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Abstract: The article deals with the methodology of pseudorandom data analysis. As a mathematical tool for carrying out the 
research the extreme value theory was used that creates one of the directions in mathematical statistics, and is related to investigating 
the extreme deviations from the median values in probability distributions. Also, the methods for estimating unknown parameters and 
algorithm of random-number generation are discussed. The models of treatment the extreme values are constructed which are based 
on machine generated sample and approach is proposed for their future application for constructing forecasting models. 
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1. Introduction

According to the present knowledge the simulation 

modeling is a powerful tool for research and creation of 

complex system models and forecasting processes of 

various origin including those associated with 

management and decision making under risk. 

Comparing with other approaches the simulation 

modeling allows us to generate a large number of 

alternatives, and thus improve the quality of 

managerial decisions and more accurately predict their 

consequences. The aim of the simulation modeling is in 

constructing of a simulation model of a system (object) 

under study and using the results of simulated 

experiment for studying the law(s) of functioning (for 

example, the probabilities distribution law of a random 

variable), the system behavior with regard to defined 
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limits, and the target functions in terms of interaction 

with specific environment. 

However, practical usage of this method for solving 

various problems is not very popular. Primarily, 

because there are a lot of difficulties with combined 

application of respective mathematical tools and due to 

the necessity of processing large sophisticated data sets. 

In general, there are also cases with empty data sets and 

that is why it is necessary to generate the modeling data 

using appropriate mathematical tools for approximate 

reproduction of a real world of the process of interest.  

Due to the necessity to solve new tasks of modeling 

and forecasting the processes based on large data 

samples, which couldn’t be accomplished with existing 

methods and techniques, we come to the next 

conclusion. The field of development modern 

integrated data processing systems, methods and 

approaches for treating such data sets should be 

carefully studied. One of these approaches is extreme 

value analysis (EVA) or extreme value theory. It is 

widely used to solve such tasks as a regulation of the 

D 
DAVID  PUBLISHING 



Application of Extreme Value Theory to Generation and Analysis of Pseudorandom Samples 

  

130

structure of portfolio assets in finances (e.g. in 

insurance and investments), analysis of occurrence of 

the risky situations in financial organizations, traffic 

prediction in telecommunication, weather forecasting 

etc. 

The extreme value theory is focused on purposeful 

analysis and evaluation of the probability of random 

variables occurrence associated with extreme events, 

and considers it in as a rare event. Generally, extreme 

values are not fixed they are new random variables 

which are related to the type of source distribution and 

sample size. For example, in property insurance a rare 

but probable event is the occurrence of insured event, 

which must be accompanied by payment of a large 

insurance premium. 

Therefore, the problem of the machine-generated 

pseudorandom data analysis should be treated as a 

probability model, which is constructed using the 

extreme value theory. One of the key points related to 

the process of development of an adequate model is a 

reasonable choice of the method for estimating 

unknown model parameters. Very often the problem of 

evaluating the unknown model parameters could be 

resolved by maximum likelihood method and Bayesian 

approach. An advantage of the latter method is in its 

possibility for application to small data samples and for 

the cases with degenerate data [4, 5]. Today, maximum 

likelihood method is a popular and relatively universal 

approach, that could be applied for parameter 

estimation of wide class of linear and nonlinear models 

[6-8]. 

2. Materials and Methods 

An objective of the research is in application of 

extreme value theory for analysis and estimation of 

unknown model parameters using generated 

pseudorandom data. The necessary experimental data 

has been obtained by the algorithm of random number 

generation. The following tasks should be completed 

for achieving the stated goal: to investigate the 

properties of the distributions and methods of 

evaluating unknown parameters of extreme values; to 

study the algorithms for generating random numbers; 

to develop an effective model for analyzing 

pseudo-random numbers and estimating unknown 

parameters of selected models; to provide examples of 

analysis the generated values using the methodology of 

extreme value and programming environment R. 

