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Abstract: The paper presents the k- model equations of turbulence with a single set of constants chosen by the authors, which is 

appropriate to simulate a wide range of turbulent flows. The model validation has been performed for a number of flows and its main 
results are given in the paper. The turbulent mixing of flow with shear in the tangential velocity component is discussed in details. An 

analytical solution to the system of ordinary differential equations of the k- model of turbulent mixing has been found for the 

self-similar regime of flow. The model coefficients were chosen using simulation results for some simplest turbulent flows. The solution 
can be used for the verification of codes. The numerical simulation of the problem has been performed by the 2D code EGAK using 
this model. A good agreement of the numerical simulation results with the self-similar solution, 3D DNS results and known experimental 

data has been achieved. This allows stating that the k- model constants chosen by the authors are acceptable for the considered flow.  
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Nomenclature 

If not additionally specified, the following notations are used 
in this paper: 
t Time  

L Length  

u Mass velocities  

ρ Density  

e Specific energy  

T Temperature 

R Reynolds stress tensor 

s Specific entropy 

 Mass fraction 

P Pressure 

PT Turbulent pressure 

k Turbulent energy 

ε Turbulent energy dissipation rate

D 
Kinematic coefficient of 
Turbulent viscosity 

G1 Shear generation of turbulence 

G2 
Gravitation generation of 
Turbulence 

   2 1 2 1/  A      Atwood number 

1 2 3

, , , ,

, , ,
m h kc

c c c


   

  


 

k- model coefficients  
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1. Introduction 

The k- model is one of the most successful models 

of turbulence and it is commonly used in engineering 

practice and research activities. Similarly to any other 

phenomenological model of turbulence, the k- model 

has a set of semi-empirical coefficients. Usually, they 

can be found by solving the simplest self-similar 

problems, for which experimental data is available. In 

the self-similar stage, the effect of initial conditions, 

or some other factors introducing additional 

parameters to the description of flow is eliminated. 

The choice of model constants is made, as a rule, for a 

certain type of flows caused by the Rayleigh-Taylor, 

Kelvin-Helmholtz, or Richtmyer-Meshkov 

instabilities and they are different for various flows. 

However, in practice, it’s not possible to vary model 

constants for different types of flows and there is a 

need in a single set of constants suitable for a wide 

range flows. So, a representative class of flows is 

required to select constants. Of course, the chosen 

constants, though it is universal to a sufficient extent, 
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may be of a higher, or a lower accuracy (depending on 

each particular flow) in comparison with a specialized 

set of constants for a given flow. For the code in use 

and for the chosen set of constants, it is better to have 

a comprehensive range of test problems.  

Paper [1] considers several simplest flows, for 

which both experimental data and 3D ILES results are 

available, and certain semi-empirical coefficients for 

the k- model implemented in the EGAK code [2] 

have been selected by comparing with this data. Some 

of these flows are considered in the present paper, the 

numerical simulation results have been also obtained 

using the standard set of constants.  

One of such problems is the classic problem of 

shear mixing in a plane mixing layer. The problem 

was studied analytically, experimentally, numerically 

in many papers [3-11]. For the self-similar regime, 

this flow type was numerically studied by the authors 

with the 2D ILES [3] and 3D ILES [4] methods. 

However, the 3D ILES [5], 3D LES [12], and 3D 

DNS [13, 14] simulations on finer grids than those 

used in Ref. [4] demonstrated a significant spread in 

results and the necessity of studying this type of flows 

in details.  

The principal objective of the paper is to justify the 

previously selected set of constants of the k- model 

for the flow type of interest. The authors had found an 

exact solution to the k- model’s self-similar 

equations using these constants and then the solution 

was used for the EGAK code verification (it may be 

also used for the verification of any other code). The 

second objective is to validate the k- model by 

comparing the solution found with the available 

experimental data and 3D ILES results. Additionally, 

correctness of the chosen model constants was 

confirmed by comparing with results of simulations 

using the standard set of model coefficients.  

