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Abstract: Mealybugs are a major pest for many crops (such as the vegetable Cassava, in Thailand). An environmentally-friendly 
bio-control method is implemented using an introduced predator (green lacewings) of the mealybugs to mitigate plant damage. This 
is analyzed so as to devise and determine an optimal strategy for control of the mealybug population. A predator-prey model has been 
proposed and analyzed to study the effect of the biological control of the spread of the mealybugs in the plant field. The behaviour of 
the system in terms of stability, phase space and bifurcation diagrams are considered. The results obtained from different numbers of 
predators being released are compared. In particular we obtain thresholds of introduced-predator level above which the prey is driven 
to extinction. Future models will include age-structured multi-compartments for both the prey and predator populations. 
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1. Introduction

Mealybugs are a type of scale insect which is 
belongs to the family Pseudococcidae, order 
Homoptera (Johnson and Triplehorn, 2004). They are 
serious pests that infest a wide range of agricultural, 
horticultural and forest species including cassava, 
mango, tomato, peach, grape vine, redcurrant, cotton 
and orchid (Royal Horticultural Society, 2015). In 
1980s, exotic mealybugs caused 50-90% loss of 
mango yields in West Africa (Moore, 2004). In 1999, 
the cost of Postharvest Management (PHM) of the 
pink hibiscus mealybug invading crops in the U.S. 
was estimated to be around $750 million per year in 
the absence of control (Moffitt, 1999). During 
2006-2007, the economic damage caused by 
mealybug in cotton area reached $500,000 in north 
India while 0.2 million bales and 50,000 acres of 
cotton region were destroyed in Pakistan (Nagrare et 
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al., 2009; Institute of Science in Society, 2010). In 
2008, the spread of cassava mealybug over 160,000 
hectares led to a 8-10 million tonnes decrease in the 
cassava production in Thailand (Department of 
agriculture, 2008). Not only is this an enormous 
economic loss, but these pest infestations also cause 
social and cultural problems. 

To control mealybug population, the biological 
method by releasing natural enemies has proved 
experimentally to be successful as shown in Table 1. 
Although the impact of the biological control of 
mealybugs has been widely tested, there are few 
established theoretical models to support such 
projects. 

Mathematical modelling is an important tool to 
study the behaviour of prey and its predator populations. 
It allows us to determine the range of parameters 
required for a stable system and also provides a way 
of determining the effect when conditions are changed, 
especially where there is a distinct abrupt change 
in the long-term behaviour. Determination of these 
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Table 1  Successful experiments in controlling mealybugs using its natural enemies. 
Mealybug Natural enemy Plant Area Reference 

Phenacoccus manihoti Parasitoid: 
Epidinocarsis lopezi Cassava Africa Herren et al., 1991 

Rastrococcus invadens 
Williams 

Parasitoid: 
Gyranusoidea tebygi 
Noyes 

Mango Benin Bokonon-ganta et 
al.,1995 

Maconellicoccus hirsutus 

Encyrtid wasps - - Kairo et al., 2000 

Coccinellid beetles Sapota (India) India, Caribbean, Egypt 
Mani et al., 2008 
Baskaran et al., 2007 
Kairo et al., 2000 

Parasitoid: 
Anagyrus kamali and 
Achrysopophagussp. 

- Egypt Bartlett, 1978 

Metarhizium anisopliae 
var. acridum - Laboratory Ujjan et al., 2007 

 

thresholds is crucial for effective management of the 
situations. 

The aim of this paper is to apply methods from the 
theory of dynamical systems to pest-control problem. 
We modify the predator-prey equations to analyze 
mealybug population with and without releasing its 
natural enemy. In the beginning, the population 
dynamics of two species using the predator-prey 
equations have been studied. 

Let 𝑃𝑃  and 𝑀𝑀  be the population size of prey 
(mealybugs) and predator respectively. The first 
mathematical model is given by the following system 
of coupled differential equations: 

𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑃𝑃 �1− 𝑃𝑃
𝐾𝐾
� − 𝑏𝑏𝑃𝑃𝑀𝑀 = 𝑓𝑓1         (1) 

𝑑𝑑𝑀𝑀
𝑑𝑑𝑑𝑑

= −𝑐𝑐𝑀𝑀 + 𝑑𝑑𝑃𝑃𝑀𝑀 = 𝑓𝑓2           (2) 

𝑎𝑎𝑃𝑃(1− 𝑃𝑃/𝐾𝐾) and 𝑐𝑐𝑀𝑀 are the growth rate of prey and 
death rate of predator, respectively. Further, 𝑏𝑏𝑃𝑃𝑀𝑀 
represents the decreasing rate of prey caused by its 
predator whereas 𝑑𝑑𝑃𝑃𝑀𝑀  is the increasing rate of 
predator growth depending on its prey. This model is 
corresponding to the following assumptions: 

(i) Prey grows logistically. 
(ii) Predator eats only the particular prey, under a 

mass-action law. 
By solving equations (1) and (2), we can obtain the 
behaviour of the system in terms of steady states, 
phase planes and bifurcation diagrams which are the 

main focus of this work. 
The outline of this paper is as follows. In section 2, 

the models and theoretical solutions are given. 
Numerical simulations and bifurcation diagrams are 
presented in section 3. Section 4 is devoted to 
discussion our results. Finally, in section 5, we draw 
conclusions and suggest the idea for future research. 