2.1 Algorithm for Generating Random Numbers 

Practically, in many cases generation of a sequence 

of random digits with Gaussian distribution is required 

for solving the prediction task and many others. The 

most frequently for generating pseudorandom 

sequences is used central limit theorem. According to 

this theorem distribution of a sum of N  identically 

distributed random variables is converging to normal 

distribution law with N . In view of the last 

statement, independence of the uniformly distributed 

sequence }{ nx  has been rearranged to the sequence of 

numbers with Gaussian distribution }{ ny  with the 

following expression: 







1

0

)(
1 N

i
n iNnx

N
y           (1) 

Here the parameter N  should be fairly large 

number [12]. 

As a variation of this method is Reider suggestion, 

where L  of independent uniformly distributed 

sequences is modified to the new sequence of L  

non-correlated random variables with Gaussian 

distribution using Hadamard matrix. Each of the L  

Gaussian variables is obtained by adding (subtraction) 

of L  numbers with uniformly probability distribution. 

The case when 16L  is evidenced with the best 

approximation of normal distribution. This approach is 

effective because from L  uniformly distributed 

variables we obtain L  normally distributed random 

variables, but not NL /  as after using equation (1). 

An additional point is that there is a direct method of 

transformation the pair of uniformly distributed 

random variable to pair of pseudorandom variable with 
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Fig. 1  Raleigh distribution function. 
 

required distribution. Suppose that }{ nx  is uniformly 

distributed on interval )1;0(  sequence of random 

values and }{ ny  is defined as: 
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Then in this case }{ ny  will have Raleigh 

distribution, i.e.: 
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Figure 1 illustrates graphical view of Raleigh 

distribution. 

Now let’s generate two new random variables }{ nw  

and }{ 1nw  using the following equations: 

 1cos 2n n nw y x              (4) 

 1 1sin 2n n nw y x              (5) 

These variables will be normally distributed with 

zero mean and variance equal to 2 . It should be 

noticed that }{ nw  and }{ 1nw  should be 

non-correlated variables. It is equivalent to 

independence for normally distributed random 

variables [12]. 

So, in practice, the method discussed allows 

receiving efficient results, but it needs some additional 

calculating for the logarithms, sine, and cosine [12]. 

2.2 Model of Extreme Values Processing 

The mathematical model of extreme values 

processing is presented [1]: 

 ,,...max 1 nn XXM              (6) 

where: nXX ,...,1  is a sequence of independent 

random variables having a common distribution 

function .F  
In equation (6) the value of nM  represents the 

maximum of the process over n  time units of 

observation. The distribution of nM  can be derived 

exactly for all values of n  [1]: 

   
     n

n

nn

zFzXzX

zXzXzM

)(Pr...Pr

,...,PrPr

1

1




    (7) 

However, the function F  is unknown. One 

possibility is to use standard statistical technique to 

estimate F  based on observed data and then to 

substitute this estimate into (7). Unfortunately, very 

small discrepancies in the estimate of F  can lead to 

substantial discrepancies for nF . An alternative 
approach is to accept that F  is unknown and to look 

for approximate families of models for nF , which can 
be estimated on the basis of the extreme data only. This 

is similar to the usual practice of approximating the 

distribution of sample means by the normal distribution 

as justified by the central limit theorem.  

If there exists the sequence of constants }0{ na  

and }0{ nb  such that 

),()(Pr zGxbxaFz
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 (8) 

where: G  is a non-degenerate distribution function, 

then G  belongs to one of the following families: 

Gumbel distribution: 
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Frechet distribution: 
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Weibull distribution: 
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for  ba ,0 real number. In case of families 3 and 4, 

the parameter 0 . 

These three families of distributions could be 

combined into a single family of models having 

distribution function of the form: 

,1exp)(
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This is the generalized extreme value (GEV) family 

of distributions. The model has three parameters: 
 location parameter;  scale parameter; 

 shape parameter [2]. The distribution functions for 

each one from the GEV families are presented on the 

Figure 3. 

