY 

returns, 268N  , with corresponding threshold 
1 911077    would be reasonable. 

Table 3 contains the empirical results on the AAPL 

and SPY daily negative log returns for the whole 

sample period using a total of 5035 observations. The 

upper part of Table 3 contains the threshold values 

and the corresponding exceedances values as well as 

the maximum likelihood GPD parameter estimates 

used in the construction of tail estimators of AAPL 

and SPY negative daily log returnsfrom July 3, 1995 

to July 2, 2015. The shape parameter estimates of the 

right tail are 0.2619561 and 0.2411802 for AAPL and 

SPY returns, respectively, which indicate that the 

AAPL returns show fatter tails than the SPY returns. 

Those values and estimators enable us to estimate the 

upper 5%, 1% and 0.1% quantile of the AAPL and 

SPY negative daily price changes. As is obvious from 

the estimation of the quantile by means of extreme 

value theory in this table, the AAPL returns VaR are 

much larger, even more than two times, than SPY 

returns VaR. Therefore, AAPL exhibits a more 

downside risk than SPY. 

In order to visualize the model (12) accuracy, we 

backtest the extreme value approach on the AAPL and 
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Fig. 4  The left-hand plots are Hill plots for the AAPL returns (top) and SPY returns (lower) with 95% asymptotic 
confidence bounds (dotted line) based on the normal asymptotics of the estimator, depending on different threshold values 

 . The right-hand plots are Mean excess over plots for AAPL returns (top) and SPY returns (lower) with 95% Monte Carlo 

confidence bands. 
 

Table 3  Maximum likelihood GPD parameter estimates and one-day-ahead VaR forecasts with the 5%, 1% and 0.1% level 
of significance for AAPL and SPY returns. 

 
 

SPY returns and show the fitness summary in Fig.5 

and Fig.6. At the top panel of Fig.5 and Fig.6, the 

probability density function of the empirical 

distribution and the log probability density function of 

the empirical distribution are all plotted along with the 

estimated GPD. The scatterplot and QQ-plot of 

residuals are at the lower panel. Based on those plots, 

we find that the estimates fit the given AAPL and 

SPY returns quite well, even in the far end tail. It 

confirms that the assumption of an underlying   

heavy tailed distribution is well in line with the data. 

In this context, the corresponding estimate of the 

upper 5%, 1% and 0.1% quantile of the VaR seems 

very plausible. 
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Fig. 5  GPD tail estimates fitness summary of the AAPL returns distributions and the innovations distributions. The points 
show the empirical distribution of the returns (top) and residuals (lower) and the solid lines (top) represent the tail estimates. 
 

 
Fig. 6  Diagnostic plots for GPD fit to daily negative log returns of SPY from July 3, 1995 to July 2, 2015. 
 

After modeling the distribution of AAPL and SPY 

returns and computing all the necessary quantiles, we 

proceed to the determination of VaR. Using a 2520 

day (approximately 10 years) rolling window, we 

apply an iterative procedure of the EVT based model 

(12) to predict the 1-day ahead, 5%, 1% and 0.1% 

VaR for the period July 3, 2005 to July 2, 2015. The 

moving window design starts with the estimation of 

the VaR model using in-sample period data to predict 

the 1-day ahead VaR estimate. Then, we move the 

in-sample period forward by one period to iterate the 

estimation and prediction. The whole process keeps 

running forward step by step until the end of the entire 

data set. Before applying the procedure, we choose the 

corresponding 95-th sample quantile as the threshold 

of each in-sample period data. This yields a total of 

2516 out-of-sample VaR forecasts for AAPL and SPY 

returns, respectively. The results obtained for VaR 

along with the negative log returns of the AAPL and 

SPY are shown in the following figures. 

From Fig.7, we find that the AAPL returns VaR 

slightly increased during the financial crisis of 2008. 

During the middle of 2010 to 2013, it had a decreasing 

trend. Since then, the AAPL returns VaR seems stable. 

If we take SPY returns VaR as a comparison, except 

the increasing during the financial crisis of 2008, we 

can see that it has been stable for the last decade. 