2. Methods 

In this work, three models are considered. The first 
model is the original predator-prey model with logistic 
growth for prey. The last two models are modified 
predator-prey models by adding the natural enemy 
continuously and periodically. 

2.1 Predator-prey Model 

Assume that 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑,  and 𝐾𝐾  are positive 
parameters. A predator-prey model is shown in 
equations (1) and (2). To deal with a system of two 
first-order equations, the eigenvalue-eigenvector 
method is applied. 

2.1.1 Steady-state solutions 
A steady state (also called equilibrium point or 

fixed point) is a situation in which the system does not 
change [10]. Setting derivatives equal to zero; 
𝑑𝑑𝑃𝑃/𝑑𝑑𝑑𝑑 = 0  and 𝑑𝑑𝑀𝑀/𝑑𝑑𝑑𝑑 = 0 . Equations (1) and (2) 
become 

𝑎𝑎𝑃𝑃 �1 − 𝑃𝑃
𝐾𝐾
� − 𝑏𝑏𝑃𝑃𝑀𝑀 = 0,           (3) 
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−𝑐𝑐𝑀𝑀 + 𝑑𝑑𝑃𝑃𝑀𝑀 = 0.             (4) 
From equations (3) and (4), we obtain three steady 
states which are (𝑃𝑃𝑠𝑠1,𝑀𝑀𝑠𝑠1) = (0,0), (𝑃𝑃𝑠𝑠2,𝑀𝑀𝑠𝑠2) =
(𝐾𝐾, 0) and (𝑃𝑃𝑠𝑠3,𝑀𝑀𝑠𝑠3) = �𝑐𝑐/𝑑𝑑,𝑎𝑎/𝑏𝑏(1− 𝑐𝑐/𝑑𝑑𝐾𝐾)�. 
Get better setting out. Call them respectively 
“Extinction”, “Monospecies” and “Coexisting species”. 
The last one is feasible if and only if c < dK. 

2.1.2 Stability 
After finding all steady-states, the type of each 

point is specified to complete the solution’s diagram. 
From (1) and (2), the Jacobian matrix of this system is 

𝐽𝐽(𝑃𝑃𝑠𝑠 ,𝑀𝑀𝑠𝑠) = �

𝜕𝜕𝑓𝑓1

𝜕𝜕𝑃𝑃
𝜕𝜕𝑓𝑓1

𝜕𝜕𝑀𝑀
𝜕𝜕𝑓𝑓2

𝜕𝜕𝑃𝑃
𝜕𝜕𝑓𝑓2

𝜕𝜕𝑀𝑀

�

(𝑃𝑃𝑠𝑠 ,𝑀𝑀𝑠𝑠)

= �𝑎𝑎 −
2𝑎𝑎𝑃𝑃
𝐾𝐾

− 𝑏𝑏𝑀𝑀 −𝑏𝑏𝑃𝑃

𝑑𝑑𝑀𝑀 −𝑐𝑐 + 𝑑𝑑𝑃𝑃
�

(𝑃𝑃𝑠𝑠 ,𝑀𝑀𝑠𝑠)

. 

At (𝑃𝑃𝑠𝑠1,𝑀𝑀𝑠𝑠1) = (0,0), “extinction” 

𝐽𝐽(0,0) = �𝑎𝑎 0
0 −𝑐𝑐�  →  λ1 = 𝑎𝑎,  λ2 = −𝑐𝑐   

where 𝑎𝑎 > 0 and 𝑐𝑐 > 0. 
Since there is one eigenvalue which is positive and one 
which is negative, (𝑃𝑃𝑠𝑠1,𝑀𝑀𝑠𝑠1) = (0,0) is an unstable 
saddle. 

At (𝑃𝑃𝑠𝑠2,𝑀𝑀𝑠𝑠2) = (𝐾𝐾, 0), “ monospecies” 

𝐽𝐽(𝐾𝐾,0) = �−𝑎𝑎 −𝑏𝑏𝐾𝐾
0 𝑑𝑑𝐾𝐾 − 𝑐𝑐�  →  λ1 = −𝑎𝑎,  λ2 = 𝑑𝑑𝐾𝐾 − 𝑐𝑐   

where 𝑎𝑎, 𝑐𝑐,𝑑𝑑,𝐾𝐾 > 0. 
(𝑃𝑃𝑠𝑠2,𝑀𝑀𝑠𝑠2) = (𝐾𝐾, 0) is stable if both eigenvalues are 
negative, i.e., 𝑑𝑑𝐾𝐾 − 𝑐𝑐 < 0. 

At (𝑃𝑃𝑠𝑠3,𝑀𝑀𝑠𝑠3) = �𝑐𝑐/𝑑𝑑, 𝑎𝑎/𝑏𝑏(1− 𝑐𝑐/𝑑𝑑𝐾𝐾)� , 

“coexisting species” 

𝐽𝐽
�𝑐𝑐𝑑𝑑 ,𝑎𝑎𝑏𝑏�1− 𝑐𝑐

𝑑𝑑𝐾𝐾 ��
= �

−
𝑎𝑎𝑐𝑐
𝑑𝑑𝐾𝐾

−
𝑏𝑏𝑐𝑐
𝑑𝑑

𝑎𝑎
𝑏𝑏 �
𝑑𝑑 −

𝑐𝑐
𝐾𝐾�

0
�    

→  λ =
1
2�

−
𝑎𝑎𝑐𝑐
𝑑𝑑𝐾𝐾

± ��
𝑎𝑎𝑐𝑐
𝑑𝑑𝐾𝐾�

2
− 4ac �1−

𝑐𝑐
𝑑𝑑𝐾𝐾��

 

