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Abstract: The Philippine Arena Project is a large domed roof structure. The arena volume is significant, with 227 m × 179 m ellipse 
shaped space standing, which is the largest non-column arena in the world. Reinforced concrete is used for the bowl structure and 
main seismic resisting system is considered as dual system. For the structure above Level 04, steel rakers and columns are applied. 
To identify seismic resisting performance of steel structure, push over analysis had been carried out. Pre-cast concrete plank is 
planned for arena seating to meet constructing ability. The roof structure is grid type space frame. Tension trusses are located under 
the space frame for overall stability of roof structure. Wind tunnel test had been conducted to evaluate accurate wind pressure for 
both structure and cladding design. LRB (lead rubber bearing) is located under the roof structure to reduce seismic force delivered 
from sub-structure. 
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1. Introduction 

Philippine Arena (Fig. 1) site is located in Barangay 

Duhat, Bocaue, Bulacan, which is north-west side of 

Manila, capital of Philippines. It is a 50,000 seated 

domed roof structure which is the largest non-column 

area in the world, measured to be around 227 m ×   

179 m. It opened in July 2014 to hold 100-year 

anniversary ceremony of INC (Iglesia ni Cristo). After 

the ceremony, it has been used as a concert hall and 

sports activities, also. As the construction period was 

limited, Philippine Arena was constructed as        

fast track. 

There were preliminary concept design group with 

local architects and engineers. After that, Hanwha 

E&C (Hanwha Engineering and Construction Corp.) 

won a contract to cover design and build. CSSE (CS 

Structural Engineering) Inc. and HA (Haeahn 

Architecture) joined with Hanwha E&C as a design 

group to provide SD (schematic design), DD (design 

development) and CD (construction documents). 

Philippine Arena can be divided into four major 

parts: roof, upper bowl (above of Level 04), lower bowl 
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and service core with loading dock. Roof and upper 

bowl are steel system and lower bowl and service core 

are reinforced concrete system (Fig. 2). 

2. Design of Lower Bowl 

As long as Philippine is in strong ground motion area, 

structural members were mainly governed by seismic 

force. For this reason, it was very important to select 

proper seismic force resisting system from the 

beginning of the structural design [1, 2]. From the 

analysis, it was found that frame was resisting about  

43% of seismic load and shear wall was resisting 57% 

(Fig. 3). From this result, dual system had been 

selected for lower bowl. This means at least 25% of 

lateral load should be resisted by frames without shear 

walls. Hence, adequate reinforcing on column and 

girder was applied for ductile behavior of the     

frame. 

For seating plank, PC (pre-cast concrete) was 

applied for constructability and economic quantity of 

material. Also, PC stand was planned for diaphragm 

action of bowl structure. Axial displacement of PC 

stand, due to gravity and temperature load, was 

checked and short slotted hole was applied         

on connection detail with rakers. With the slotted hole,  
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Fig. 1  Philippine Arena.  
 

displacement only for the amount of the gravity and 

temperature load can be acceptable. And if there is 

more displacement than the length of slotted hole, due 

to lateral load, stand elements start to act as a 

diaphragm. To find out in-plane force (diaphragm force) 

of PC stand, it was considered as plate element in FEM 

(finite element method) analysis. 

3. Design of Upper Bowl 

Upper bowl [3, 4] is supported by 4-way inclined 

columns (Fig. 4). From the seismic resisting system 

categories on design code, SCBF (special 

concentrically braced frame) and SMRF (special 

moment resisting frame) could be applied for upper 

bowl system. For SCBF, it was required that plastic 

hinges shall be originated on braces first, not columns. 

This means columns of SCBF shall remain in elastic 

range to resist gravity load safely, even under severe 

earthquake. From the analysis modelling, inclined 

columns behaved like braces (axial force governed) but 

they should resist gravity load, too, as if they were 

columns. So applying SCBF for upper bowl was 

inadequate. Otherwise, SMRF requires the frame 

action and plastic hinges from lateral loads shall be 

originated on girders. However, the upper bowl 

structure acted like braced frame as mentioned above. 

Therefore, applying SMRF was inadequate either. 

