Combinatorial Effects of SDF-1 and CCL3L1 Gene Variants and Susceptibility to HIV-1/AIDS in Indian Population

Suhani H. Almal, Anuroopa Gupta and Harish Padh

B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad, Gujarat 380 054, India

Abstract: HIV-1 infection requires the expression of CD4+ molecules in colligation with C-C chemokine receptor type 5 (CCR5) and C-X-C chemokine receptor type 4 (CXCR4) as the major coreceptors. The role of SNP in 3' untranslated region of SDF-1 (SDF1-3'A) and low copy number (CN) of the CCL3L1 gene is reported to confer increased resistance to HIV-1 infection. The aim of the present study was to analyze the combinatorial effect of both the variations in protection towards HIV-1 infection in Indian population. The combinatorial effect of genetic variation in terms of SNP in SDF-1 gene and CCL3L1 CN was investigated in 105 healthy individuals and 78 HIV-1 patients. Genotyping of SDF-1 was performed by RFLP-PCR and CCL3L1 by real-time PCR using TaqMan chemistry. The genotype frequency distribution of SDF-1 was found to be (SDF-1/SDF-1: 65.4%, SDF-1/SDF1-3'A: 29.5% and SDF1-3'A/SDF1-3'A: 5.1%) in HIV patients as compared to (SDF-1/SDF-1: 64.8%, SDF-1/SDF1-3'A: 30.5% and SDF1-3'A/SDF1-3'A: 4.7%) in healthy individuals, whereas a range of 1 to 6 copies per diploid genome was observed for CCL3L1 gene.

Key words: CCL3L1, coreceptor, gene copy number, HIV-1, SDF-1, SNP.

1. Introduction

Human immunodeficiency virus type 1 (HIV-1) enters into the target cells through the interactions of the viral envelope protein gp120 with CD4+ and chemokine coreceptor (CCR5 or CXCR4) [1]. Macrophage-tropic (M-tropic) or nonsyncytium-inducing (NSI) HIV-1 strains use CCR5 as major coreceptor whereas T lymphocyte-tropic (T-tropic) or syncytium-inducing (SI) HIV-1 strains use CXCR4 as coreceptors [2]. Chemokines are low molecular weight chemoattractants [3] which play a key role in leukocyte activation regulation and recruitment to the sites of inflammation via chemokine receptors interaction [4]. CCL3L1 [Chemokine (C-C motif) ligand 3-like 1, also known as MIP-1αP and LD78β] is a suppressive chemokine and a natural ligand for CCR5 coreceptor [3]. On the other hand, the only known ligand for CXCR4 is SDF-1 (Stromal derived factor, also known as CXCL12) which is constitutively expressed by stromal, endothelial, dendritic and other cells [2, 5]. The rate of progression to acquired immunodeficiency syndrome (AIDS) exhibits inter-individual variation owing to the host genetic factors, which play a significant role in susceptibility to HIV-1 infection and rate of progression to the disease [6]. In addition, there are several reported association studies of SNPs [7] and CNVs [8] with disease progression or resistance.

SDF-1 is a potent chemokine that inhibits T tropic HIV-1 entry by competing for the binding to the CXCR4 coreceptor. It has a highly conserved sequence. Human and murine SDF-1 can be discriminated by a single conservative amino acid substitution of isoleucine to valine at position 18. The SDF-1 gene has two alternatively spliced variants, SDF-1α and SDF-1β [9]. The two transcripts vary from each other by the
presence of 4 additional amino acids at the carboxy terminus of SDF-1β. The expression of the SDF-1 mutation, a single nucleotide polymorphism (designated SDF1-3’UTR-801G-A) at position 801 in the 3’-untranslated region (UTR) of the SDF-1 gene may be entailed in resistance to HIV-1 infection or delayed progression to AIDS [10]. The polymorphism SDF1-3’A is located in the 3’ UTR region and thus does not affect the SDF1β protein. However, SDF1-3’A/3’A action may involve up-regulation of the quantity of SDF-1 protein available to bind CXCR4 which competes with late stage T-tropic HIV-1 strains [5]. This mechanism would be consistent with the gradation in survival outcome whereby SDF-1 protection is more pronounced in late stage AIDS outcomes than for earlier stages. According to another hypothesis, SDF-1α down-regulates CXCR4 coreceptor on cells by induction of endocytosis, effectively blocking infection by T-tropic strains [6].

