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Abstract: Salt is a major abiotic stress threatening crop plants such as rice. Tolerance to salt is complex and regulated by numerous 
genetic and non-genetic factors. To date most screens for salt tolerance rely on plant performance in stressed conditions. This article 
describes the ability to screen for salt tolerance in non-stressed conditions. The work is based on correlations between 62 rice 
genotypes in salt stress and non-stress conditions and measuring the intake of elements using Particle Induced X-ray Emission and 
X-ray Fluorescence. Roots and shoots were analysed though shoots provided easier and more robust materials to work with. Data 
were interpreted using multivariate statistical analysis which showed the intake ratio of elements across tolerant, moderately tolerant 
and susceptible rice genotypes. Tolerant genotypes exhibited a larger intake of elements, and a classification criteria based on 
Canonical Discriminant Analysis allowed differentiation of salt tolerant genotypes not only under salt stress but, significantly, also 
under non-stressed conditions. Thus, shoot element content in benign conditions can be used as an indicator for salt tolerance. These 
studies suggest that many salt tolerance mechanisms in rice cultivars are constitutive, they are not switched on by stress, and this has 
implications for physiological and genetic studies, especially in crop plants. The approach has practical application as it allows 
pre-screening in non-stressed conditions, from which candidate salt tolerant genotypes may be selected for subsequent testing in 
saline field conditions, selecting in benign conditions provides greater seed harvest of the next generation which can be used in 
multiple tests. 
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1. Introduction  

Soil salinity is prevalent in arid and semi-arid, and 
in coastal regions subject to inadequate irrigation 
and/or drainage. It is a major environmental constraint 
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to crop productivity throughout the world [1-3], and 
especially problematic in irrigated agricultural 
systems. In general, salt tolerance in plants is 
associated with maintenance of growth and the ability 
to complete the life cycle. Salinity stress reduces 
growth and productivity [3, 4], and susceptible plants 
may die before reproduction. For crop plants salt 
tolerance may be generally defined as the ability to 
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produce a yield in saline conditions. 
Salt tolerance is often described as a complex trait, 

both genetically and physiologically [5]. In 
physiological terms salinity stress begins with low 
water potential in the root environment leading to a 
water deficit in the plant. This is followed by toxic 
effects of ions such Na+ and Cl- on cells and tissues 
and results in a nutrient imbalance [6]. According to 
Munns and Tester [7] plants adapt to salinity through 
three distinct mechanisms: 1) osmotic adjustment, 2) 
ion exclusion and 3) tissue tolerance to the 
accumulation of toxic ions (particularly Na+ or Cl-). 
Toxic elements often accumulate in older leaves, 
which is manifest by early senescence. When the 
death rate of older leaves is greater than the 
production of new leaves, the photosynthetic capacity 
drops and growth is retarded [7]. In salt tolerant 
genotypes, these mechanisms result in the 
maintenance of high shoot/root ratios and relatively 
high growth rates in saline conditions [6, 8, 9]. These 
complex physiological mechanisms often infer 
complex underlying genetics, which is problematic for 
plant breeders. Plant breeders are further constrained 
in that major genes, such developmental genes, e.g. 
those required by crops to grow in specific 
environments, often have pleiotropic effects on salt 
tolerance [10-12]. 

Rice is the most important cereal crop after maize 
in the world 
(http://faostat.fao.org/site/339/default.aspx) in terms 
of production. With respect to human consumption 
rice is pre-eminent; over half of the world’s 
population depends on rice as a staple food, 
particularly in Asia and Africa [13, 14]. Fairhurst and 
Dobermann [15] reported that irrigated rice accounted 
for 55% of the global harvested area and contributed 
to 75% of global rice production. Rice is classified as 
a salt sensitive crop [16] and is particularly sensitive 
to salt stress at the seedling stage, less so at flowering 
and maturity [17]. Among rice genotypes there is a 
range of tolerance; three classes have been identified 

(tolerant, moderate and susceptible) according to their 
response to salt stress [18]. The genetic variation for 
salt tolerance is of great interest as it provides 
potential for improvement through plant breeding. 