To conclude, it was difficult to apply seismic 

resisting system categorized in design code. However, 

from the shape of structure itself, it is expected that it 

has enough stiffness to perform elastic behavior on 

seismic force. To confirm safety of the structure, push 

over analysis was performed which can estimate 

capacity of structure resisting seismic load. As a result, 

it was clarified that columns, rakers and girders of 

upper bowl remain in elastic range in case of earthquake. 
 

 
Fig. 2  Structural summary of Philippine Arena.  
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Fig. 3  Lateral force sharing ratio of lower bowl.  
 

 
Fig. 4  Columns of upper bowl.  
 

 
Fig. 5  Overall geometry of roof structure.  
 

 
Fig. 6  Applicable space frame: (a) radial; (b) grid.  

Structural elements were designed with amplified 

seismic force by over strength factor (Ω = 2.8) to be 

safe at the force level with elastic response.  

4. Roof System 

4.1 Introduction 

The roof size of Philippine Arena [5-7] is 

approximately 227 m × 179 m. Roof shape was drawn 

from the torus shape and span-rise ratios were 0.096 

for major axis and 0.055 for minor axis (Fig. 5). 

Because the roof does not have enough rise height to 

expect arch action, deriving reasonable system for roof 

was quite challenging issue for structural engineer. 

4.2 Roof Structural System 

Spatial structures are divided into two groups: rigid 

structure and flexible structure. The flexible structure is 

lightweight which can control long span economically, 

but it has limitation in selection of finishing material 

selection. The rigid structure can control long span as 

well, but limited to satisfy shape of structure. The roof 

structure of Philippine Arena had many restrictions 

such as metal cladding and low span-rise ratio. Thus, 

Space frame was selected to be the most satisfactory 

structure to perform 180 m long span. 

Applicable space frame types were divided into two 

groups (Fig. 6): Radial type could distribute external 

force uniformly to the outer ring, and it had better 

shape resistance performance with multi-layered rings; 

Grid type had lower efficiency of outer ring because 

external load was concentrated on partial areas only. 

However, Philippine Arena has ellipse shaped roof, 

radial type space fame could arise many problems such 

as increasing number of element and size of connection, 

and it required various shapes of secondary elements 

for cladding and internal ceilings. Also, for roof 

structures with low span-rise ratio are tend to rely on 

vector action, so forming the radial type did not have 

great effectiveness. 

Therefore, the space frame was selected to be 

Lateral force sharing ratio 

(a) (b) 
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Fig. 9  Gravity load resistance system of roof.  
 

 
Fig. 10  Wind tunnel test.  
 

Tension trusses help to restrain the movement of the 

roof edge, which increase the vertical stiffness of 

whole roof structure. The loads transferred to tension 

ring and tension trusses are carried down to the 

sub-structure through the supporting columns. 

4.2.2 Lateral Load Resistance System—Wind Load 

Wind loads on roof structure can be categorized into 

positive and negative pressure. As long as it is out of 

plane pressure, the behavior of wind load is similar to 

that of gravity load. 

Philippine is in a region which experiences typhoon, 

so it is recommended that wind tunnel test (Fig. 10) 

should be performed to estimate design wind pressure. 

To evaluate more accurate wind pressure, wind tunnel 

test was conducted. 

The dome had been divided into 42 tributary areas 

and panels. The net pressure on a panel was obtained 

by combining the external pressure coefficients acting 

on the tributary area by simultaneously differencing the 

external and back pressure acting on the area. The 

external pressure was determined based on the area 

weighting of the pressure sensors monitoring the 

pressures of the tributary area. 

Wind tunnel test result showed that most part of the 

roof wind pressure is similar or little below than wind 

load from code except cantilevered roof area. This 

result was considered reasonable and applied to roof 

structure design. For the area that result of wind tunnel 

test was much smaller than code, the 80% of code value 

was applied. 

4.2.3 Lateral Load Resistance System—Seismic 

Load 

Seismic behavior of spatial structure was different 

from that of general structure. In spatial structure, even 

horizontal seismic load happens to cause vertical 

vibrations (Fig. 11). As vertical vibrations have a 

decisive effect on the whole structure, careful review 

was highly required by structural engineer. 

For the reasons mentioned above, static and dynamic 

analysis (response spectrum analysis and linear time 

history analysis) were conducted for seismic load. 

