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Abstract: The aim of this study was to develop and explore a stochastic lattice gas cellular automata (LGCA) model for epidemics. 
A computer program was development in order to implement the model. An irregular grid of cells was used. A 
susceptible-infected-recovered (SIR) scheme was represented. Stochasticity was generated by Monte Carlo method. Dynamics of 
model was explored by numerical simulations. Model achieves to represent the typical SIR prevalence curve. Performed simulations 
also show how infection, mobility and distribution of infected individuals may influence the dynamics of propagation. This simple 
theoretical model might be a basis for developing more realistic designs. 
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1. Introduction 

In the large majority of studies involving population 

dynamics, such as the spread of epidemics, direct 

experimentation is often not feasible. That is why 

formal models can offer a great help, providing a 

framework for exploring these scenarios. 

Mathematical models of epidemics are formal designs 

that capture the dynamic behaviour of spread of 

infectious diseases [1, 2]. 

The first step to define an epidemic model is to 

classify individuals of the population into different 

categories corresponding to possible states for the 

disease under study. According to this grouping, 

parameters are defined to represent the transition of 

individuals between these categories over a period of 

time. The aim then is to study the evolution of the 

system over time [3]. The choice of which states to 

include in a model depends on the characteristics of 

the particular disease being investigated and the 

purpose of the model. Acronyms for epidemic models 

are often based on the flow patterns between the 

different states considered [4]. For example, in a 
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susceptible-infected-recovered (SIR) type model, 

individuals can be in one of three states; they are 

susceptible (S) and can catch the disease, infected (I) 

and can spread the disease, or recovered and immune 

(R). The SIR scheme is representative of diseases in 

which individuals develop immunity, such as 

influenza [5-7]. 

The dynamics of current models of epidemics rarely 

lead to analytical solutions. To achieve this, it would 

be necessary simplifications to reduce the formal 

complexity of the models, which would reduce their 

representativity [8]. Thus, despite its formal nature, 

the results provided by current epidemiological 

mathematical models are often analyzed in a 

qualitative way from numerical computer simulations. 

The difficulty of including all relevant factors, the 

imprecise measurement of biological and behavioural 

variables, and the extreme sensitivity of many 

non-linear systems to small changes in parameter 

values are frequently insurmountable obstacles to 

accurate quantitative prediction [9]. Thus, qualitative 

results can provide a coherent framework of analysis 

that is more efficient than simple intuition, helping in 

the planning of health policies. 

Both deterministic and stochastic models are used 
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to describe the transmission dynamics of epidemics. 

The deterministic models based in systems of 

equations, often lead to powerful qualitative results 

with important threshold behaviour. They also lead to 

simpler mathematical problems than the stochastic 

ones. Work on deterministic models has therefore 

dominated strongly over work on stochastic models 

[10]. However, deterministic models are not 

appropriate when population size is small and 

stochastic factors play a major role [9]. There are a 

number of ways to allow the events in a model to be 

influenced by chance, but the most common and 

rigorous method is Monte Carlo simulation, where a 

set of possible events is defined with a probability 

attached to each of them. A random number generator 

is then used to calculate which of the range of possible 

events it will be [9].  

Classical epidemic models have tended to  

minimize geographic heterogeneity and related  

spatial aspects of spread of infectious diseases. 

However, spatial epidemic models have become more 

important in recent years [11-13]. Spatial models of 

infectious disease transmission provide the only 

framework in which knowledge of the location     

of hosts and their movement patterns can be  

combined with a description of the infection process 

and the disease natural history to investigate observed 

patterns and to evaluate alternative intervention 

options [14].  

The significant development of computer 

technology during the last decades has allowed the 

design of mathematical computer models that supply 

explicit spatial representations of complex systems. 

One example is the cellular automata (CA) models. 

They are dynamic simulation models defined by 

spatially arranged mathematical cells, which are 

updated in discrete steps according to a set of rules. 

The nature of these update rules determines whether 

the model will have a deterministic or a stochastic 

behaviour [15]. In recent years the development of CA 

models for the spread of infectious diseases has 

increased. Both deterministic [16-18] and stochastic 

[19-21] designs have been developed. 

In CA models for epidemics, each cell can be 

considered as an individual or a small subpopulation 

[22-24]. Alternatively, each cell may represent an area 

(patch) occupied by a certain number of individuals 

who can interact within the cell and move to other 

cells [17, 19, 25]. This will be the case in the model 

presented in this work. A CA whose cells contain 

particles that interact within the cells is called lattice 

gas cellular automata (LGCA) [19]. As computer 

technology continues to improve, the development of 

epidemiological models of CA also increases. 

Although these models do not provide analytical 

solutions, they help to understand the spatial dynamics 

and to identify what factors might be relevant to the 

spread of epidemics in spatially structured populations 

[26]. 