Previous studies, based on traditional methods in 
assessing salt tolerance: root and shoot biomass 
production in salt treatments, have identified 
genotypes that can be used as standards for salt 
tolerance: tolerant, moderate and susceptible classes. 
Tolerance can be assessed using CID (Carbon isotope 
discrimination), which integrates plant 
performance/health over time and treatments. In our 
preliminary experiments, tissue element content was 
measured in six standard lines (two from each 
tolerance class) using atomic spectroscopy techniques 
(X-ray Fluorescence and Particle Induced X-ray 
Emission, a new application for these techniques). The 
data shows strong correlations with biomass 
production, which is a standard method for assessing 
salt tolerance. In order to validate these findings work 
was extended to a total of 62 rice genotypes from 
various regions and with known salt tolerances. Tests 
were carried out in saline and non-saline hydroponic 
conditions using a quick screening system developed 
by the International Rice Research Institute, IRRI [18] 
and modified by Plant Breeding and Genetics 
Laboratory PBGL [19]. 

2. Materials and Methods 

2.1 Confirmation of Salt Tolerance in 6 Standard 
Genotypes Using Biomass Data 

The six standard genotypes, 2 from each class 
(tolerant, moderate and susceptible) were checked for 
salt tolerance using root and shoot biomass data from 
hydroponics experiments in control and salt 
treatments. This confirmed the salt tolerance classes of 
the standard genotypes, which were then used in 
subsequent experiments, and provided information for 
optimum harvest data for biomass evaluation (16 days 
after salt treatment). 
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2.1.1 Plant Material 
Six rice genotypes with known responses to salinity 

were used (data on the salt tolerance of these 
genotypes can be found in 
http://irri.org/our-science/genetic-diversity): two 
tolerant - ‘Pokkali’ and ‘Nona Bokra’, two of 
moderate tolerance - ‘Bicol’ and ‘STDV’, and two 
susceptible - ‘IR29’ and ‘Taipei 309’. Genotypes 
‘Pokkali’ and ‘Nona Bokra’ are both traditional tall, 
Indica rice cultivars from India. ‘Bicol’ is a relatively 
newly released moderately salt tolerant Indica cultivar 
derived from anther culture of an F1 hybrid between 
IR5657-33-2 and IR4630-22-2-5-1-3 and ‘STDV’ is 
an anther culture derived semi-dwarf genotype from 
‘IR29’ and classed as moderately tolerant. ‘IR29’ is a 
modern semi-dwarf Indica rice cultivar from IRRI, 
Philippines, and is susceptible to salinity; ‘Taipei 309’ 
is a Japonica cultivar also known to be susceptible to 
salinity. All six standard rice genotypes were obtained 
from IRRI. 

2.1.2 Hydroponic Experiments  
Hydroponic experiments were carried out in a 

glasshouse (temperature approx. day/night of: 30/20 ºC 
(± 2 ºC) with 50-70% relative humidity provided by 
misting). Seeds were pre-germinated in Petri dishes on 
filter paper with distilled water. Germinated seeds 
were transferred to mesh supports in contact with the 
surface of a hydroponic solution. After 2 weeks the 
seedlings were removed carefully and wrapped in 
sponge strips and transferred to test hydroponic tanks. 
A modified Yoshida nutrient solution was used in the 
hydroponic system [19, 20]. Two treatments were set 
up, a control (no added NaCl) and a salt treatment 
(NaCl, 10 dS/m or approximately 6.4 mg/L NaCl). 
These were applied after seedling establishment in 
hydroponics to four weeks old seedlings. Hydroponic 
solutions were replenished every 2-3 days. Details of 
the hydroponics protocol can be found at: 
http://www-naweb.iaea.org/nafa/pbg/public/manuals-p
bg.html. Plant distribution was set up as a completely 
randomized design in the glasshouse with three 

replications per treatment and ten plants per 
replication. 