Figure 2 shows that the three types of distributions 

have  different  forms  of  tail  behavior.  Weibull 

distribution has infinite end point ,sup 
 

z  but 

for  Frechet  and  Gumbel  distribution  .sup z  

However, Gumbel density function is damping out 

exponentially, whereas Frechet density function is 

polynomial. Gumbel distribution is similarly to normal, 

log-normal, gamma-normal distibutions. Frechet 

distribution has heavy tail, that could be denoted as 
 

 
Fig. 2  Density functions for three types of distribution. 

)( rXE  for 

1

r  (it means that it has infinite 

variance if 2/1 ). 

Generalized Pareto distribution (GPD) is identified 

to separate class, which can be derived from the next 

equation: 

,
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yFu 


        (10) 

where:  .1)(:sup  xFxwu F  

This parameter can be found by calculating the limit: 

),,,()(  uu yGyF   where: G  is GPD. It is 

equivalent to  
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if 0  then heavy tail appears /1x , which is 

equivalent to Pareto distribution; 
if 0  and ,0 then finally 

.exp1)0,,( 








 y

yG  It’s exponential 

distribution with mean  ; 

if 0  that finite upper point locates at the level 

of .



  

The advantage of GEV is invariance of each 

distribution form which belongs to this class of 

distributions. 

Consider briefly the method of extreme value 

processing. For this purpose consider statistical sample 

with n  independent identically distributed values 

nXX ,...,1 . The following steps should be applied for 

processing extreme values.  

(1) Grouping the data into sequences of n  

observations. The data sample should include from 50 

to 100 values.  

(2) The maxima iZ  of each block i  should be 

calculated. 

(3) Finally, the GEV-distribution will be fitted to 

this series of block maxima ....,,, 21 nZZZ   

Practically, the length of blocks are assumed as one 

year sample or as the annual maxima iZ  of year i . 
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When GEV distribution has been fitted then it is 

possible to calculate the quantile function pz  for the 

annual maximum distribution as [3, 4]: 

  
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The quantile function will be changed if accept the 

next suggestion )1log( pyp  : 
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This function can be plotted against )log( py , but 

the plot will be linear in the case when 0 ; the plot 

will be convex in case of 0  with asymptotic limit 

equal to  /)(   as 0p ; finally, the plot will 

be concave for 0  and will not have finite bound. 

This graph is named a return level plot and it is usually 

used as validation tool and as a way for presenting the 

best fitted model [3]. 

(4) Estimation of model parameters and choice of 

optimum length of blocks.  

The task of choice of the optimum length of blocks 

implies a tradeoff between bias and variance. In the 

case when the length of the blocks is small, then the 

approximation of the distribution by the limit value is 

quite poor. So, this is leading to the bias in estimation 

and extrapolation. On the other side, long blocks will 

generate only a few data leading to large estimated 

variance. 

The likelihood method is the most commonly used 

for estimation of model parameters. There is one 

difficulty with this approach, which means that 

regularity conditions for its application are not 

satisfied by the GEV distribution. That’s because the 

end-point of the distribution depends on the parameter 

values. This violation means that the standard 

asymptotic likelihood results are not automatically 

applicable. Smith studied the above problem in detail. 

As a result he found the following [3]: 
 when 5,0  the maximum likelihood 

estimators have usual asymptotic properties; 

 when 5,01    the maximum likelihood 

estimators can be obtained in general but they do not 

have the standard asymptotic properties; 
 when 1  the maximum likelihood 

estimators are unlikely to be obtainable. 
Observe that the case of 5,0  corresponds to 

distributions with a very short bounded upper tail, 

which is rarely the case in real applications of extreme 

value modeling [5]. 

The log-likelihood for the GEV distribution, when 
,0  should be defined as: 
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When this condition is not satisfied then the likelihood 

is zero and the log-likelihood is minus infinity.  

In the Gumbel case ( 0 ), the log-likelihood is as 

follows  
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By maximizing these log-likelihood functions we 

obtain the maximum likelihood estimates   ˆ,ˆ,ˆ . 