5. Day-of-the-week Effect on AAPL 
Value-at-Risk 

As introduced in section 2, two decades are covered 

for our sample set, 5036 trading days and 5035 AAPL 

returns in total. Notice that the definition of VaR is 

based on the upper tail of a loss function. The reason 
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Fig. 7  1-day-ahead, 5% (dotted), 1% (dotdash) and 0.1% (longdash) VaR of AAPL (upper) and SPY (lower) negative daily 
log returns from July 6, 2005 to July 2, 2015. 
 

we use the negative returns is that loss occurs when 

the returns are negative for a long financial position. 

We write the whole sample set as { }tr  {AAPL 

Negative daily log returns from July 3, 1995 to July 2, 

2015}. 

To formally test the timing and existence of weekly 

patterns, we divide the whole data set { }tr  to five 

subsets by day-of-the-week, which is written as: 

{ } 1 2 3 4 5it td r i        

where itd  are dummy variables such that if day t  

is a Monday 1 1td  , if 1 0td   remove the data;  

if day t  is a Tuesday 2 1td  , if 2 0td   remove 

the data, etc. The five subsets are the AAPL    

return time series for Monday through Friday 

respectively. The basic statistical characteristics of  

the five return series are calculated and shown in 

Table 4. 

The AAPL mean returns is calculated to observe 

differences of expected returns during the week. The 

hypothesis of equal expected returns for each trading 

day of the week is rejected for the testing period. Our 

results show that the highest returns occur on Mondays 

and the lowest returns occur on Fridays, which have a 

negative average return. The standard deviation 

indicates that the trading risk of Fridays is the highest 

among that of the week. There is less fluctuation in 

Mondays and Tuesdays return, but there are large 

fluctuations in Fridays return. The table also reports 

skewness and kurtosis for the return series of each 

weekday. The distribution of Mondays and Fridays 

return are positively skewed while the distribution of 

all other sample return are negatively skewed, indicating 

that they are nonsymmetric. Furthermore, Fridays and 

Wednesdays return exhibit high levels of kurtosis, 

indicating that these distributions have thicker tails 
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Table 4  Summary statistics of the AAPL negative daily log returns by day-of-the-week. 

 Mean Range Std dev Skewness Kurtosis Obs 

Mon. -0.20 (-13.02, 19.75) 2.89 0.51 5.78 949 

Tue. -0.08 (-17.64, 13.25) 2.82 -0.17 3.18 1032 

Wed. -0.12 (-28.69, 18.84) 2.98 -0.26 12.17 1034 

Thu. -0.14 (-21.27, 13.19) 3.03 -0.54 4.52 1012 

Fri. 0.10 (-21.36, 73.12) 3.47 8.91 194.73 1008 
 

Table 5  Normality and independent test p-value of the AAPL returns by day-of-the-week. 

 W Q(5) Q(10) Q(15) 

Mon. <2.2e-16 0.2963 0.5304 0.2641 

Tue. 2.713e-15 0.7911 0.08139 0.1224 

Wed. <2.2e-16 0.8355 0.7908 0.5826 

Thu. <2.2e-16 0.5063 0.8421 0.2699 

Fri. <2.2e-16 0.06514 0.1182 0.08148 
 

than a normal distribution. These initial findings show 

that the day-of-the-week returns are not normally 

distributed, they are skewed and leptokurtic. Moreover, 

on average, an investor buying stock on Friday 

afternoon and then sell it by Monday afternoon may 

make more profit. 

Next, we examine the normality and independency 

of the day-of-the week return series. Table 5 reports 
p -values of the Shapiro-Wilk test and the Ljung-Box 

Q  statistics for the AAPL returns at 5-, 10- and 15- 

day lags. We use the Shapiro-Wilk test to test the 

normality of every subset. W  here is the Shapiro-Wilk 

test statistic in Eq.(4). The normality test result shows 
that the p -value of every weekday subset is far less 

than significant level 1%. It indicates that none of these 

AAPL return subsets has normal behavior during the 

test period. For all series, the Ljung-Box test is applied 

to test the serial correlation. ( )Q m  in the table is the 

Portmanteau statistic in Eq.(7). The Ljung-Box test 

result confirms that none of the AAPL return subsets 

has serial correlations. Rather than using a single value 

for lag m , we choose three different lags 

5 10 15m     to test the correlation of each series. 