2.2 Element Composition Analysis 

The six standard genotypes were analysed for 
element composition at 0, 12 and 16 days after salt 
treatment using atomic spectroscopy methods. 
Correlations were found with biomass and the element 
data could be used to discriminate between the three 
classes. A new finding was that patterns for element 
discrimination which were similar in control (no salt) 
and salt treatments, suggesting that salt tolerance 
could be evaluated in control conditions. 16 days 
proved to be the most informative harvest time for 
shoot element analysis. 

2.2.1 Biomass Analysis  
Plants of the six standard genotypes were sampled 

at 0, 4, 8, 12 and 16 days after treatment initiation 
(DAT). Growth parameters such as shoot and root 
biomass (fresh and dry weight), height and tiller 
number were used as a basis for determining salt 
tolerance. Roots of harvested plants were washed with 
water and gently blot-dried with paper tissue before 
recording fresh weight, plant height and number of 
tillers. Thirty plants were sampled per genotype per 
treatment, in total 360 plants per sampling time. For 
dry weight determination, shoots and roots were 
oven-dried at 70 ºC for four days and then weighed. 

2.2.2 Element Composition Analyses of Standard 
Genotypes  

The biomass data were compared with element 
content data which were determined by X-ray 
Fluorescence spectrometer (XRF), see below. Shoots 
were sampled for each standard genotype at 0, 12 and 
16 days after treatment initiation (DAT) using 
hydroponic tests as described above. 

2.3 Validation Experiment 

The study was extended to 62 rice genotypes of 
documented salt tolerance to validate the finding that 
element up-take in control conditions reflected 
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responses in salt stress conditions. Element data were 
compared with shoot biomass data and CID data. 

2.3.1 Validation Experiment  
62 rice genotypes with known responses to salinity 

were used as plant materials, this included the six 
standards. These comprised 23 tolerant, 13 moderately 
tolerant and 26 susceptible genotypes (Table 1). These 
genotypes were sourced mainly from IRRI, in addition 
to salt tolerance criteria; the rice genotypes were 
selected from a range of countries and include 
contemporary as well as traditional cultivars. Growth 
parameters such as shoot biomass (fresh and dry 
weights), height and tiller number were used as a basis 
for determining genotype performance under salinity. 
For dry weight determination, shoots and roots were 
oven-dried at 70 ºC for four days and weighed. Then 

the shoots samples were ground to fine powder for 
carbon isotope discrimination and elements contents 
by spectrometry.  

2.3.2 Carbon Isotope Discrimination 
CID has been used as a surrogate for salt tolerance 

in many studies [21-24]. Dried shoot samples of sixty 
genotypes from untreated and treated conditions were 
weighed and sealed into8x5 mm tin cups, then loaded 
into the auto-sampler of an EA (Elemental Analyzer) 
(Flash 2000, Thermo Scientific, Massachusetts, USA) 
coupled to an Isotope Ratio Mass Spectrometry 
(IRMS) (Isoprime, GV Instruments, Manchester, UK). 
The samples were flash combusted in a temporarily 
oxygen-enriched atmosphere of a combustion reactor 
(chromium oxide, silvered cobaltous/cobaltic oxide, 
quartz wool)  held at 1,020 ºC.  The oxidation  products

 

Table 1  Rice genotypes used, their origin and level of salt tolerance (standards in bold).  