Case 1: 𝑑𝑑𝐾𝐾 < 𝑐𝑐 

λ1  =
1
2�

−
𝑎𝑎𝑐𝑐
𝑑𝑑𝐾𝐾

+ ��
𝑎𝑎𝑐𝑐
𝑑𝑑𝐾𝐾�

2
− 4ac �1 −

𝑐𝑐
𝑑𝑑𝐾𝐾��

> 0, 

λ2  =
1
2�

−
𝑎𝑎𝑐𝑐
𝑑𝑑𝐾𝐾

− ��
𝑎𝑎𝑐𝑐
𝑑𝑑𝐾𝐾�

2
− 4ac �1 −

𝑐𝑐
𝑑𝑑𝐾𝐾��

< 0 

Since there is one eigenvalue which is positive and one 
which is negative, in this case,  (𝑃𝑃𝑠𝑠3,𝑀𝑀𝑠𝑠3)  is an 
unstable saddle. 

Case 2: 𝑑𝑑𝐾𝐾 > 𝑐𝑐 
𝜆𝜆1 < 0, 𝜆𝜆2 < 0 

Both eigenvalues have negative real parts so this point 
is stable (either a node or a spiral in the phase-plane). 

To verify that the stability is defined within the 
appropriate area, we will show that  𝑅𝑅 = {(𝑃𝑃,𝑀𝑀): 0 <
𝐾𝐾 ≤ 𝑃𝑃 ≤ 𝑐𝑐/𝑑𝑑, 0 < 𝑀𝑀 ≤ 𝑀𝑀0 }  is positively invariant. 
Let 𝐴𝐴  and 𝐵𝐵  be the upper bounds of 𝑃𝑃  and 𝑀𝑀 
respectively. Consider the boundary region of four 
components: 
𝛺𝛺1 - straight segment from (𝐴𝐴, 0) to (𝐴𝐴,𝐵𝐵), 
𝛺𝛺2 - straight segment from (𝐴𝐴,𝐵𝐵) to (0,𝐵𝐵), 
𝛺𝛺3 - straight segment from (0,𝐵𝐵) to (0,0), 
𝛺𝛺4  - straight segment from (0,0)  to (𝐴𝐴, 0) , see 

Figure 1. 
 

 
Fig. 1  A two-dimensional positively invariant region. 
 

Choose the normal vectors 𝑛𝑛1����⃗ = (1,0)  and 𝑛𝑛2����⃗ =
(0,1) to point outside the region for segments 𝛺𝛺1 and 
𝛺𝛺2  whereas apply the normal vectors 𝑛𝑛3����⃗ = 𝑛𝑛1����⃗ =
(1,0) and 𝑛𝑛4����⃗ = 𝑛𝑛2����⃗ = (0,1) to point inside the area for 

(𝐴𝐴,𝐵𝐵) 𝛺𝛺2 

 

𝛺𝛺1 

 

𝛺𝛺3 

 

𝑀𝑀 

 

  (0,0) 𝛺𝛺4 
𝑃𝑃 
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segments 𝛺𝛺3 and 𝛺𝛺4 using dot product. 
(a) Along 𝛺𝛺1, ��̇�𝑃, �̇�𝑀� ∙ (1,0) ≤ 0; 

��̇�𝑃, �̇�𝑀� ∙ (1,0) = �̇�𝑃 =  𝑎𝑎𝑃𝑃 �1 −
𝑃𝑃
𝐾𝐾
� − 𝑏𝑏𝑃𝑃𝑀𝑀

=  𝑎𝑎𝐴𝐴 �1 −
𝐴𝐴
𝐾𝐾
� − 𝑏𝑏𝐴𝐴𝑀𝑀 ≤ 0. 

𝑎𝑎𝐴𝐴 �1 −
𝐴𝐴
𝐾𝐾
� ≤ 𝑏𝑏𝐴𝐴𝑀𝑀 →  

𝑎𝑎
𝑏𝑏
�1 −

𝐴𝐴
𝐾𝐾
� ≤ 𝑀𝑀 

Since 0 ≤ 𝑀𝑀 ≤ 𝐵𝐵, 𝐴𝐴 ≥ 𝐾𝐾. 
(b) Along 𝛺𝛺2, ��̇�𝑃, �̇�𝑀� ∙ (0,1) ≤ 0; 

��̇�𝑃, �̇�𝑀� ∙ (0,1) = �̇�𝑀 = −𝑐𝑐𝑀𝑀 + 𝑑𝑑𝑃𝑃𝑀𝑀 
= −𝑐𝑐𝐵𝐵 + 𝑑𝑑𝑃𝑃𝐵𝐵 ≤ 0. 

𝑑𝑑𝑃𝑃𝐵𝐵 ≤ 𝑐𝑐𝐵𝐵 → 𝑃𝑃 ≤ 𝑐𝑐/𝑑𝑑. 
Since 0 ≤ 𝑃𝑃 ≤ 𝐴𝐴,  𝐴𝐴 ≤ 𝑐𝑐/𝑑𝑑. 

(c) Along 𝛺𝛺3, 

��̇�𝑃, �̇�𝑀� ∙ (1,0) = �̇�𝑃 =  𝑎𝑎𝑃𝑃 �1 −
𝑃𝑃
𝐾𝐾
� − 𝑏𝑏𝑃𝑃𝑀𝑀 = 0. 