For ease of understanding by the readers, we also 

give an approximate solution to the problem from 

paper [1], for comparison. We performed a more 

correct post-processing of the available 3D ILES 

results and studied a broader range of experimental 

data [6-11]. 

2. The Proposed k- Model and Some Test 
Problems  

2.1 Principal Equations of the k- Model  

Consider weakly compressible flows with a 

negligible molecular viscosity (large Reynolds 

numbers). The CFD equations in the presence of 

turbulent mixing can be written as:  

 / 0 


t div u           (1) 

 ( ) ikT
i i k i

k i k

P
u u u g

t x x x

   


 
    
  

 (2) 

where, g


 is the mass force (gravity) acceleration.  

The Reynolds stress tensor, ijT i ju u       is 

approximated, as usually:  

2

3
j i k

ijT ji T ji
i j k

u u u
D P

x x x

     
  

 
     

 
(3) 

Here, 2 / 3TP k  is turbulent pressure, k is 

turbulent energy. The kinematic coefficient of 

turbulent viscosity is: 
 2 /D c k              (4) 

where, ε is the turbulent energy dissipation rate.  

The equation of specific energy, e = e(, P) looks like 

  2( ) T n
n n n

n n

u
e u e Pa Q P G

t x x

   
  

      (5) 

where, the molecular flow of heat is assumed to be 

negligibly small: 

2 k
k

P
G a

x





, i

i
Ph k

u D S
a

s x

 
 
          

 

T
n

Ph k

D e S
Q

s x




       
, 

s  is specific entropy. For an ideal gas with a 

constant value of , we can write:  

1 1 
  

 
k

h k k

D P
a

p x x

 
   

.       (6) 

The mass fraction equation for one of the two 

components looks like:  
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 ( ) k
k

u
t x

  
 

   

pk m k

D s

x s x

   
   

       
         (7) 

Here, the molecular diffusion flow is also 

negligible.  

The EOS (Equation of state) for a mixture of ideal 

gases has the form: 

1 2/ ; / (1 ) /   P RT          (8) 

Differential equations for the turbulent energy and 

dissipation rate look like:  

   k
k

k ku
t x

  
 

   

 1 2
k k k

D k
G G

x x

  
  

 
    

 
   (9) 

    k
k

u
t x

    
 

 

 1 1 3 2 2

 
    

 k k

D
c G c G c

k x x  


   
  

(10) 

where, G1 is the shear generation of turbulence:  

1 / . jkT j kG u x           (11) 

Eqs. (1)-(11) contain phenomenological coefficients: 

1 2 3, , , , , , ,m h kc c c c        . Various authors 

use different values of these coefficients for particular 

flows (see, for example, [15-18]). However, note that 

there is a “standard” set of constants used in a number 

of papers [16-19]: c = 0.09, m h  = 0.9, k = 1, 

 = 1.3, 1 3c c  = 1.44, 2c = 1.92. 

The values of constants selected for the EGAK code 

for the full set of the simplest flows discussed below 

with regard to the modern 3D simulations are, as 

follows: c =0.12, k   =3/4, 1c =1.15, 

3c =1, 1/1.7h m   , 2c  1.7. They differ 

from the standard ones. 

2.2 Decay of Homogeneous Isotropic Turbulence 

It follows from Eqs. (10) and (11) for the given 

problem that  

2
2/ ; / /k t t c k           (12) 

hence, 

  2

0 0/ / c
k k            (13) 

From Eqs. (12) and (13) we obtain:  

 0 0 0 0 0/ / ; /
 m

k k t t t mk  .      (14) 

Here,  21 / 1 m c . 

For the spatial scale of turbulence, 3/2 /  k   

with regard to Eq. (14) we have: 

 0 0/ / ;   t t


 

3/2
0 0 01 / 2; /   m k       (15) 

The decay law for homogeneous isotropic 

turbulence – m = 10/7,  = 2/7 – following from the 

theoretic considerations in [20] is confirmed by results 

of experiments [21]. For the values of 2c  used in 

the given paper the corresponding values of m and  

are given in Table 1.  