The earthquake wave of linear time history analysis 

was made by extracting the three artificial seismic 

loads, using response spectrum of MCE (maximum 

considered earthquake) level. These earthquakes 

should be scaled down to 2/3 and applied to the 

structural DBE (design based earthquake) level. 
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Fig. 11  Vibration of low rise dome structure: (a) horizontal vibration mode; (b) vertical vibration mode.  
 

 
Fig. 12  Comparison of ground and response acceleration.  
 

When ground acceleration passes the structures, 

response acceleration may be reduced or amplified 

according to dynamic characteristics of each structure. 

Hence, five points of the roof supports were selected 

from different sub-structure (three points from upper 

bowl, two points from service core). Then, response 

acceleration was compared with ground acceleration 

(Fig. 12). As Philippine Arena had short period, the 

response acceleration was greater than two to four 

times than ground acceleration itself. 

For the reasons mentioned above, base isolation was 

applied for roof structure to minimize the amplification 

of seismic load from sub-structures. The detailed time 

history analysis procedure is explained in Section 4.5 

of this paper. 

4.3 Roof Support System 

Number and location of columns had been modified 

from preliminary design to distribute load uniformly 

since space frame was selected. Separated roof support 

columns were combined and became to connect 

directly to inclined column of bowl. As a result, span of 

roof got larger, but the column axial force had been 

reduced and roof stiffness was increased since column 

bay got shorter (Fig. 13). 

Current roof shape was drawn from torus, so 

span-rise ratio at the border area was small compared to 

center area of roof. By reducing supports of space at the 

border, it was able to generate balance of roof element. 

Various alternative studies to find the best solution are 

shown in Fig. 14. 

For Alternative 1, elements size was larger because 

the span was further between the supports. 

For Alternative 2, supports were added in the 

machinery room at back of stage to achieve economic 

design by reducing span size of roof. However, the 

supports in the end of span and middle occurred uplift 

and compression force due to different span distance ratio. 
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Final solution was to prevent these problems 

discussed above, and maintained constant support 

around perimeter of the structure as moving support to 

machinery room that effect to span reduction by having 

same number of supports. 

4.4 Isolator 

The basic concept of base isolation is placing 

flexible element between upper and lower structure to 

reduce movement of upper structure. It can prevent 

seismic load to be delivered to upper structure and 

reduce overall damage of upper structure. 

For Philippine Arena, LRB (lead rubber bearing) 

was applied as a base isolation system for its high 

energy dissipation ability. The lead core inside of the 

LRB provides the specific behavior which has different 

stiffness as external force reaches to designated value. 

From these characteristic of the LRB, displacement 

caused by normal use can be absorbed while lead core 

remains in elastic range. And against severe lateral 

loads like seismic load, it can provide high energy 

absorption capacity. 

To confirm effectiveness of the LRB, response 

acceleration and member forces were compared 

between two cases, with and without LRB. When the 

isolators were installed, the response acceleration and 

member forces were reduced significantly as shown 

below (Fig. 15). Thus the structural design was 

progressed including stiffness of isolators. 

4.5 Non-linear Snapping Analysis 

For spatial structure with no columns inside, roof 

structure (Fig. 16) should resist external force with its 

shape.  

While beam and column structure resist external 

forces by their bending and shear capacity, most spatial 

roof structure resist external force by axial and in-plane 

capacity of members, same for space frame system. 

However, space frame system can have 

snap-through or bifurcation problem (geometric 

nonlinearity which can result in large deformation 

through the whole structure). Also, slender members in  
 

 
Fig. 15  Effect of LRB: (a) response acceleration; (b) member force—element No. 7930.  
 

 
Fig. 16  Buckling mode shape of the roof.  
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5. Conclusions 

The Philippine Arena consists of a roof structure, 

upper bowl, lower bowl and service core with loading 

dock. This paper introduces main design issues in 

structural design of the structure. It explained what 

system each part has and how it performs. Since the 

structure is the world’s largest non-column arena in the 

world, structural design of the roof system was 

examined thoroughly from shape of supporting column 

to time history analysis. The Philippine Arena Project 

was a great chance to perform various studies for 

spatial structures. 
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