Human chemokine (C-C motif) ligand 3-like 1 (CCL3L1) maps on chromosome 17q11.2 and is a duplicated isoform of the gene encoding CCL3. CCL3L1 is a suppressive chemokine involved in the susceptibility to HIV-1/AIDS susceptibility [11]. The binding of the CCL3L1 to the CCR5 coreceptor on the CD4+ cells blocks the entry of the HIV-1 virus and thus protect the individuals from infection. CCL3L1 gene has several SNPs and has hotspots for gene duplication, resulting in distinct haplotypes in population. Thus, it was hypothesized that the individuals with low copy number as compared to the median copies in their respective population confers a risk of acquiring HIV-1. Some ethnic groups were studied for CCL3L1 gene copy number and it was found that Africans have the highest copy number followed by Asians, Amerindians, Central/South Asians, Middle East individuals and Europeans [11].

Previous studies highlighted the individual role of SDF-1 polymorphism and gene copy number (CN) variation of CCL3L1 towards the protection to HIV-1 infection [10, 11]. There has been no report till date for the study of the combinatorial effect of both CCL3L1 CN and SDF-1 polymorphism in HIV-1 infection. The aim of the present study was to analyze the combinatorial effect of both the variations in protection towards HIV-1 infection in Indian population.

2. Materials and Methods

2.1 Subjects

The study was conducted in 105 unrelated healthy individuals and 78 HIV-1 seropositive patients. All the healthy control individuals were recruited at B.V. Patel PERD Centre, Ahmedabad. The HIV-1 patient group consisted of subjects recruited at national referral institute, All India Institute of Medicine Sciences (AIIMS), New Delhi. All the samples in both the healthy and HIV-1 group consisted of heterogeneous population. The age of control subjects and the patients were in the range of 19-50 and 24-69 years respectively. The study was approved by the Institutional Ethics Committee and written informed consent form was obtained prior to blood collection from individuals.

2.2 Genotyping of SDF-1 Polymorphism

Genotyping of SDF-1 was performed by RFLP-PCR using a pair of specific primers framing the region surrounding the polymorphic site. The sequence of the primers is: Forward primer 5’-ATTAGAGTGTTCTTCCACGGAGCC-3’ and Reverse primer 5’-ATCCCGAGCACCTCCACATC-3’. PCR amplification was performed in a volume of 50 μL containing 5 μL of 10x PCR buffer (Fermentas Life Sciences) provided with the Taq polymerase (Fermentas Life Sciences), 1.5 mM of MgCl₂, 2 μL of 1U/μL Taq polymerase (Fermentas Life Sciences), 0.2 μM of each primer, 0.2 mM of dNTP mix and 280 ng of genomic DNA. PCR cycle reactions were performed on Eppendorf gradient thermocycler. Cycling conditions of PCR comprised 3 min denaturation at 94 °C, 35 cycles of 30 sec at 94 °C, 20 sec at 66 °C and 30 sec at 72 °C and 4 min extension at 72 °C. The amplified
products were electrophoresed and visualized in ethidium bromide stained 2% agarose gels. The amplified product of 366 bp was subjected to restriction fragment length polymorphism (RFLP) using restriction enzyme Hpa II (Fermentas, India). The G to A transition in SDF1-3’A allele discriminates a Hpa II site allowing the use of a RFLP-PCR assay for rapid detection of SDF-1 genotypes. PCR products were digested with Hpa II at 37 °C for 8 h and genotypes are scored as homozygous wild type (260 bp and 106 bp), heterozygous (366 bp, 260 bp and 106 bp) and homozygous mutant (366 bp, no digestion) (Fig. 1).

Lane 1 & 2: undigested PCR products (band 366 bp), Lane M: O’ Generuler 100 bp ladder (Fermentas), Lane 3: homozygous wild type SDF-1/SDF-1 (bands 260 bp and 106 bp), Lane 5 & 6: heterozygous SDF-1/SDF1-3’A (bands 106 bp, 260 bp, 366 bp), Lane 7: homozygous mutant SDF1-3’A/SDF1-3’A (band 366 bp).

2.3 Genotyping of CCL3L1 Gene Copy Number

Genotyping for the copy number of CCL3L1 was performed using TaqMan real-time PCR with ABI StepOne instrument. The emitted fluorescence as FAM (6-carboxyfluorescein, 6-FAM) from the probe detecting CCL3L1 and VIC from the probe detecting RNase P gene (2 copies per diploid genome) was detected during the amplification. The primer sequences of RNase P are as follows: sense primer 5’-AGATTTGGACCTGCGAGCG-3’; antisense primer 5’-GAGCGGCTGTCTCCACAAGT-3’; probe 5’-VIC-TTCTGACCTGAAGGCTCTGCG-MGB-3’. The method of genotyping CCL3L1 copy number and primer sequences are similar to as described previously [11].