As we can see, these values for 2c =1.7 agree with 

the data from [20], [21], while the values for 

2c =1.92 in the standard model [16-18] significantly 

differ. 

2.3 Neutrally Stratified Turbulent Boundary Layer 

This problem has a single velocity component, 
( )x xu u y , where, y is the distance to a rigid wall. 

Then, 2 0G , 3/2 / ~  k y  and a typical time 

scale is ~ / ~ u y , where the dynamic velocity 

is 
2 /    xu D u y const  and we take 

/ xu y >0, 1  for definiteness. This means  is 

small near the wall, i.e. the turbulent flow becomes 

steady-state. Eq. (2) gives / 0  xy y  for this 

case, or, with regard to Eq. (4),  
2/       xy xD u y u const , 

this agrees with our previous assumption. 

*/ /  xu y u y   in this  case and,  hence,  D y . 
 

Table 1  Parameters m and  of the decaying homogeneous 

isotropic turbulence for different values of coefficient cε2.  

cε2 m  

1.92 1.087 0.4565 

1.7 10/7 2/7 
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However,  D k  and, hence, k const  near 

the wall. Then, it follows from Eqs. (10) and (12) that  

 2

1 /   xG D u y  .    (16) 

Eq. (11) can be written as  

 
2

1 2 0
  

     

D
c c

k y y 


 


    (17) 

With regard to Eqs. (6) and (16), we have 

/ /  xk c u y . 

Thus, Eq. (17) can be written as  
2

2
2

ln


f

f
C f

y
            (18) 

where, 

 2
/ ; / ;   x f Kf u y C u . 

 1/4
2 1  K c c c      

The solution to Eq. (18) has the form 

 0/ ln / Ku u y h ,        (19) 

where, h0 is either a height of irregularity, or a laminar 

sub-layer width. We see from Eq. (19) that K  is 

Karman constant. Its values for different sets of 

empirical coefficients used in this paper are given in 

Table 2. 

According to the experimental data from Ref. [22], 

K = 0.4  0.04. It is clear from Table 2 that both 

option 1 and option 2 satisfactorily agrees with this 

data. 

2.4 Gravitational Mixing of a Plane Interfacial Layer 

Consider two half-spaces separated at initial time 

by plane z = zc = 0 and filled out with incompressible 

fluids (gases) at rest with densities 1=1 and 2=n=3. 

The gravitational acceleration, gz = − 1  − g is 

directed from a heavy material to a light material. The 

self-similar problem of gravitational turbulent mixing 

in the layer described above is considered. We think 

that “gravitational turbulent mixing” is a more 

appropriate term than “mixing by Rayleigh-Taylor 

instability”, because in the nonlinear stage of the 

Rayleigh-Taylor instability development the shear 

instability is of an equal importance for the direct 3D 

numerical simulation. 

The interface 0z z  is at rest in the coordinate 

system in use. Introduce quantity 2 1 tL z z , which 

is the TMZ width in direction z determined by points 

1z , 2z  at which a small enough value (  0.01) of 

concentration disturbance is achieved: 2( 1z ) = , 
2( 2z ) = 1 − , 2 is the mass fraction of material 

with the initial density 2 = n.  

The problem of turbulent mixing under a constant 

gravity (constant acceleration) on a plane interface of 

two incompressible fluids (gases) was experimentally 

investigated and described in a number of papers see 

[23-27]. It turns out that quantity n really does not 

influence the dimensionless quantity b characterizing 

the penetration of a light fluid (bubbles) into a heavy 

fluid:
2

2     c bz z A g t . The authors of [26] 

obtained b = 0.078. In some other experiments, the 

value of b  is lower, for example, b = 0.06-0.07 

in [23, 24]. In the experiments described in [27] and in 

the later experiments [28, 29] the b values are far 

less.  