Even the minimum p -value of each series is greater 

than the usual significant level 5%. Therefore, we can 

approximately view all AAPL day-of-the-week return 

series as stationary, independent, non-normal distributed 

series. Based on the above tests, in order to test the 

weekly effects on AAPL VaR, we apply the VaR 

estimation approach introduced in section 2 to capture 

the day-of-the-week effect on AAPL returns VaR. 

We apply the extreme value approach to the 

negative daily log returns of AAPL day-of-the-week 

series from July 3, 1995 to July 2, 2015. Table 6 and 

Table 7 summarize some estimation results of the 

shape parameter   and VaR. We applyed the 

maximum likelihood method to estimate parameters 

of the generalized Pareto distribution for AAPL 

returns and we calculated the upper 5% quantile VaR 

based on Eq.(12). 

Table 6 shows the shape parameter estimates for the 

day-of-the-week excess returns respectively and 

corresponding VaR estimates. In Table 6, the 
threshold   was chosen via the Hill Plot of the 

AAPL returns. Around the exceedances N  selected 

by Hill plot, the estimates of the shape parameter are 

stable for the extremes. Based on the estimated AAPL 

upper 5% quantile VaR results in Table 6, we found 

that Friday and Monday VaR is smaller than that of 

the rest of the week. 

To further investigate systematic weekday 

differences for AAPL VaR, we also estimate the upper 

5% quantile VaR via the same threshold 

4 032778   , which is the highest threshold in 

Table 6. Using the same threshold allows a better 

comparison of the day-of-the-week VaRs. 
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Table 6  Estimated parameters for GPD and VaR of AAPL returns by day-of-the-week. 

 ξ σμ μ Nμ VaR0.05 

Mon. 0.2688498 1.6041546 3.795551 60 4.184124 

Tue. 0.01042914 1.76975174 4.031559 69 4.546602 

Wed. 0.3107167 1.5597188 3.871468 69 4.317635 

Thu. -0.01453561 1.95606434 4.032778 68 4.609665 

Fri. 0.3825541 1.4247496 3.367018 71 3.888713 
 

Table 7  Estimated parameters for GPD and VaR of AAPL returns by day-of-the-week via the same threshold 

4 032778   . 

 ξ σμ Nμ VaR0.05 

Mon. 0.2725663 1.6566470 51 4.153487 

Tue. 0.01126478 1.76707300 68 4.521224 

Wed. 0.3821768 1.4131813 64 4.347029 

Thu. -0.01453561 1.95606434 68 4.609665 

Fri. 0.4554803 1.4688451 47 3.931803 
 

Table 8  Estimated parameters for GPD and VaR of SPY negative daily log returns by day-of-the-week. 

 ξ σμ μ Nμ VaR0.05 

Mon. 0.2346827 1.0624234 1.677897 63 1.989292 

Tue. 0.1305324 0.6817181 1.665352 68 1.856927 

Wed. 0.3743073 0.5765108 1.780462 65 1.918262 

Thu. 0.1189783 0.8888867 1.777264 65 2.003223 

Fri. -0.06331137 0.91646749 1.714381 64 1.93167 
 

The results in Table 7 are mostly consistent with the 

previous findings in Table 6. VaRs due to the different 

tail shapes and the tail fatness of distributions are 

reflected by the shape parameter  . The shape 

parameter measures the speed with which the 

distribution’s tail approaches zero. The fatter the tail, 

the slower the speed and the higher the shape 

parameter. From the results in Table 6 and 7, the right 

tail fatness of Friday excess returns is the highest 

while that of Thursday is the smallest. The most 

interesting feature of the results is that the 

day-of-the-week effect on AAPL VaR is examined. 

Low Friday and Monday VaR and high Thursday VaR 

are observed for the AAPL returns. 

In capturing the character of AAPL, we present the 

estimated VaR of SPDR S&P 500 ETF Trust (SPY) 

returns in Table 8, which were obtained via the same 

approach as applied on AAPL returns. The S&P 500 

Index is composed of five hundred selected stocks in 

which AAPL weights 3.88% of total assets. By 

comparing the VaR of AAPL and SPY, we were able 

to better capture the characteristic of AAPL. 