2.4 Statistical Analysis

The analysis of allelic frequencies and significance of heterogeneity in allele and genotype frequency between control and HIV-1 seropositive subjects was done by chi square test. The Hardy-Weinberg Equilibrium was determined. Measures of central tendency statistics were applied for CCL3L1 copy number. Odds ratios (ORs), 95% confidence intervals
Combinatorial Effects of SDF-1 and CCL3L1 Gene Variants and Susceptibility to HIV-1/AIDS in Indian Population

(CI) and P values were calculated by unconditional logistic regression and P < 0.05 was considered to be significant.

3. Results

3.1 SDF1-3’A Polymorphism in HIV-1 Susceptibility

The allelic frequencies of SDF-1 were determined by the manual counting method. The allelic frequency for the SDF-1 variants was 80% (SDF-1) and 20% (SDF1-3’A) in both HIV-1 patients and healthy individuals. The statistical analysis reveals that it follows the Hardy-Weinberg Equilibrium. The genotype frequency of SDF-1/SDF-1 was 65.4%, SDF-1/SDF1-3’A was 29.5% and SDF1-3’A/SDF1-3’A were 5.1% in HIV-1 patients and SDF-1/SDF-1 was 64.8%, SDF-1/SDF1-3’A was 30.5% and SDF1-3’A/SDF1-3’A were 4.7% in healthy individuals. The homozygous SDF1-3’A/SDF1-3’A genotype frequency was found to be similar among HIV-1 patients and healthy individuals (5.1% and 4.7%, respectively). A non-significant association of the SDF1-3’A with protection to HIV-1 [odds ratio (OR) = 1.06, 95% CI—0.27 to 4.17, P = 0.9244] was found in Indian population (Table 1).

3.2 CCL3L1 Gene Copy Number in HIV-1 Susceptibility

For CCL3L1 gene copy number analysis, a range of 1 to 6 copies per diploid genome with an average gene dose of two copies in HIV-1 patients and healthy individuals was observed. The distribution of the copy number was found to be < 2 copies: 23%, 2 copies: 38.5% and > 2 copies: 38.5% in HIV-1 patients and < 2 copies: 13.3%, 2 copies: 44.8% and > 2 copies: 41.9% in healthy individuals. There was a 2.01 fold increased risk to HIV-1 in individuals with < 2 copies [odds ratio (OR) = 2.01, 95% CI—0.87 to 4.64] when compared to the healthy individuals but this increased risk was not significant (P = 0.0979). The CCL3L1 < 2 copies was more frequent among HIV-1 patients as compared to healthy individuals (23% and 13.3%, respectively) (Table 1).

3.3 SDF-1 Polymorphism and CCL3L1 Gene Copy Number Combinatorial Effect in HIV-1 Susceptibility

Given the negative association of SDF1-3’A polymorphism, CCL3L1 gene copy number and HIV-1 susceptibility, the combinatorial effect of SDF1-3’A polymorphism and CCL3L1 copy number in HIV-1 patients and healthy individuals was tested. SDF1-3’A allele and CCL3L1 ≤ 2 copies conferring a protection to HIV-1 were considered as reference combination. The odds ratio (OR) was 0.73 (95% CI—0.27 to 2; P = 0.5446) for SDF1-3’A, CCL3L1 ≤ 2 copies, 0.68 (95% CI—0.26 to 1.76; P = 0.4208) for SDF1, CCL3L1 > 2 copies and 1 (95% CI—0.42 to 2.41; P = 0.9887) for SDF1-3’A, CCL3L1 ≥ 2 copies combinations as compared to SDF1-3’A, CCL3L1 ≥ 2 copies (Table 2). Thus, lack of significant association of the combination of the SDF1-3’A polymorphism and CCL3L1 CN was observed in Indian population.

<table>
<thead>
<tr>
<th>SDF-1 genotype</th>
<th>Case (n)</th>
<th>Control (n)</th>
<th>OR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDF-1 /SDF-1</td>
<td>51</td>
<td>68</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>SDF1-3’A/SDF1-3’A</td>
<td>23</td>
<td>32</td>
<td>0.96 (0.50-1.83)</td>
<td>0.8975</td>
</tr>
<tr>
<td>SDF1-3’A/SDF1-3’A</td>
<td>4</td>
<td>5</td>
<td>1.06 (0.27-4.17)</td>
<td>0.9244</td>
</tr>
<tr>
<td>CCL3L1 CN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2 copy</td>
<td>18</td>
<td>14</td>
<td>2.01 (0.87-4.64)</td>
<td>0.0979</td>
</tr>
<tr>
<td>2 copy</td>
<td>30</td>
<td>47</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>> 2 copy</td>
<td>30</td>
<td>44</td>
<td>1.07 (0.56-2.05)</td>
<td>0.8434</td>
</tr>
</tbody>
</table>

n, number of samples; OR, odds ratio; CI, confidence intervals; P, level of significance.