The problem was numerically studied in a number 

of works [25, 30-35] by performing 2D and 3D 

simulations with the DNS method. Simulations using 

a sufficiently fine grid give noticeably lower TMZ 

growth rates than those in experiments [23-27].    

As it is shown in [33], such discrepancy is owing to 

the fact that measurement results were processed with 

a large weight of the initial non-self-similar time 

interval.  
 

Table 2  The values of K  for two sets of empirical coefficients.  

Option No. c  1c    2c  K  

1 0.09 1.44 1.3 1.92 0.433 

2 0.12 1.15 3/4 1.7 0.378 
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Results of simulations with the EGAK code using 

the k-ε model and various experimental and calculated 

data are given in Table 3. Note, first, that we 

performed data post-processing in a more correct 

fashion (similarly to the simulation result 

post-processing in [32, 33]) using experimental data 

from [27] for n=2.83 and obtained b =0.031  0.033 

(instead of b  0.05 given in this work), which agrees 

better with 3D simulation results in [33-35]. Also, the 

EGAK results (option 2) approximately agree with 

them, while simulations with the standard coefficients 

(option 1) give us the b values, which are lower by 

an order of magnitude in comparison with 

experiments and 3D simulation results.  

2.5 Gravitational Mixing in a Light (Heavy) Plane 

Layer  

A light (heavy) plane layer of density 1  and 

initial width d surrounded by a fluid of density 0  is 

in the gravity field with acceleration g. The 

self-similar solution is at /tL d   ( tL  is the layer 

width at time t), for the light layer we find it in the 

form (for the heavy layer, variations are clear):  

1

0 0

( )
1 1 ,

( )

 
   

 t

d

L t

   
 

 


 d

t

z z

L
 .   (20) 

Quantity b is defined according to Ref. [32]:  

1 0

;
(1 / )

t tL LdL
b L

dt Bdg  
  




 . 

Here, 

 1 01 / B dg          (21) 

The values of quantity b in the self-similar regime 

in the EGAK code simulations with varying 

coefficients are given in Table 4. It is clear from data 

in Table 4 that the b width measurement results [36] 

are closer to the option 2 results of simulations. At the 

same time, the option 1 simulations give the values of 

b which are several times lower than the experimental 

results in Ref. [36]. 

3. Analytical Solutions for the Self-Similar 
Regime of an Incompressible Shear Flow of 
Uniform Density 

3.1 Principal Equations 

The flow of interest has only one velocity 

component, xu  varying in the y coordinate alone. 

The molecular viscosity is considered to be negligible. 

The flow density has constant value,  = 1 

everywhere. For this problem, equations from 

subsection 1.1 have the following form: 

 

Table 3  The value of b in the problem of gravitational mixing of a plane interfacial layer, А  0.5.   

Option No. c 3c   k h 2c b 

1 0.09 1.44 1.3 1 0.9 1.92 0.0019 

2 0.12 1 3/4 3/4 1/1.7 1.7 0.0235 

Experiments [26]  0.078 

Experiments [27]  0.051  0.005 
Experiments [28]  0.04 

Experiments [29]  0.03-0.04 

3D simulations [33]  0.028 

3D simulations [34]  0.022-0.03 

3D simulations [35]  0.027 
 

Table 4  The coefficients values and simulation results for the problem of mixing in a light layer.   