Susceptible Moderate Tolerant 
Genotype Origin BG 94-2 Sri Lanka Genotype Origin 
BPT3402 India DAMODAR India BHURA RATA 4-10 India 
BR4 India GETU India AKUNDO Bangladesh 
C5 United States IR51491-AC5-1 IRRI CHERIVIRUPPU India 
Giza 171 Egypt POKKALI Sri Lanka IR 66946-3R-116-1-1 IRRI 
HABA Philippines POKKALI (8558) Sri Lanka IR 66946-3R-149-1-1 IRRI 
IET1444 India IR 77660-B-9-1-3-2-1-7-5-1 IRRI IR 58443-6B-10-3 Philippines 
IR24 Philippines IR 83460-4-B-4-2-1-1 IRRI IRRI 147 IRRI 
IR29 Philippines IR 84115-10-B-AJY3-1-1 IRRI IR 66946-3R-178-1-1 IRRI 
M117 India IR 84084-B-B-1-1 IRRI IR11T189 IRRI 
MADHUKAR India IR83420-B-AJY3-8-SDO1 IRRI IR11T222 IRRI 
SR 26B Japan Bicol (IAEA) IRRI NONA BOKRA India 
SUWON 143 Republic of Korea STDV(IAEA) IAEA POKKALI 108921 India 
KUATIK BENE Indonesia BG 94-2 Sri Lanka TCCP 266-1-3B-13-1-3 IRRI 
MK47-22 India DAMODAR India HASAWI Saudi Arabia 
SINDANO Kenya   IR 4630-22-2-5-1-3 IRRI 
DHALIBORO 94 Bangladesh   CSR28 India 
GASMAL 72-1 Bangladesh   AT 401 Sri Lanka 
BINADHAN 7 Bangladesh   IR 72046-B-R-3 IRRI 
BR 28 Bangladesh   CAPSULE Bangladesh 
BR 29 Bangladesh   A 69-1 Sri Lanka 
NSIC Rc 222 Unknown   IR 55179-3B-11-3 IRRI 
IR29 Philippines   NONA BOKRA (IAEA) India 
SADRI Iran   POKKALI (IAEA) Sri Lanka 
TAIPEI 309 
(IAEA) Taiwan     

IR29 (IAEA) Philippines     
NIPPON BARE Japan     
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were carried by a stream of helium through a reduction 
reactor (copper, quartz chips, quartz wool) at 650 ºC. 
The resulting gases (primarily CO2, N2 and H2O) were 
then carried through a magnesium perchlorate filter to 
remove water. The CO2 and N2 were separated in a 
packed chromatographic column, passed through a 
thermal conductivity detector, and carried into the 
source of the IRMS where the isotope ratios were 
measured against a pulse of reference gas of known 
isotopic composition. The carbon and nitrogen yields 
were estimated with a standard of known carbon and 
nitrogen content (laboratory standard S19) and 
calibration achieved from a regression of peak area 
versus the carbon and nitrogen content of the standard. 

2.3.3 Element Composition  
The elemental composition of the samples was 

analysed by XRF (X-ray Fluorescence) and PIXE 
(Particle Induced X-ray Emission). In total, fourteen 
elements were analysed: Na, Mg, P, S, Cl, K, Ca, Mn, 
Fe, Cu, Zn, Br, Rb and Sr. Shoot samples from three 
independent ten seedlings for each genotype were 
collected for both, control and exposed to salinity 
stress experiments. 0.5 g of milled shoots were 
pressed into a pellet (25 mm diameter) and prepared 
for both PIXE and XRF measurements. 

Ten different certified RMs (Reference materials) 
of vegetable origin were used for calibration: brown 
bread (BCR191), cabbage (IAEA 359), hay 
(IAEA-V10), lichen (BCR 482), mixed polish herbs 
(INCT-MPH-2), olive leaves (BCR 62), orchard 
leaves (NBS1571), rye flour (IAEA-V8), spinach 
leaves (NBS1570A) and tea leaves (INCT-TL-1). 
Another RM of biological origin (milk powder, IAEA 
A11) was added to the list to enlarge the number of 
values for the concentration range of some elements, 
such as Cl, Mn, Cu and Rb. 