That is, when 𝑃𝑃 = 0, 𝑀𝑀 is on the y-axis with �̇�𝑀 < 0 
(cannot cross 𝛺𝛺3). 

(d) Along 𝛺𝛺4, 
��̇�𝑃, �̇�𝑀� ∙ (0,1) = �̇�𝑀 = −𝑐𝑐𝑀𝑀 + 𝑑𝑑𝑃𝑃𝑀𝑀 = 0. 

That is, when 𝑀𝑀 = 0, 𝑃𝑃 is on the x-axis with �̇�𝑃 > 0 
(cannot cross 𝛺𝛺4). 

(e) Find 𝐵𝐵 = 𝑚𝑚𝑎𝑎𝑚𝑚{𝑀𝑀}. 
�̇�𝑀 = −𝑐𝑐𝑀𝑀 + 𝑑𝑑𝑃𝑃𝑀𝑀 ≤ −𝑐𝑐𝐵𝐵 + 𝑑𝑑𝑃𝑃𝐵𝐵 
≤ −𝑐𝑐𝐵𝐵 + 𝑑𝑑(𝑐𝑐/𝑑𝑑)𝐵𝐵 = 0 for 𝑃𝑃 ≤ 𝑐𝑐/𝑑𝑑. 

�̇�𝑀 < 0 → 𝑀𝑀(𝑑𝑑) < 𝑀𝑀(0) = 𝑀𝑀0. 
Let 𝑑𝑑 ≥ 0 . Suppose 𝑃𝑃(0) ∈ 𝑅𝑅  and 𝑀𝑀(0) ∈ 𝑅𝑅 . We 
then obtain 𝑃𝑃(𝑑𝑑) ∈ 𝑅𝑅  and 𝑀𝑀(𝑑𝑑) ∈ 𝑅𝑅 , i.e., 𝑅𝑅 =
{(𝑃𝑃,𝑀𝑀): 0 < 𝐾𝐾 ≤ 𝑃𝑃 ≤ 𝑐𝑐/𝑑𝑑, 0 < 𝑀𝑀 ≤ 𝑀𝑀0 }  is a 
positively invariant set with respect to equations (1) 
and (2) for  𝐾𝐾 ≤ 𝑐𝑐/𝑑𝑑. 

2.2 New Model for Biological Control with 
Continuous effect 

Assume 𝑃𝑃,𝑀𝑀,𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, and 𝐾𝐾 are defined as in the 
previous model. We modify the predator-prey 
equations by adding a natural enemy of the mealybugs 
into the system at a positive constant rate 𝑔𝑔. Our new 
model is shown below. 

𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑃𝑃 �1− 𝑃𝑃
𝐾𝐾
� − 𝑏𝑏𝑃𝑃𝑀𝑀 = 𝑓𝑓1        (5) 

𝑑𝑑𝑀𝑀
𝑑𝑑𝑑𝑑

= 𝑔𝑔 − 𝑐𝑐𝑀𝑀 + 𝑑𝑑𝑃𝑃𝑀𝑀 = 𝑓𝑓3       (6) 

Then, we analyze this system in the same manner. 
2.2.1 Steady-state solutions 
Setting derivatives equal to zero; 𝑑𝑑𝑃𝑃/𝑑𝑑𝑑𝑑 = 0 and 

𝑑𝑑𝑀𝑀/𝑑𝑑𝑑𝑑 = 0. Equations (5) and (6) become 

𝑎𝑎𝑃𝑃 �1 − 𝑃𝑃
𝐾𝐾
� − 𝑏𝑏𝑃𝑃𝑀𝑀 = 0,        (7) 

𝑔𝑔 − 𝑐𝑐𝑀𝑀 + 𝑑𝑑𝑃𝑃𝑀𝑀 = 0.          (8) 

So, three steady states are (𝑃𝑃𝑠𝑠𝑠𝑠1,𝑀𝑀𝑠𝑠𝑠𝑠1) = (0,𝑔𝑔/𝑐𝑐) , 

(𝑃𝑃𝑠𝑠𝑠𝑠2,𝑀𝑀𝑠𝑠𝑠𝑠2) = �𝑃𝑃𝑠𝑠𝑠𝑠2, 𝑔𝑔
𝑐𝑐−𝑑𝑑𝑃𝑃𝑠𝑠𝑠𝑠2

�  and (𝑃𝑃𝑠𝑠𝑠𝑠3,𝑀𝑀𝑠𝑠𝑠𝑠3) =

�𝑃𝑃𝑠𝑠𝑠𝑠3, 𝑔𝑔
𝑐𝑐−𝑑𝑑𝑃𝑃𝑠𝑠𝑠𝑠3

�  where 𝑃𝑃𝑠𝑠𝑠𝑠2  and 𝑃𝑃𝑠𝑠𝑠𝑠3  are defined in 

equations (9) and (10), respectively. 