Option No. c  
3c  h  

k   
2c  b 

1 0.09 1.44 0.9 1 1.3 1.92 0.1 

2 0.12 1 1/1.7 3/4 3/4 1.7 0.36 

Experiments [36]  0.35  0.37 
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 Discontinuity equation (it is satisfied 

automatically in the given case) 

/ 0k ku x  , 

 Equations of motion  

/ /  x xyu t y             (22) 

The Reynolds stress tensor, ij i ju u       is 

approximated, as usually:  

/xy xD u y   ,           (23) 

where, 2 / DD c k   is coefficient of turbulent 

viscosity, k is turbulent energy, ε is the turbulent 

energy dissipation rate 

The turbulent energy equation looks like  

1

   
       

k

k k
G c D

t y y
 ,       (24) 

equation for the turbulent energy dissipation rate has 

the form:  

 1 1 3


  



 
 
 

G c c D
t k y y

c  
 

 

     (25) 

Here, the shear generation of turbulence is  

 2

1 / / ji j i xG u x D u y        (26) 

Eqs. (22)-(26) have coefficients c =0.12, 

k =  =3/4, 1c =1.15, 2c =1.7. 

3.2 Equations of the k- Model for the Self-Similar 

Regime of Shear Mixing in a Plane Interfacial Layer  

The model considered here can be used to describe 

a self-similar shear flow, such as the flow occurring in 

the initial section of a mixing layer at the edge of a jet 

flowing out of a nozzle, when the ratio between the jet 

velocity, 1u  and the nozzle velocity relative to the 

surrounding medium, 2u  is close to 1: 

1 2/ 1m u u  . Another example is a 

homogeneous flow from a spacer plate having 

velocities 1u  and 2u  relative to the plate (such 

experiments were used in Refs. [6-11] to study a plane 

layer of mixing).  

In the coordinate system of fluid with a uniform 

density the problem becomes one-dimensional and 

unsteady, i.e. in the self-similar regime the plane 

mixing layer’s width grows linearly with time in 

proportion to the velocity difference 0u  between the 

jet velocity and the surrounding medium velocity. 

(For the detailed information, see Appendix A) 

Introduce self-similar variables: 

0/ ( ) / 2  xu dx dt u f  , 

0

2 ( )k u E   , 2
0 ( )D u t d    ,  0/y u t . (27) 

The boundary condition for the tangential velocity 

xu  varying in the y  coordinate only is 

0 2

0 1 2

/ 2 ,

/ 2 ,x

u y y
u

u y y y


    

      (28) 

where, 0 2 1u u u  . 

Write Eqs. (22) and (23) for the self-similar regime 

assuming that v f  : 

  0v dv   .           (29) 

Write Eqs. (24) and (25) with regard to (26) for the 

self-similar regime: 

 2 / 4 0D kE d v c c d E       e     (30) 

   e e e 

 2
1 3( / 4 0Dc d v c c E c d  

         e)/ e . (31) 

Here, 
2 /E de .             (32) 

3.3 An Approximate Solution 

To find an approximate solution, consider Eqs. (24) 

and (25) in the central part of TMZ (for =0), where 

the first-order derivatives of quantities , ,k D  

become zeroes and write Eq. (24) for the self-similar 

regime in the form: 

 2 2/ 4 / 0D kd v c E d c d E         (33) 

Accept approximations  

/K E d const  ,          (34) 

v const .            (35) 

Then, it flows from Eq. (29) that 
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 2 2
1 / 2d    ,           (36) 

and from Eq. (32) we obtain 

 2 2 / 4 /D kE K c K v c     , i.e.  

 2 D kv K c K c            (37) 

Eq. (25) for the self-similar regime, with regard to 

Eqs. (34)-(37), gives us 

 
1

3 1

1 k

D

c c c
K

c c c
 

 

 



           (38) 

Take 2 1f ( ) 1; f ( ) 1     , and 
2 1L y y   

(TMZ width) and obtain  

2 1 1

2
,v vA Adf

v
d   

  


        (39) 

 2 1
0

21ˆ v v

D k

A AdL
L

u dt v K c K c
      


 , (40) 

where, the correction coefficient, vA >1 takes into 

account that the value of 

 2 1/ 2 /  vv f d A    at the TMZ center 

(which is considered here) exceeds the average value 

of this quantity in TMZ, 

 2 1/ 2 /  v df d   . 