The optimization is made using numerical optimization 

algorithms [3, 5].  

(5) Graphical GEV-model checking.  

It is impossible to check the validity of an 

extrapolation based on the GEV model, and assessment 

can be done with reference to the observed data. There 

are the following types of plots that could be used for 

graphical checking.  

Probability plot is a comparison of empirical and 
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fitted distribution functions. The empirical distribution 

function evaluated in the i th ordered block maximum, 

iZ , is )1/()(
~

 miZG ii  and the fitted distribution 

function in the same point is  

.
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In order to get a good model it is necessary that 

)(ˆ)(
~

ii ZGZG  . In practice the plot of points 

   miZGZG ii ,...,1,)(ˆ),(
~

should lie close to the 

first diagonal. But because both functions are bounded 

to approach 1 as the values of  z  increase, the plot is 

the least informative in this region. The following 

graph avoids this deficiency. 

Q-Q plot is a probability plot, which is applied for 

comparing two probability distributions by plotting 

their quantiles against each other. Additionally it helps 

to compare the shapes of distributions, providing a 

graphical view of how properties of model (e.g. 

location, scale, and skewness) are similar or different in 

two observed distributions. The approximation by a 

normal distribution remains a basic assumption in most 

of the Value-at-Risk (VaR) techniques. However, the 

most financial and actuarial series are fat-tailed. The 

graph of the quantiles makes it possible to assess the 

goodness of the fit of a series to the parametric model.  

The graph of quantiles (Q-Q plots) is a 

representation of a set of points and is defined by this 

set of points [4]: 















  nk

n

kn
FX nk ,...,1,

1
, 1

,     (17) 

The graph will have a linear form in the case when 

the parametric model fits the data well. Thus, the graph 

makes it possible to compare various estimated models 

and choose the best one; to assess how well the selected 

model fits the tail of the assumed empirical distribution. 

For example, if the series is approximated by a normal 

distribution and if the empirical data are fat-tailed, the 

graph will show a curve to the top at the right end or to 

the bottom at the left end. Besides the plots mentioned 

above, there are also exist return level plots, and mean 

excess function [3, 4]. 

The return level plot represents the set of points 
.10),ˆ,(log  pzy pp  The confidence intervals are 

usually added to this plot to increase content of its 

information. The most important side of return periods 

in actuarial analysis is due to the fact that the return 

period could be used as a design assumption.  

The mean excess function is a graphical tool which 

is widely used in studying of risk, insurance data and 

extreme values. The definition for it is as follows: 

suppose that X  is a random variable and given 

threshold Fx , then [4]: 

;0),|()( FxuwhereuXuXEue     (18) 

where: )(e  is called the mean excess function; )(ue  

is the mean excess over the threshold .u  

If X  follows an exponential distribution with a 

parameter ,  the function is equal to 1)(  ue  for 

any .0u  For the GPD we have  
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The mean excess function for a fat-tailed series is 

located between the constant mean excess function of 

an exponential distribution 1)(  ue and GPD, 

which is linear and tends towards infinity for high 

thresholds as u  tends towards infinity (Embrechts, 

Kluppelberg and Mikosch) [4]. 

(6) The choice of the threshold.  

The threshold models use to provide effective result 

of fitting model to GEV-distributions. Let’s suggest 

that data exceeds the threshold level ;u  stochastic 

behavior of these values over u  should be calculated 

and analyzed; nXX ,...,1  is a sequence of independent 

and identically distributed random variables, having 

distribution .F  Then conditional probability could be 

defined as follows: 
),|()( uXyuXPyF u   

or 
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The following result gives an approximation to this 

probability for high values of the threshold .u  

The issue of how to choose the threshold is similar to 

that of selecting the size of block of maximums in the 

sense that both imply a balance between the bias and 

variance. A low level leads to failure in the asymptotic 

approximation of the model and a high level provides 

for few observations and then high variance. 