The aim of the present work is to develop and 

explore a stochastic LGCA model that can be a basis 

for studying the spread and control of epidemics and 

their relation to the spatial distribution and mobility of 

the population. 

2. Materials and Methods 

The model was implemented in an original 

computer program developed by the authors of the 

present work in Delphi® platform. The software 

includes the Delphi-Component Tmesh for 

representing irregular grids in cellular automata 

simulations [27]. The model presents a 

two-dimensional grid of 900 cells with different 

shapes incorporated in this component (Fig. 1). If two 

cells are adjacent, they are considered neighbours. 

Thus, each cell can be surrounded by a different 

number of neighbours. In each cell there is a given 

number of individuals who can move between 

neighbouring cells. 

A SIR scheme has been represented. That is, as 

mentioned in the introduction, individuals were classified 

into three successive states: susceptible (S), infected (I) 
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Fig. 1  Two-dimensional grid of 900 cells included in the 
Delphi-Component Tmesh [27] and used in the model of the 
present work. 
 

or recovered (R). For each cell i, the model includes 

the following events influenced by chance: infection, 

recovery and displacement to a neighbouring cell 

selected at random. A state transition parameter is 

assigned to each of these events. The authors named β, 

γ and δ to parameters for infection, recovery and 

displacement, respectively. These parameters have the 

same value in all cells. The value of each parameter is 

proportional to the probability of occurrence of the 

corresponding process. In addition, it is considered 

that the net rate at which infection is acquired in each 

cell i also depends on the number of encounters 

between susceptible and infected in that cell. Thus, for 

each cell i the net rate of infection is proportional to 

βSiIi, where Si and Ii are the number of susceptible and 

infected individuals placed in the cell i, respectively. 

The system is updated at discrete intervals of time 

(epochs), incorporating random effects by using 

Monte Carlo method according to the manner 

described below. The parameters that affect 

individuals of each state define a range proportional to 

its magnitude in the interval (0, 1). For each epoch a 

random number generator built into the program 

produces values within this range, which allows 

selecting the event that individuals of each state will 

experience. Thus, for each epoch, individuals can 

experience one of the following events: change of 

state, displacement to a neighbouring cell selected at 

random or remain unchanged. Finally, the number of 

individuals in each state per cell is updated and the 

simulation time is incremented by one epoch. The 

program allows to set the initial number of individuals 

in different states by cell. When a simulation is 

completed, the program generates an analytical record 

of the number of individuals in the states S, I and R 

for each cell and for the entire system as a function of 

simulation time in epochs. The application also 

provides visual representations of the spread of the 

outbreak on the lattice of cells through bitmaps. 

The dynamics of the model was explored by 

computer numerical simulations. Arbitrary values 

were assigned to initial conditions and to state 

transition parameters. 

3. Results 

The authors considered a benchmark case with the 

following initial distribution of people on the gird: one 

infected individual in a specific cell, twenty-five 

susceptible individuals in each cell and zero recovered 

individual in the system. The parameters were set to β 

= 0.0075, γ = 0.0150 and δ = 0.1500. Fig. 2a shows 

the obtained prevalence curve based on 10 repetitions 

of a simulation of 400 epochs. These repetitions follow 

a common pattern but they are not identical because of 

the influence of chance on infection, recuperation and 

displacement. Thus, the authors represented the mean 

and the standard deviation of the proportion of infected 

individuals in each epoch. The obtained prevalence 

curve follows the expected behaviour for a SIR model. 

That is, the proportion of infected individuals increases 

exponentially to a maximum value and then begins to 

decrease. A typical series of bitmaps generated in one 

of these repetitions is illustrated in Fig. 2b. Bitmaps 

represent the spatial pattern of the infected individuals 

for different times, by using a gray scale described in 
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Fig. 2  Evolution of the epidemic in the benchmark case. (A) Proportion of infected individuals as a function of time. Mean 
(black markers) and mean + standard deviation (gray markers) of 10 repeat simulations are displayed. (B) Spatial pattern of 
the infected individuals for different times in a typical simulation. The colour of each cell is related to the number of infected 
individuals placed there: white correspond to zero infected individuals and a darker shade of gray indicates a larger number 
of them. The arrow indicates the cell in which infected individuals are placed at epoch 0.  
 

the figure legend. It can be seen how the evolution of 

epidemics on the lattice is in agreement with the 

obtained prevalence curve. 

The authors explored the sensitivity of the system 

to parameters β and δ by varying them one by     

one, and keeping other conditions as in the benchmark 

case. These parameters might be affected by health 

control strategies. For example, some measures 

implemented during an influenza epidemic can  

cause a direct reduction in the rate of infection of   

the disease, such as antiviral prophylaxis or  

promotion of hand and respiratory hygiene [28, 29]. 