𝑃𝑃𝑠𝑠𝑠𝑠2 = (𝑎𝑎𝑑𝑑𝐾𝐾+𝑐𝑐𝑎𝑎 )+�(𝑎𝑎𝑑𝑑𝐾𝐾+𝑐𝑐𝑎𝑎 )2−4𝑎𝑎𝑑𝑑 (𝑐𝑐𝑎𝑎𝐾𝐾−𝑔𝑔𝑏𝑏𝐾𝐾 )
2𝑎𝑎𝑑𝑑

,     (9) 

𝑃𝑃𝑠𝑠𝑠𝑠3 = (𝑎𝑎𝑑𝑑𝐾𝐾+𝑐𝑐𝑎𝑎 )−�(𝑎𝑎𝑑𝑑𝐾𝐾+𝑐𝑐𝑎𝑎 )2−4𝑎𝑎𝑑𝑑 (𝑐𝑐𝑎𝑎𝐾𝐾−𝑔𝑔𝑏𝑏𝐾𝐾 )
2𝑎𝑎𝑑𝑑

.     (10) 

The first one only is a monospecies while the last two 
solutions are coexisting species. 

2.2.2 Stability 
The Jacobian matrix of (5) and (6) is 

𝐽𝐽(𝑃𝑃𝑠𝑠𝑠𝑠 ,𝑀𝑀𝑠𝑠𝑠𝑠) = �

𝜕𝜕𝑓𝑓1

𝜕𝜕𝑃𝑃
𝜕𝜕𝑓𝑓1

𝜕𝜕𝑀𝑀
𝜕𝜕𝑓𝑓3

𝜕𝜕𝑃𝑃
𝜕𝜕𝑓𝑓3

𝜕𝜕𝑀𝑀

�

(𝑃𝑃𝑠𝑠𝑠𝑠 ,𝑀𝑀𝑠𝑠𝑠𝑠)

= �𝑎𝑎 −
2𝑎𝑎𝑃𝑃
𝐾𝐾

− 𝑏𝑏𝑀𝑀 −𝑏𝑏𝑃𝑃

𝑑𝑑𝑀𝑀 −𝑐𝑐 + 𝑑𝑑𝑃𝑃
�

(𝑃𝑃𝑠𝑠𝑠𝑠 ,𝑀𝑀𝑠𝑠𝑠𝑠)

 

(11) 

At (𝑃𝑃𝑠𝑠𝑠𝑠1,𝑀𝑀𝑠𝑠𝑠𝑠1) = (0,𝑔𝑔/𝑐𝑐), 

𝐽𝐽(0,𝑔𝑔/𝑐𝑐) = �
𝑎𝑎 −

𝑏𝑏𝑔𝑔
𝑐𝑐

0

𝑑𝑑𝑔𝑔
𝑐𝑐

−𝑐𝑐
�  →  λ1 = 𝑎𝑎 −

𝑏𝑏𝑔𝑔
𝑐𝑐

,  λ2 = −𝑐𝑐   

where 𝑎𝑎,𝑏𝑏, 𝑐𝑐,𝑔𝑔 > 0. 
We obtain that (𝑃𝑃𝑠𝑠𝑠𝑠1,𝑀𝑀𝑠𝑠𝑠𝑠1) = (0,𝑔𝑔/𝑐𝑐) is stable when 
𝑔𝑔 > 𝑎𝑎𝑐𝑐/𝑏𝑏 (both eigenvalues are negative). 

At (𝑃𝑃𝑠𝑠𝑠𝑠2,𝑀𝑀𝑠𝑠𝑠𝑠2) = �𝑃𝑃𝑠𝑠𝑠𝑠2, 𝑔𝑔
𝑐𝑐−𝑑𝑑𝑃𝑃𝑠𝑠𝑠𝑠2

�, 
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𝐽𝐽�𝑃𝑃𝑠𝑠𝑠𝑠2, 𝑔𝑔
𝑐𝑐−𝑑𝑑𝑃𝑃𝑠𝑠𝑠𝑠2

�

=

⎣
⎢
⎢
⎢
⎡𝑎𝑎 −

2𝑎𝑎𝑃𝑃𝑠𝑠𝑠𝑠2

𝐾𝐾
−

𝑏𝑏𝑔𝑔
𝑐𝑐 − 𝑑𝑑𝑃𝑃𝑠𝑠𝑠𝑠2

−𝑏𝑏𝑃𝑃𝑠𝑠𝑠𝑠2

𝑑𝑑𝑔𝑔
𝑐𝑐 − 𝑑𝑑𝑃𝑃𝑠𝑠𝑠𝑠2

−𝑐𝑐 + 𝑑𝑑𝑃𝑃𝑠𝑠𝑠𝑠2⎦
⎥
⎥
⎥
⎤
   

λ2 − �𝑎𝑎 −
2𝑎𝑎𝑃𝑃𝑠𝑠𝑠𝑠2

𝐾𝐾
−

𝑏𝑏𝑔𝑔
𝑐𝑐 − 𝑑𝑑𝑃𝑃𝑠𝑠𝑠𝑠2

− 𝑐𝑐 + 𝑑𝑑𝑃𝑃𝑠𝑠𝑠𝑠2� λ

− �𝑎𝑎 −
2𝑎𝑎𝑃𝑃𝑠𝑠𝑠𝑠2

𝐾𝐾
−

𝑏𝑏𝑔𝑔
𝑐𝑐 − 𝑑𝑑𝑃𝑃𝑠𝑠𝑠𝑠2

� (𝑐𝑐

− 𝑑𝑑𝑃𝑃𝑠𝑠𝑠𝑠2) + 𝑏𝑏𝑃𝑃𝑠𝑠𝑠𝑠2 �
𝑑𝑑𝑔𝑔

𝑐𝑐 − 𝑑𝑑𝑃𝑃𝑠𝑠𝑠𝑠2
� = 0 

(12) 
The eigenvalue λ can be calculated from the quadratic 
equation (12). However, for convenience, particular λ 
for the corresponding parameters will be considered. In 
other words, the stability of equations (7) and (8) at 
(𝑃𝑃𝑠𝑠𝑠𝑠2,𝑀𝑀𝑠𝑠𝑠𝑠2)  and (𝑃𝑃𝑠𝑠𝑠𝑠3,𝑀𝑀𝑠𝑠𝑠𝑠3)  will be approached 
numerically by the following steps. 