For XRF, a spectrometer based on the use of a 
Pd-anode X-ray tube in combination with different 
secondary emission/scattering targets for excitation 
was used. Three excitation-measurement conditions 
were selected as to improve the X-ray production of 

different groups of elements as follows: Secondary 
Target (ST) of molybdenum (for Fe, Cu, Zn, Br, Rb, 
Sr); Cobalt ST (for K, Ca, Mn) and; HOPG (Highly 
Oriented Pyrolytic Graphite scatter element) for the 
excitation of low atomic number elements (Mg, P, S 
and Cl). Linear calibrations were made for 
quantification of each of the elements at the selected 
condition by measuring the RMs mentioned above. 
The calibrations were based on using selected energy 
radiation scattered at the sample as internal 
normalization of the measured fluorescent signal of 
each element to compensate for sample 
self-attenuation [25]. 

For PIXE, the measurements were made with a 
Silicon Drift Detector arranged in a configuration 
improved for the detection of low atomic number 
elements. The quantification was made based on 
determining individual geometry factors (H-values) 
for each element by measuring three different RMs. 
As the pellets cannot be considered as being 
electrically conductive, the effective charge deposited 
in the samples was determined by RBS (Rutherford 
Backscatter Spectrometry). The measured spectra 
were analysed using dedicated software (GUPIX for 
PIXE and SIMNRA for RBS). More details of XRF 
and PIXE can be found in Bado et al. [26]. 

2.3.4 Statistical Analysis  
Data were recorded for P, K, Ca and Mg 

(macro-elements) and Fe, Mn, Zn, Cu, Cl, and Na 
(micro-elements) in shoot and root samples. In 
addition to the raw data, various salt tolerance indices 
were calculated including: K : Na, Ca : Na, Mg : Na, 
and Na : Cl ratios in shoots [27-33]. Mean values were 
evaluated at 5% significance level (P ≤ 0.05) and in 
case of detection of significance different means were 
compared using Duncan’s test. 

The main steps followed for the multivariate 
statistical interpretation of the measured elemental 
concentrations were the following: (a) Multiplying the 
concentration values by the dry mass of the samples, 
in order to obtain the total amount of nutrients intake 
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by the plant; b) Transforming the resulting data to log 
10 values, to avoid uneven concentration ranges of the 
elements that might impose different weights in 
subsequent analyses; (c) Reducing of the 
dimensionality of the data space using PCA (Principal 
Component Analysis) to ease the interpretation, and in 
the search for some ordination; (d) Establishing a 
classification criterion based on using two Canonical 
Discriminant Functions to differentiate three classes in 
the data set (tolerant, medium tolerance and 
susceptible varieties) and evaluation of group 
membership probabilities using CDA (Canonical 
Discriminant Analysis). The statistical interpretation 
was performed using the procedures included in the 
software SPSS 11.5. 

3. Results 

3.1 Confirmation of Salt Tolerance in Standard 
Genotypes 

The biomass data were in accordance with the 
known salt tolerances of the 6 standard genotypes. 
The EC 10 dS/m NaCl salt stress treatment had a 
major effect on growth with respect to plant height, 
fresh and dry weight. However, no significant 
difference was recorded between genotypes for tiller 
number during the time course of the experiment. 
‘IR29’ exhibited the biggest reduction in plant height 
at p ≤ 0.05. At 16 DAT both susceptible genotypes, 
‘Taipei 309’ and ‘IR29’ were affected most by salinity 

when compared with the salt tolerant genotypes, 
‘Pokkali’ and ‘Nona Bokra’ (Table 2).  

The least dry weight reduction percentage was 
observed in the tolerant genotype ‘Nona Bokra’   
(16.4% and 7.1% respectively for shoot and root), and 
the greatest reduction was recorded for ‘Taipei 309’ 
(40.4% and 58.3% for shoot and root). 