Fig. 3 shows the evolution of prevalence for different 

values of β. As expected, the peak prevalence reduces 

with decreasing β. The restriction of population 

mobility is another strategy that can be adopted to 

mitigate an influenza epidemic [30]. Accordingly, in 

Fig. 4 the authors show how a reduction of the 

parameter δ, also produces a decrease in the maximum 

of prevalence. 
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Fig. 3  Influence of β on the evolution of prevalence. Three values were tested: β = 0.0075 (open black markers); β = 0.0060 
(solid black markers); β = 0.0045 (solid gray markers). Other conditions remain the same as the benchmark case. A typical 
simulation is shown for each value. 
 

 
Fig. 4  Influence of δ on the evolution of prevalence. Three values were tested: δ = 0.1500 (open black markers); δ = 0.0750 
(solid black markers); δ = 0.0375 (solid gray markers). Other conditions remain the same as the benchmark case. A typical 
simulation is shown for each value. 
 

Finally, the authors show that the initial distribution 

of infected individuals can influence the behaviour of 

the system. Two initial scenarios were compared: a 

central cell occupied by six infected individuals and 

two cells with three infected individuals in each one 

(Fig. 5a); all other conditions remained as in the 

benchmark case. The prevalence curve is more steep 

during the ascending phase and a higher peak 

prevalence is reached when infected individuals are 

distributed in two cells than when they are located in 

one cell at the beginning of the simulation (Fig. 5b). 

4. Discussion 

The authors developed a model which could be the 
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Fig. 5  Influence of the initial distribution of infected individuals on the evolution of prevalence. Two initial scenarios were 
compared. Scenario 1: a central cell occupied by six infected individuals. Scenario 2: two cells with three infected individuals 
in each one. (A) Visual representation of each scenario at epoch 0. The arrows indicate the cells in which infected individuals 
are placed at epoch 0. (B) Typical prevalence curves obtained to scenario 1 (black markers) and scenario 2 (gray markers). 
 

theoretical basis for the study of different scenarios 

where it is important to assess the mobility and 

distribution of individuals among several areas. For 

example, it could be an initial design for the 

investigation of the spread of outbreaks of some 

diseases (e.g., influenza) in megacities, where the 

restriction on population mobility could be a public 

health measure implemented by governments [30]. 

Each cell in the system (patch) could represent a given 

area of the city. On the other hand, the model allows 

to set the initial distribution of infected individuals, 

which could be a point of interest for governments in 

order to evaluate the impact of bioterrorist attacks in 

megacities. In recent years, bioterrorism has increased 

the interest in the development of mathematical 

models of spread of infectious diseases [31-33]. 

A feature of the developed model is that it achieves 

represent a stochastic dynamics. This is evident 

because for the same set of parameter values and 

initial conditions the authors get similar but not 

identical outputs. In population phenomena, such as 

the spread of infectious diseases, stochastic effects can 

be relevant. Therefore, the inclusion of stochasticity in 

an epidemic model can give it more realism. Cellular 

automata models where individuals move randomly in 

their neighborhood have been developed [19, 34, 35]. 

However, randomness for other events is often 

ignored. The LGCA model development in the present 
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work incorporates stochastic effects for mobility and, 

in addition, for infection and recovery, achieving the 

usual SIR prevalence curve. Infection and recovery 

are biological processes and it is reasonable to assume 

that they may be influenced by chance. 

Other models in the literature present grids made up 

of identical cells (usually square shaped) arranged 

uniformly. They have classical systems of 

neighborhood such as the neighborhood of Moore, 

which consists of the cell itself and its eight nearest 

neighbor cells [18, 23, 24]. However, Flache and 

Hegselmann have suggested that cellular automata 

dynamics could have general properties that are robust 

to variation in the grid structure [27]. Irregular 

neighborhood system used in the present model can 

incorporate more spatial heterogeneity, which could 

be closer to real conditions. 

Although the model developed in the present work 

succeeds in capturing qualitatively a typical SIR 

dynamic, it is a relatively simple design and may be 

complexified in different ways in order to incorporate 

more realism. 

5. Conclusions 

The authors have developed a stochastic 

susceptible-infected-recovered (SIR) epidemic model 

of lattice gas cellular automata (LGCA). The general 

behaviour of the theoretical prevalence curves 

obtained in the model coincides with the propagation 

dynamics of diseases that can be represented by the 

SIR scheme, like influenza. In addition, the model 

responds as expected to variations in infection rate and 

mobility. Since, as might be supposed, the peak 

prevalence increases with the rate of infection and 

mobility. The complexification of this model to adapt 

it to any particular real scenario might be the subject 

of a future work. 
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