Table 8 shows that during the test period July 3, 

1995 to July 2, 2015, the upper 5% quantile VaR of 

SPY Tuesday and Wednesday returns are smaller than 

that of the rest of the week. As the top one holding 

stock of SPY, AAPL naturally has a positive 

correlation with SPY. However, based on above 

results, we find the day-of-the-week effect on AAPL 

VaR and SPY VaR are different. Moreover, the 

day-of-the-week VaRs of SPY are much more stable 

and smaller than that of AAPL. The interesting 

finding about AAPL is that there is comparatively a 

high mid-week risk and a low Monday and Friday risk 

is observed during the test period. 

There are many reasons that may cause the 

day-of-the-week effect on AAPL VaR. Possible 

explanations for the day-of-the-week effect include 

the dividends effect, weekend effect and trading 

activity effect. Apple usually pay its shareholders 

quarterly dividend on Thursday. It may cause lower 

trading activity on the following Friday. Due to the 
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positive correlation between trading activity and 

returns, the trading activity during the middle of the 

week averagely is higher than that of Monday and 

Friday. In addition, options expiration can influence 

the overall market as well as specific equities, 

especially on the last trading day before expiration. 

AAPL Weeklys option are listed to provide expiration 

opportunities every week. Weeklys are typically listed 

on Thursdays and expire on Fridays5. Weeklys options 

can provide opportunities for investors to implement 

more targeted buying, selling or spreading strategies, 

which may be the reason why the AAPL returns has 

an increasing trend during Thursday to Friday. Further 

research about the exact reasons of weekly effect on 

AAPL VaR is needed. 

6. Seasonal Effect on AAPL VaR 

Despite finding a weekly pattern in AAPL, one 

should stress that seasonal effect is by far more 

relevant in determining stock performance because a 

three-month period on a financial calendar acts as a 

basis for the reporting of stock earnings and the 

paying of dividends. In order to investigate systematic 

quarterly effects on the stock AAPL, we divide the 

sample data { }tr  into the following four groups: 

{ } 1 2 3 4t ir t Q i         

which are referred to the four quarters AAPL returns. 

A quarter refers to one-fourth of a year and is typically 

expressed as Q. Basic tests to examine the seasonal 

pattern in AAPL returns are carried out next. 

Table 9 contains the summary statistics for the four 

quarter AAPL returns. During the trading period from 

July 3, 1995 to July 2, 2015, all quarters have positive 

average return. The first quarter Q1 has the largest 

average return. Significantly a large range and 

standard deviations are observed for the Q3 return. 

The AAPL Q2 return has the smallest standard 

deviation and average returns than those of the rest 

                                                           
5Weeklys are not listed if they would expire on a 3rd Friday or 
if a Quarterly option would expire on the same day 

seasons. Moreover, the kurtosis indicates the Gaussian 

behavior of Q2 return since the kurtosis of Q2 return 

is around 3. 

Table 10 presents that all four quarter AAPL returns 
are not normally distributed since all the p -value of 

the Shapiro-Wilk test are less than 2.2 e -16, which are 

less than the significant level 1%. The correlation test 

results indicate that quarterly AAPL returns are 
uncorrelated because the smallest p -value among 

three different lags correlation tests for each group is 

smaller than the significant level 1%. While for AAPL 
Q1 returns, the 10 lag and 15 lag Ljung-Box tests p

-value indicate the serial correlation of the data set 

during the test period. However, the 5 lag Ljung-Box 
test p -value is greater than the significant level 1%, 

which indicate that there is only weak correlation of 

AAPL Q1 returns. Therefore, we still can process the 

four datasets as non-normal, independent time series. 

Next, we implement the same extreme value 

approach to VaR on the four seasonal AAPL returns. 