The salt treatment induced stationary or decreased 
biomass production with effects beginning to show 
differences among genotypes at 12 DAT (Fig. 1), as a 
consequence sampling at 0, 12 and 16 DAT were 
chosen for element compositional analysis by XRF. 
The tolerant genotypes ‘Pokkali’ and ‘Nona Bokra’ 
showed the least growth retardation (Fig. 1). 

3.2 Element composition of standard genotypes 

The element analysis of the 6 standard genotypes 
was used to study discrimination under salt stress and 
control treatments. Ratios of K, Ca, Mg and Cl with 
Na were associated with salt tolerance under treated 
than untreated condition (Table 3). 

3.3 Validation Experiment 

Element composition was determined using atomic 
spectroscopy and the data compared with biomass and 
CID measurements. Atomic spectroscopy was carried 
out using Particle Induced PIXE and XRF. Na, Mg, P, 
S and Cl were measured accurately with PIXE and Ca, 
Mn, Fe, Cu, Zn, Br, Rb and Sr were measured accurately 

 

Table 2  Mean biomass data for each standard genotype at 16 DAT (NaCl, 10 dS/m).  

Genotype Plant height 
(cm) 

Whole plant fresh weight 
(g) 

Shoot dry weight 
(g) 

Root dry weight 
(g) 

‘Pokkali’ 80.33a 
[20.2] 

6.95 b 
[43.0] 

0.89 b 
[31.5] 

0.17 b 
[20.3] 

‘Nona Bokra’ 86.99a 
[21.3] 

12.02a 
[29.0] 

1.5 a 
[16.4] 

0.26 a 
[07.1] 

‘Bicol’ 48.01b 
[22.0] 

3.33c 
[37.7] 

0.49 c 
[28.0] 

0.10 c 
[31.8] 

‘STDV’ 48.10b 
[27.0] 

3.08c 
[55.0] 

0.44 cd 
[36.3] 

0.10 c 
[50.0] 

‘Taipei 309’ 42.47b 
[30.7] 

0.94 d 
[48.7] 

0.16 d 
[40.4] 

0.03 d 
[58.3] 

‘IR29’ 37.54 c 
[31.9] 

2.16cd 
[47.6] 

0.31 cd 
[39.8] 

0.06 cd 
[45.0] 

*Means followed by same small letters denote no significant difference among genotypes at 10 dS/m salinity. [value]: % reduction 
compared to control. 
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with XRF analysis. The ratios of K, Ca, Mg and Cl 
with Na of the 62 rice genotypes were scattered 
among the salt tolerance. These ratios under treated 
and control (no NaCl) conditions did not show a clear 
differentiation of tolerant and susceptible genotypes. 
The data also showed the scattering of biomass 
performance of the 62 rice genotypes under the 10 
dS/m NaCl. Therefore the elemental intake results 
were re-scaled to log-10 values, and the extracted 
PCA components were rotated using the Varimax 
method [34, 35], in order to provide greater agreement 
between axes and variable correlation, thus allowing a 
better interpretation of the observed differences in 
elemental contents due salt treatments. The 
coefficients of each of the original variables 
(elemental concentration) in extracted principal 
components (principal component loadings) provide 
information for the identification of correlated 
variables and their contribution to the variability in the 
data set. 

The tendency in the variations of concentrations of 
the fourteen elements in the different genotypes was 
explored for the two data sets containing the control 
and exposed to salinity stress samples, respectively. 
The results of the PCA are summarized in Tables 4 
and 5, and revealed that the two first components 
accounted for 65 % and 23 % of variability of the data 
set, respectively (Table 4). The largest variability in 
the data set, nearly 65 % is accounted for by the 

nutrient elements (see larger loading values in   
Table 4), even larger than the contribution to 
variability due to the elements related to the salinity 
stress (Na, Cl and Br). The tendency in variations of 
the elemental mass fractions with salt status and 
treatment can be observed from Fig. 2. 