(i) Separate value of 𝑔𝑔. 
(ii) Find the corresponding 𝑃𝑃𝑠𝑠𝑠𝑠2  and 𝑃𝑃𝑠𝑠𝑠𝑠3  from 

equations (9) and (10). 
(iii) Apply equation (11) to obtain the Jacobian 

matrix. 
(iv) Calculate the eigenvalues λ. 
(v) Classify the stability. 

By solving equations (7) and (8), we obtain 

𝑀𝑀 = 𝑎𝑎
𝑏𝑏
�1 − 𝑃𝑃

𝐾𝐾
�,              (13) 

𝑀𝑀 = 𝑔𝑔
𝑐𝑐−𝑑𝑑𝑃𝑃

.                (14) 

It leads to the following formula: 

𝑔𝑔 = 𝑎𝑎𝑑𝑑𝑃𝑃2−(𝑎𝑎𝑑𝑑𝐾𝐾+𝑐𝑐𝑎𝑎 )𝑃𝑃+𝑐𝑐𝑎𝑎𝐾𝐾
𝑏𝑏𝐾𝐾

           (15) 

Equation (15) is a parabola which has vertex at 

(𝑔𝑔∗,𝑃𝑃∗) = �𝑎𝑎𝑐𝑐
𝑏𝑏
− (𝑎𝑎𝑑𝑑𝐾𝐾+𝑐𝑐𝑎𝑎 )2

4𝑎𝑎𝑑𝑑𝑏𝑏𝐾𝐾
, 𝐾𝐾

2
+ 𝑐𝑐

2𝑑𝑑
�  and passes 

through the points 
(𝑔𝑔,𝑃𝑃) = (0,𝐾𝐾), (0, 𝑐𝑐/𝑑𝑑), (𝑎𝑎𝑐𝑐/𝑏𝑏, 0). 

Suppose 

𝐾𝐾 = 1,𝑎𝑎 = 1.3,𝑏𝑏 = 0.5, 𝑐𝑐 = 0.7 

and 

𝑑𝑑 = 1.6 

in appropriate units. The graph of 𝑔𝑔  is shown as 

Figure 2.  
 

 
Fig. 2  Graph of 𝒈𝒈 against 𝑷𝑷. 
 

Remark: (a) 𝑃𝑃𝑠𝑠𝑠𝑠2 is the upper half of the parabola and 
𝑃𝑃𝑠𝑠𝑠𝑠3 is the lower half of it. 

(b)  𝑔𝑔∗ = 𝑎𝑎𝑐𝑐
𝑏𝑏
− (𝑎𝑎𝑑𝑑𝐾𝐾+𝑐𝑐𝑎𝑎 )2

4𝑎𝑎𝑑𝑑𝑏𝑏𝐾𝐾
< 0. 

Separate the graph into three regions based on the value 
of 𝑔𝑔 as follows: 

R1. 𝑔𝑔∗ < 𝑔𝑔 < 0, 
R2. 0 < 𝑔𝑔 < 𝑎𝑎𝑐𝑐/𝑏𝑏, 
R3. 𝑔𝑔 > 𝑎𝑎𝑐𝑐/𝑏𝑏. 

We pick up the value of 𝑔𝑔 for each region and then 
calculate the eigenvalue by the step as we mention 
earlier. Finally, the stability can be specified shown in 
Table 2. 

Moreover, we found that the positively invariant 
region of equations (5) and (6) is 𝑅𝑅 = {(𝑃𝑃,𝑀𝑀): 0 <
𝐾𝐾 ≤ 𝑃𝑃 < 𝑐𝑐/𝑑𝑑,𝑀𝑀 > 0 } for 𝐾𝐾 ≤ 𝑐𝑐/𝑑𝑑. 

2.3 New Model for Biological Control with Impulse 
Effect 

In practice, predator will be released not continuously 
but periodically so modified predator-prey equations 
with impulse effect are considered as follows: 
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Table 2  Stability of modified predator-prey model at (𝑷𝑷𝒔𝒔𝒔𝒔𝟐𝟐,𝑴𝑴𝒔𝒔𝒔𝒔𝟐𝟐) and (𝑷𝑷𝒔𝒔𝒔𝒔𝟑𝟑,𝑴𝑴𝒔𝒔𝒔𝒔𝟑𝟑). 