Table 1 Distribution of SDF-1 genotype and CCL3L1 copy number in cases and control in Indian population.
Table 2 Odds Ratio (OR) and 95% CI for assessment of combinatorial effect of SNP (SDF-1 polymorphism) and CNV (CCL3L1 gene copy number) on susceptibility to HIV-1 in Indian population.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>OR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDF1-3'A, CCL3L1 > 2 copies</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>SDF1-3'A, CCL3L1 ≤ 2 copies</td>
<td>0.73 (0.27-2)</td>
<td>0.5446</td>
</tr>
<tr>
<td>SDF-1, CCL3L1 > 2 copies</td>
<td>0.68 (0.26-1.76)</td>
<td>0.4208</td>
</tr>
<tr>
<td>SDF-1, CCL3L1 ≤ 2 copies</td>
<td>1 (0.42-2.41)</td>
<td>0.9887</td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence intervals; P, level of significance.

4. Discussion

Stromal Derived Factor (SDF-1) has been reported to block the HIV-1 infection by competing with the T-tropic HIV strains for the CXCR4 coreceptor binding and thus influencing the rate of disease progression to AIDS [6]. Similarly the role of CCL3L1, a suppressive chemokine and a ligand for the HIV coreceptor CCR5 is well documented and also replicated in various studies that higher copy number of CCL3L1 confers resistance to HIV-1 infection depending on the population-specific distribution of CCL3L1 copy number [11].

There are several studies in varied populations where the significant correlation between SDF1-3’A SNP [10, 12] and CCL3L1 CN [11, 13, 14] and susceptibility/protection to HIV was found. However, in the present study significant association of either SDF1-3’A polymorphism or CCL3L1 CN towards susceptibility to HIV infection in Indian population was not found. The allelic frequency of SDF1-3’A observed in this study was similar to that reported in North Indian (20.4%) [15] and South Indian (17-35%) [16] populations. The lack of significant association compelled us to think that a single type of genetic variation (like SNP or CNVs) might not show an association towards disease susceptibility or resistance but the combinations of these types of genetic variations could provide a better insight in understanding the mechanism behind the disease development. Therefore, the effect of combination of SDF1-3’A SNP and CCL3L1 CN was evaluated in Indian population. However, the correlation between SDF1-3’A or CCL3L1 CN or even a combined effect of both on progression of HIV-1 towards AIDS in Indian population could not be established. To the best of our knowledge, a correlation between combination of SDF1-3’A SNP and CCL3L1 CN has not been evaluated till date.

There could be several possible reasons for lack of significant association in this study. Firstly, the sample size of HIV patients was low. Secondly, the protection towards HIV-1 infection is not under the influence of either SDF1-3’A SNP or CCL3L1 CN in Indian population. Lastly, SDF-1 and CCL3L1 chemokines bind to different coreceptor, which may cause the lack of combinatorial effect of these variants in populations. Thus, lack of this correlation is not clear and requires further exploration.

The outcome of the complex diseases cannot be explained only by analyzing a single type of variation in a gene. However, combination of several types of genetic variations will facilitate better understanding of their role in health and disease. In conclusion, the frequency data for SDF-1 SNP and CCL3L1 CN in Indian population was developed. However, a comparison with HIV-1 patients did not reveal any correlation between genotype of SDF-1 SNP and CCL3L1 CN in progression of HIV-1 towards AIDS infection.

Acknowledgments

The authors thank Industries Commissionerate, Government of Gujarat, India for funding this project. They also thank Council of Scientific and Industrial Research (CSIR) New Delhi, India for providing Senior Research Fellowship to Suhani Almal and Anuroopa Gupta. They thank all the subjects for providing blood samples for this study. The authors
Combinatorial Effects of SDF-1 and CCL3L1 Gene Variants and Susceptibility to HIV-1/AIDS in Indian Population

acknowledge Dr. Sanjeev Sinha, All India Institute of Medical Sciences (AIIMS), New Delhi, India for providing the patient samples.

References