Each sample is represented in Fig. 2 as occupying a 
location by its principal component scores in the 2D 
space formed by the first extracted principal 
components. As samples are labelled according to 
their tolerance and the exposure to salt treatment at 
which the plant tissue was collected, it can be 
observed from this ordination that there is a marked 
difference in the composition of the samples. The 
ordination of the samples in the PC space reveals two 
groups corresponding to the exposure to salt levels: 
treated samples appear clustered in the upper left area 
of the graph whereas untreated appear in the lower 
right area. The results obtained for the samples that 
underwent saline treatment show that there is a 
decrease in the intake of nutrients Mg, P, S, K, Ca, 
Mn, Fe, Cu and Zn compared to the control (non-salt 
treated) samples. The decrease is more pronounced for 
the susceptible genotypes, whereas tolerant ones exhibit 
a larger intake of these elements. All elements showed 
a decrease under salt stress except for Na and Cl 
which accumulated in the shoots. 

PCA analysis (Fig. 2) showed differentiation 
between the treatments and genotype tolerance to salinity. 

 

Table 4  Eigenvectors and percent of variance explained the variation in principal component analysis.  
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100.000 

7.854 
2.734 

65.452 
88.236 

7.808 
2.780 

7.808 
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88.236 
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independently by several workers [19, 40-43]. Our 
data corroborate these findings. More susceptible 
genotypes resulted in great reductions in plant height 
(Table 1, Fig. 1). 

The 62 rice genotypes studied with known salt 
tolerance exhibited diversity with respect to plant 
vigour. Thus a range of plant heights were recorded: 
tall, semi-dwarf and dwarf. Each salt tolerant category 
classes within tall, semi-dwarf and dwarf genotypes 
while, tall and tolerant genotypes record similar 
performance as well as semi-dwarf or dwarf tolerant 
genotypes. The performance under salt is independent 
of the plant tallness. Thus, different performance was 
observed regarding the fresh and dry weight and plant 
height even after normalization which was not always 
in accordance with the reported salt tolerance. 

Carbon isotope discrimination (CID) was generally 
effective in classifying salt tolerant and salt 
susceptible genotypes with tolerant genotypes having 
a tendency to maintain more negative δ13C values 
compared to the susceptible ones. CID has been used 
as an indirect screening method for selecting better 
and adapted cultivars to adverse environmental 
conditions such as drought, salt, etc. Many studies 
have used CID in selecting salt tolerance in rice 
[21-24, 44, 45]. Our CID data are in agreement with 
the salt tolerance of the standard lines and confirmed 
their classes as tolerant, moderately tolerant and 
susceptible. For more information on the use CID as a 
surrogate for salt tolerance, the reader is referred to 
recent publications [46-48]. Here we focus on the 
ability to screen for salt tolerance using element 
composition in non-stressed conditions. 

Element analyses were carried out on 12 elements, 
but one objective was to streamline analyses to 
include only the most informative elements in 
developing a simplified salt tolerance analysis. Leaf 
samples were found to be more informative and easier 
to sample than roots. Combined analyses of shoots 
were performed on the elements with the greatest 
effects (Na, Cl, Mg, K and P) in salt tolerance tests on 

the six standard genotypes (Table 3). This was not 
confined to total content of these elements in shoots, 
but also included informative ratios, such as K:Na, 
Ca:Na, Mg:Na and Na:Cl. These element ratios 
yielded the same discrimination between the rice 
genotypes as total elements in PCA and CDA 
analysis. K:Na, Ca:Na, and Mg:Na were positively 
correlated with salt tolerance (Table 3). Increases in 
Na and Cl contents of shoots were associated with salt 
susceptibility, but the effect of Cl was weak, 
suggesting that Na is the main toxic element for all 
genotypes tested. However, damaging effects of Cl are 
observed with moderate and susceptible genotypes. 
The toxic effects of Na are well known and correlated 
with the grain yield under saline conditions [49-53], 
whereas there are few reports on toxic effects of Cl in 
salinity experiments [3, 9, 33, 54-58]. For further 
information on the roles of Na and Cl in plants under 
salt stress see Teakle and Tyerman [59] and Flowers 
et al. [60]. 