Table 11 and 12 tell us the same story. Irrespective of 

our choice to use the different thresholds by Hill plot 

on the four groups or applying the same threshold, the 

shape parameter   of Q3 returns is the largest which 

indicates the fattest tail behavior. The upper 5% 

quantile VaR of AAPL returns is increasing as the 

seasons go by in a year. The first season Q1 upper 5% 

quantile VaR is the smallest and the fourth season Q4 

upper 5% quantile VaR is the largest among four 

seasonal AAPL returns. 

Before giving any explanations of the seasonal 

effect on AAPL VaR, we take SPY returns as a 

comparison again to see the characteristic of AAPL. 

Table 13 contains estimated upper 5% quantile VaR 

of SPY returns by quarter. When comparing results in 

Table 13 and Table 11, the difference between AAPL 

VaR and SPY VaR is that the VaR of SPY third 

quarter returns is the highest while the VaR of AAPL 

fourth quarter returns is the highest. Moreover, the 

upper 5% quantile VaR of seasonal SPY returns is 

more stable and twice smaller than that of seasonal 
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Table 9  Summary statistics of AAPL returns by quarter. 

 Mean Range Std dev Skewness Kurtosis Obs 

Q1 -0.14 (-21.36, 19.62) 2.98 -0.25 5.7 1227 

Q2 -0.04 (-12.09, 16.30) 2.58 -0.23 3.11 1264 

Q3 -0.10 (-28.69, 73.12) 3.65 6.10 130.62 1272 

Q4 -0.07 (-13.37, 17.21) 2.87 -0.08 3.33 1273 
 

Table 10  Normality and independent test p-value of the AAPL returns by quarter 

 W Q(5) Q(10) Q(15) 

Q1 <2.2e-16 0.01275 0.001784 0.001235 

Q2 <2.2e-16 0.3114 0.2341 0.07385 

Q3 <2.2e-16 0.1665 0.1343 0.01003 

Q4 <2.2e-16 0.6867 0.7337 0.2699 
 

Table 11  Estimated parameters for GPD and VaR of AAPL returns by quarter. 

 ξ σμ μ Nμ VaR0.05 

Q1 0.1582695 1.6388243 4.110644 77 3.40719 

Q2 0.1856602 1.0737989 3.724132 84 4.037854 

Q3 0.4833337 1.6498127 3.931378 79 4.308532 

Q4 -0.009111332 2.049748142 4.038558 82 4.557201 
 

Table 12  Estimated parameters for GPD and VaR of AAPL returns by quarter via the same threshold 5. 

 ξ σμ Nμ VaR0.05 

Q1 0.1582695 1.6388243 77 3.40719 

Q2 0.2627277 0.9750694 63 4.107555 

Q3 0.4524895 1.8346705 64 4.302533 

Q4 -0.04550122 2.23903661 75 4.492442 
 

Table 13  Estimated parameters for GPD and VaR of SPY negative daily log returns from July 3, 1995 to July 2, 2015 by 
quarter. 

 ξ σμ μ Nμ VaR0.05 

Q1 -0.01303372 0.81464133 1.819322 76 1.445435 

Q2 0.1257745 0.5497238 1.614129 78 1.693531 

Q3 0.2794518 0.7088729 1.956663 80 2.124614 

Q4 0.3808598 0.8443904 1.887993 75 2.030969 
 

AAPL returns. It is immediately apparent from the 

above results of test period returns that the seasonal 

effect on AAPL VaR is different from that on SPY 

VaR. More importantly, we captured the 

comparatively high risk in Q4 and low risk in Q1 for 

AAPL returns during the test period. 

Possible explanations for the seasonal effect on 

AAPL VaR include the tax-motivated trading, 

economic and political announcements dates 

concentrated in one part of the season. For instance, 

Apple often releases its new products, like iPhone, 

iPad or iMac, during July to November. It may cause 

large AAPL stock vibration to occur subsequently. 

Further analysis of these and other explanations is 

warranted. 

Overall, our findings have implications for 

investors, financial institutions, and futures exchanges. 

For example, for conservative investors who would 

prefer lower risk, they can choose to trade during the 

lower VaR period to avoid potential high loss. The 

methodology of extreme value approach to VaR can 

also be used in other stock or asset returns. Finally, it 

has significant value for investors and regulators in 

terms of an in depth analysis of the equity market. 
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