Region 𝑔𝑔 𝑃𝑃𝑠𝑠 Jacobian matrix λ Stability 

𝑃𝑃𝑠𝑠𝑠𝑠2-R1 -0.2 0.89 �−1.16 −0.45
0.44 0.73 � -1.05, 0.62 unstable 

𝑃𝑃𝑠𝑠𝑠𝑠2-R2 0.2 1.08 �−1.40 −0.54
−0.31 1.02 � -1.47, 1.09 unstable 

𝑃𝑃𝑠𝑠𝑠𝑠2-R3 2.0 1.47 �−1.91 −0.73
−1.94 1.65 � -2.27, 2.01 unstable 

𝑃𝑃𝑠𝑠𝑠𝑠3-R1 -0.2 0.54 �−0.71 −0.27
1.90 0.17 � -0.27±0.57i stable 

𝑃𝑃𝑠𝑠𝑠𝑠3-R2 0.2 0.36 �−0.47 −0.18
2.65 −0.12� -0.30±0.67i stable 

𝑃𝑃𝑠𝑠𝑠𝑠3-R3 2.0 -0.03 �0.04 0.01
4.28 −0.75� 0.11, -0.82 unstable 

 

𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑃𝑃 �1− 𝑃𝑃
𝐾𝐾
� − 𝑏𝑏𝑃𝑃𝑀𝑀         (16) 

𝑑𝑑𝑀𝑀
𝑑𝑑𝑑𝑑

= −𝑐𝑐𝑀𝑀 + 𝑑𝑑𝑃𝑃𝑀𝑀,  𝑇𝑇𝑖𝑖 < 𝑑𝑑 < 𝑇𝑇𝑖𝑖+1      (17) 

𝑀𝑀(𝑇𝑇𝑖𝑖+) = 𝑀𝑀(𝑇𝑇𝑖𝑖−) + 𝑚𝑚,𝑚𝑚 = 𝑔𝑔 ∗ (∆𝑑𝑑)      (18) 
where 𝑃𝑃,𝑀𝑀, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑,𝑔𝑔 and 𝐾𝐾 are defined as section 
2.2. Let 𝑚𝑚  be the size of the added predator with 
period ∆𝑑𝑑. The relationship of parameters in equations 
(17) and (18) can be drawn in Figure 3. 
 

 
Fig. 3  Relationship of parameters for added predator. 
 

The numerical results from this model will be shown 
and compared in section 3. 

3. Simulation Results 

The simulation of models leads to the following 
numerical results. Firstly, we show illustrative phase 
plane plots for the original model where the arrows 
represent temporal changes. From Figure 4, we obtain 
that the solutions tend to the monospecies and the 

coexisting species steady states when 𝑐𝑐 = 3.2 and 
𝑐𝑐 = 0.7 consecutively. 

Secondly, the corresponding bifurcation diagrams 
of equations (1) and (2) are shown in Figure 5 where 
solid and dash lines represent stable and unstable 
states, respectively. We simplify the problem by 
assuming 𝑏𝑏 = 𝑑𝑑 . Then, long-term solutions 
depending on parameter 𝑏𝑏 can be explained. In the 
case that 𝑑𝑑𝐾𝐾 < 𝑐𝑐 , solutions will converge to 
monospecies (𝑃𝑃𝑠𝑠2,𝑀𝑀𝑠𝑠2) = (𝐾𝐾, 0) . Otherwise, they 
will tend to the coexisting species (𝑃𝑃𝑠𝑠3,𝑀𝑀𝑠𝑠3) =

�𝑐𝑐
𝑑𝑑

, 𝑎𝑎
𝑏𝑏
�1 − 𝑐𝑐

𝑑𝑑𝐾𝐾
�� where 𝑃𝑃𝑠𝑠3 is strictly decreasing. 

Next, we move to the bio-control model satisfying 
equations (5) and (6). Phase plane graphs with 
different rate of added predator are compared and 
shown in Figure 6. For 𝑔𝑔 = 1 , solutions meet 
coexisting species steady state. And we obtain 
monospecies as a long-term solution when 𝑔𝑔 = 3. 

Again, bifurcation diagrams are employed to 
determine the stability of the system. Since we focus 
on the effect of added predator to mealybug population, 
our bifurcation diagrams are drawn with respect to 𝑔𝑔. 
Recall from Figure 1 that 𝑔𝑔 can be negative (take 
some existing predators out of the system); however, it 
is out of our domain. From Figure (7a), we can see 
 

∆𝑑𝑑 ∆𝑑𝑑 

𝑻𝑻𝒊𝒊+𝟏𝟏 𝑻𝑻𝒊𝒊 𝑻𝑻𝒊𝒊−𝟏𝟏                                   

𝑚𝑚 𝑚𝑚 𝑚𝑚 
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(a) 

 
(b) 

Fig. 4  Simulation results of mealybug and predator populations of the predator-prey model for 𝑲𝑲 = 𝟏𝟏,𝒂𝒂 = 𝟏𝟏.𝟑𝟑,𝒃𝒃 =
𝟎𝟎.𝟓𝟓,𝒅𝒅 = 𝟏𝟏.𝟔𝟔 (4a) 𝒄𝒄 = 𝟑𝟑.𝟐𝟐 (4b) 𝒄𝒄 = 𝟎𝟎.𝟕𝟕. 
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(a) 

 
(b) 

Fig. 5  Bifurcation diagrams of the predator-prey model for 𝑲𝑲 = 𝟏𝟏,𝒂𝒂 = 𝟏𝟏.𝟑𝟑, 𝒄𝒄 = 𝟎𝟎.𝟕𝟕  (5a) mealybug population (5b) 
predator population. 
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(a) 

 
(b) 

Fig. 6  Simulation results of mealybug population of modified predator-prey model for 𝑲𝑲 = 𝟏𝟏,𝒂𝒂 = 𝟏𝟏.𝟑𝟑,𝒃𝒃 = 𝟎𝟎.𝟓𝟓, 𝒄𝒄 =
𝟎𝟎.𝟕𝟕,𝒅𝒅 = 𝟏𝟏.𝟔𝟔 (6a) 𝒈𝒈 = 𝟏𝟏 (6b) 𝒈𝒈 = 𝟑𝟑. 
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(a) 