Single or combined element ratios were scattered in 
the 62 rice genotypes under control and salt stress 
conditions within each salt category compared to the 
standards. The data are in agreement with the findings 
of Chunthaburee et al. [61] who used 12 rice cultivars 
including two of the standards used here, ‘Pokkali’ 
and ‘IR29’, in which K/Na ratio was only able to 
discriminate salt tolerance under salt stress conditions. 
This demonstrates the complexity of mechanism 
involved in salt tolerance and the difficulty in 
identifying a single criteria, see also Ashraf [62] and, 
Shahbaz and Ashraf [63]. Our data show that salt 
treatment affects the composition of several elements. 
However, the loading of each element may differ from 
others because of its importance in various 
physiological systems, plant growth, regulations, etc. 
(Tables 4 and 5). In order to get a handle on these 
multiple effects, the fourteen elements detected and 
analysis by PIXE and XRF were combined by PCA 
and CDA. The resulting clustering of the genotypes 
into 3 classes provides evidence of genetic variation 
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for salt tolerance in rice in respect to shoot 
accumulation and discrimination of elements (Figs. 2 
and 3). Furthermore the same trend of clustering and 
differentiation was observed with element content 
under control and saline conditions (Figs. 2 and 3). 
This is a new and interesting finding. The contribution 
of different elements in the PCA show that shoot Na, 
Cl, Mg, K and P concentrations exhibit big changes 
between treatments (Tables 4 and 5). The results 
obtained for the control samples revealed that tolerant 
genotypes have comparatively larger intakes of 
elements than moderate-tolerant and susceptible ones. 
Thus the ability to discriminate elements is important 
feature of salt tolerant genotypes [64]. The clustering 
in response to salt stress is independent of plant type 
(tall, semi-dwarf and dwarf) as these were found in 
each salt category. Thus the linkage between salt 
tolerance and height can be broken, an important point 
for plant breeders. 

Screening for salt tolerance in control conditions 
presents many advantages for plant breeders. An 
initial non-destructive screen for salt tolerance may be 
carried out in benign, fertile conditions on young 
plants. Early generations may be tested and grown on 
to produce relatively large numbers of seed for 
subsequent field testing in saline conditions for 
confirmation. In addition that allows further screening 
for other interested traits. These findings may be 
applicable to other crops. 

5. Conclusions 

Salt tolerance in rice cultivars can be screened for 
in non-stressed conditions. This conclusion was 
formulated from a series of experiments in which the 
salt tolerance of six standards was confirmed using 
biomass data from hydroponic culture in saline and 
non-saline conditions. Element composition was 
determined by PIXE and XRF, which is a new 
application for these atomic spectroscopy techniques. 
Element composition data were able to discriminate 
between the six standard rice genotypes classed as 

tolerant, moderate or susceptible to salt (two in each 
class). Furthermore, the ranking of salt tolerance with 
respect to element composition was the same in salt 
and control treatments. These findings were validated 
by extending the study to a large range (62) of rice 
genotypes from various countries. 

The concentration of elements in rice shoots can 
serve as a basis for predicting the response to salinity 
stress. The most effective measurements are shoot 
dried weight and elemental composition, particularly 
the ratio Ka:Na and Mg:Na under salt stress taken at 
16 DAT. That may be assessed from leaf biopsies and 
plants possessing element compositions indicative of 
salt tolerance selected. Testing for salt tolerance in 
benign conditions offers a simple, non-destructive 
pre-screen for plant breeders and since the tests may 
be conducted in fertile areas large amounts of seed 
may be harvested for subsequent testing, e.g. in saline 
fields. 
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