A method of choice the threshold is based on the 

mean of the GPD: if Y  is a random variable following 

GPD with required parameters   and ,  then mean 

value .1),1/()(  YE  Otherwise the mean 

will have infinite value. 

If the model is valid for a threshold 0u  then it’s also 

valid for all thresholds u  that are greater than 0u . It 

means in both cases that [5]: 
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Thus, )/()( uXuXEue   is a linear function 

of u . Based on equation (21), the procedure to 

estimate the threshold is as follows [3, 10]: 

 construct the mean residual life plot, by 

representing the points 
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where: un  is the number of observations exceeding u , 

and maxx  is the maximum observation in the data set; 

 choose as threshold the value above which the 

plot is approximately linear in u . The representation 

of confidence intervals can help to determine this 

point.  

As an approach for choosing a threshold the 

conditionally acceptable method is used. This method 

is based on the following rule: the threshold will be set 

in the region which tail equals to 5-10% against all 

samples. The main assumption is that it should not 

include more than 10-15% of values. For example, 

Rocco (2011), McNeil and Frey (2000) used the 

percentage of a tail equal to 10% [10].  

(7) Parameter estimation.  

The most commonly used method to estimate the 

parameters is the maximum likelihood method. Having 

determined a threshold, the parameters of the 

generalized Pareto distribution can be estimated by 

maximum likelihood. Assume that kyy ,...,1  are the 

k excesses of a threshold u . For 0  the 

log-likelihood is derived from the following equation 

[1]: 
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In the case when 0  the log-likelihood is 

defined as [1]:  
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Another method of parameters estimation is 

Bayesian approach. Contrary to the maximum 

likelihood method it has an advantage that it is 

independent on regularity assumptions regarding initial 

distribution. The Bayesian approach was successfully 

applied for estimating unknown parameters of 

generalized linear models [9, 10]. 

3. Results and Discussion 

3.1 Results 

An experimental investigation of the efficiency of 

the proposed method was performed using machine 

random number generation according to the reviewed 

algorithm. Dimensionality of the sample was 250 

points, which includes the following input variables: 

location parameter, scale parameter, shape parameter, 

dimension of the sample. Two samples with the same 

dimensions were examined. Well-reasoned parameter 

mismatch is provided in connection with the last results 

from our previous research [13]. 
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The R package was used of 2.9.2 version as a 

programming language and the software 

environmental for statistical computing and graphics, 

implementation the algorithm of random number 

generation, presumptive analysis of data etc. In this 

environment was used an alliance of Rcmdr, extRemes, 

evdBayes, mcmPack modules and ‘Simulate Data’ 

function from extRemes module. 

Figure 3 depicts the result of random number 

generation with the input data. The presumptive 

analysis of received sample shows that array of data is 

degenerate and the values are erratic. There is no 

convergence of series to earlier defined interval. 

As a result of analysis the descriptive statistics give a 

chance to assume that input data could be 

approximated to GEV- or GPD- distribution (Figure 4). 

The graphs in Figure 5 illustrate estimated GEV-model 

such as probability and quantile plots, a return-level 

plot,  and a  density  estimate  plot. In  the  case  of 
 

 
Fig. 3  The results of machine random number generation 
with dimension of sample 250 points and the next input 

data: ;36.0;97.1;86.5    

 

 
Fig. 4  Descriptive statistics of already generated sample. 

 
Fig. 5  GEV-fit diagnostics for the machine 
random-number generated dataset in the first experiment. 
 

perfect fit the data would line up on the diagonal of the 

probability and quantile plots. Briefly, the quantile plot 

compares the model quantiles against the data 

(empirial) quantiles. A quantile plot which deviates 

greatly from a straight line suggests that the model 

assumptions may be invalid for the data plotted. The 

return level plot shows the return period against the 

return level, and shows an estimated 95% confidence 

interval. The return level is the level that is expected to 

be exceeded, on average, once every m  time points 

(in this case conceptional years). The return period is 

the amount of time expected for waiting for the 

exceeding of a particular return level. The return level 

period is the period of time expected for waiting for the 

exceeding of a particular return level. For example, in 

Figure 6 one would expect the maximum value of 

sample to exceed about 10 points on average every 100 

times. 