 
(b) 

Fig.  7  Bifurcation diagrams of modified predator-prey model (7a) mealybug population (7b) predator population. 
 

that population size of mealybug is dropped by 
increasing 𝑔𝑔  and it becomes zero after 𝑔𝑔 = 𝑎𝑎𝑐𝑐/𝑏𝑏 . 
Behaviour of predator population is divided into two 
cases, see Figure (7b). The first one occurs when 
𝑔𝑔 < 𝑎𝑎𝑐𝑐/𝑏𝑏 ; solutions grow logistically while 𝑔𝑔  is 
enlarged. The second type is for 𝑔𝑔 > 𝑎𝑎𝑐𝑐/𝑏𝑏; solutions 
linearly increase corresponding to higher rate 𝑔𝑔. 

Comparisons of the results of two models are 
shown in Figures (8) and (9) where figures on the left 
and the right hand sides represent the simulation 
results of biological control models of continuous and 
periodic predator-adding, respectively. Two values of 
𝑔𝑔  are studied: 𝑔𝑔 = 1  (𝑔𝑔 < 𝑎𝑎𝑐𝑐/𝑏𝑏)  and 𝑔𝑔 = 3 
(𝑔𝑔 > 𝑎𝑎𝑐𝑐/𝑏𝑏). 
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(a)                                                  (d) 

 
(b)                                                  (e) 

 
(c)                                                  (f) 

Fig. 8  Comparison of the results between models of equations (5-6) (left hand side) and equations (16-18) (right hand side) 
for 𝒈𝒈 = 𝟏𝟏,𝑲𝑲 = 𝟏𝟏,𝒂𝒂 = 𝟏𝟏.𝟑𝟑,𝒃𝒃 = 𝟎𝟎.𝟓𝟓, 𝒄𝒄 = 𝟎𝟎.𝟕𝟕,𝒅𝒅 = 𝟏𝟏.𝟔𝟔, (𝑷𝑷𝟎𝟎,𝑴𝑴𝟎𝟎) = (𝟏𝟏,𝟏𝟏),∆𝒕𝒕 = 𝟏𝟏𝟏𝟏. 
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(a)                                                  (d) 

 

(b)                                                  (e) 

 
(c)                                                  (f) 

Fig. 9  Comparison of the results between models of equations (5-6) (left hand side) and equations (16-18) (right hand side) 
for 𝒈𝒈 = 𝟑𝟑,𝑲𝑲 = 𝟏𝟏,𝒂𝒂 = 𝟏𝟏.𝟑𝟑,𝒃𝒃 = 𝟎𝟎.𝟓𝟓, 𝒄𝒄 = 𝟎𝟎.𝟕𝟕,𝒅𝒅 = 𝟏𝟏.𝟔𝟔, (𝑷𝑷𝟎𝟎,𝑴𝑴𝟎𝟎) = (𝟏𝟏,𝟏𝟏),∆𝒕𝒕 = 𝟏𝟏𝟏𝟏. 
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From Figures (8f) and (9f) satisfying impulse effect 
model, we obtain the periodic solutions with 
coexisting-species for 𝑔𝑔 = 1 and with mono-species 
for 𝑔𝑔 = 3. 

4. Discussion 

From the simulation results shown in Figures 4, we 
verify that our solutions will converge to 
mono-population (𝑃𝑃,𝑀𝑀) = (𝐾𝐾, 0)  if 𝑑𝑑𝐾𝐾 < 𝑐𝑐 . 
Otherwise, the long term steady-state solution is 

(𝑃𝑃,𝑀𝑀) = �𝑐𝑐
𝑑𝑑

, 𝑎𝑎
𝑏𝑏
�1− 𝑐𝑐

𝑑𝑑𝐾𝐾
��. That is, for a non-control 

situation, some mealybugs survive finally. Moreover, 
from Figures (5a) and (5b), we can see that the 
bifurcation occurs at 𝑏𝑏 = 𝑑𝑑 = 𝑐𝑐/𝐾𝐾. 

After introducing its natural enemy, the size of the 
population of mealybugs is decreasing as desired. 
With the same conditions, the mealybug’s level 
reduces from 0.45 (as a proportion) in Figure (4b) to 
0.18 in Figure (6a). From Figures (6a) and (6b), we 
can see that if more predators are added, more 
mealybugs are eliminated. Furthermore, bifurcation 
diagram in Figure (7a) reveals that if added predator 
rate is more than 𝑎𝑎𝑐𝑐/𝑏𝑏, the mealybugs are driven to 
extinction. 

Furthermore, our experiment provides the same 
trend for two models of biological control (continuous 
or impulse effect) that is if we add large enough 
amount of predator, mealybugs can be eliminated, see 
Figures (8) and (9). 

In future work, the multistage physiological 
structures of the predator and prey will be taken into 
account before applying such model to the real 
experimental data. 

5. Conclusion 

This work presents mathematical models for a 
mealybug population with biological control. The 
stability of the system has been analyzed by the 
eigenvalue-eigenvector method. Some examples of 
relationship between the predator and its prey are 

given in terms of phase planes. The simulation results 
obtained from different parameters are compared. 
Finally, the bifurcation diagrams have been proposed 
in order to describe the overall behaviour of our 
models. In particular we discover thresholds of the 
predator release-rate which can eliminate mealybugs 
ultimately. 
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