Figure 6 shows results obtained for parameter 

estimation of constructed model using maximum 

likelihood technique.  
 

 
Fig. 6  Results of parameter estimation for GEV-model. 
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Table 1  Comparative analysis of parameters for GEV-distribution. 

N Results Distribution 

  - scale parameter   - shape parameter   - location parameter 

Log-likelihoodMaximum 
likelihood 
estimation 

Std. Еrror 
Maximum 
likelihood 
estimation

Std. Error 
Maximum 
likelihood 
estimation

Std. Еrror 

1. 
Empirical 

GEV-distribution 
1,953 0,712 -0,650 0,095 5,738 0,140 518,829 

Theoretical 1,97 -0,36 86,5  - 

2. 
Empirical 

GEV- distribution 
0,955 0,054 0,209 0,051 0,093 0,068 413,192 

Theoretical 1 0,2 0  - 
 

 
Fig. 7  GEV-fit diagnostics for the random number 
generated dataset in the second experiment. 
 

A comparative analysis of parameters for 

GEV-distribution on the basis of two generated 

samples is given in the Table 1. It should be noticed 

that the more accurate is the set of the scale and shape 

parameters, with selected zero as the location 

parameter, the better will be approximation of the 

practical to the theoretical plot (Figure 7). 

So, as a result of comparing the plots of density 

distribution for the models constructed (Figure 5 and 

Figure 7) it should be emphasized that the best is GEV 

model with zero values of location parameter.  

In view of the last result the minimum deviation 

between experimental and theoretical parameters was 

presented in Table 1. This is an evidence for high 

accuracy of random number generation algorithm and 

correct choice of initial parameters. 

3.1 Discussions 

Thus, application of the proposed model for 

processing extreme statistical samples helps to 

successfully solve the problem of degenerated data 

using the of extreme value theory and the random 

number generation algorithm. 

To estimate unknown parameters of constructed 

models which belong to the class of GEV-distribution 

maximum likelihood method was used. Thus, the 

theory of extreme data is a powerful tool for working 

with actual statistical data and machine generated 

samples of random numbers. The application of the 

new combined methods for the problem of extreme 

data processing and unknown parameters estimation, 

the choice of the best model based on approach of input 

parameters selection, and studying the efficient 

algorithms for pseudorandom data generation opens up 

the new directions of their use in mathematical 

modeling of complex systems. 

4. Conclusions 

The study directed to finding of an effective 

algorithm for pseudorandom data generation and the 

technique for extreme values processing was 

performed. It was proposed and experimentally 

justified the efficiency of established multistep 

approach based on the extreme value theory and 

random number generation algorithm. The example 

considered shows that the proposed comprehensive 

approach for the extreme values processing is an 

effective and convenient tool for analysis of the 

degenerated samples in actual statistical data and the 

newly machine-generated. 
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The involvement of the new combined methods 

which will handle poorly structured, degenerated samples 

opens up the new fields for their use in various applied 

mathematics studies. In the future it is necessary to 

study the possibility of using the results of extreme 

values processing for analysis of predictive generalized 

linear models with different data origins (economic, 

engineering systems and machine-generated samples). 

Application of the proposed procedures for extreme 

values processing ensures highly accurate 

approximation of a sample to the class of defined 

distributions and avoidance of statistical noise. The 

comparative analysis of parameters estimation for 

models with different input values showed that more 

accurate choice of the shape and scale parameters will 

provide faster convergence of the series. Also, the field 

of mathematical modeling and forecasting processes in 

conditions of application of effective mathematical 

methods and algorithms for data processing, and 

parameter estimation, the forecasts generated could be 

a worthy argument for economic stabilization as whole. 
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