It follows from Eqs. (34) and (36) that the E 

maximum is 
2
1 / 2mE K  and with regard to Eq. 

(40) it allows finding the reduced turbulent energy 

maximum.  

 
2 2

2
.

2 8
v v

m
D k

KA A
E

v c K c
 


        (41) 

A more complicated approximate analytical 

solution to the k   model equations , when v  is 

a function of  , is given in Ref. [19]. 

3.4 Solution of Self-Similar Equations 

Write the second-order derivatives using Eqs. (30) 

and (31): 
2 / 4D k

k

c E d v c d E
E

c d

       
e - ,     (42) 

21
3(

4D

c
c c d v c d

E
c d


 



     
 

e e )-e - e - e
e . (43) 

Solutions to Eqs. (29), (42) and (43) can be found 

numerically in the two ways: by integrating these 

equations in intervals  =0 to  = 2  and  = 1  to 
 =0. Consider the first way of integrating. 

The boundary condition at point  = 0 is 

0E d   .             (44) 

It also follows from Eqs. (45) and (30) that 

0v  e . 

At the same point, set nonzero values of quantities 

(the approximate analytical solution is taken for the 

first approximation): 

0 0 00, 0, 0v v d d E E      . (45) 

And, according to Eqs. (42) and (43), the 

second-order derivatives are:  
2

0 0
0

0

/ 4D

k

c d v
E

c d
 0e - , 

21
3 0 0

0

0

4
  
  

D

c
c c d v

E

c d






0
0 0

0

e e - e
e . 

Integrate Eqs. (29), (42) and (43) between 
point  =0 and point 2  , where the values of 

quantities d  and E  are 2 2( ) ( ) 0d E   . 

During the integration find d  using Eq. (32) and 

then find v  using the solution to Eq. (29) 

0 0

0

exp
d v

v d
d d

  
      
  
 . 

Vary the values of quantities in (45) to achieve zero 

values of d and E at the same time. In general, one 

more boundary condition following from (27), (28) is 

not satisfied in this case 2( ) 1f   . However, it is 

easy to show that for the two solutions with different 

values 2   and 2    the scale 

transformation takes place: 

 



, v v  , f
f 




, 

2

d
d 




, 

2

E
E 




, (46) 

where, 
2

2

0

( )v d f


    


  . 

Thus, use solution ,   ,v d E   giving us 2   , 
under which 

2( ) 1f      , and by making 

transformation  (46) obtain the  solution  satisfying the 
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condition 2( ) 1f   . For this purpose, vary the 

values of 0v  and ratio 0 0/d E , which do not change 

during the transformation (46). 

4. Numerical Simulation Using the k-ε 
Model 

4.1 Problem Setting 

A planar interface of two incompressible fluids has 

a tangential velocity discontinuity, 0xu u   = 1 

(Fig. 1): above the interface corresponding to 

coordinate y = 1, the fluid (gas) moves parallel to the 

interface with the velocity ux = u0/2 and below the 

interface its velocity is 0 / 2xu u  . The velocity on 

the interface is xu = 0. Boundary conditions on the 

left and on the right of the computational domain are 

periodic, the top and bottom boundaries are “rigid 

walls”. Initially, the both domains are filled with ideal 

gases with γ = 1.4 and density ρ = 1 under pressure P0 

= 10, i.e. the flow is close to the incompressible one. 

To check such conditions for sufficiency, simulations 

with pressure P0 = 50 were also performed using a 

grid of N = 400 points (N is the number of points in 

domain along y axis). The initial values of turbulence 

quantities, k = 0.001 and ε = 0.025, are set at the 

interface (in one layer of cells on each side of the 

interface). In all other cells, the initial values of these 

quantities are 1110k    . 

Simulations were performed using a square 

Eulerian grid by varying the number of cells along y 

axis (see Table 5). 

4.2 Results of the 2D Simulations, Comparison with 

the Solutions of Self-Similar Equations and 

Measurements  

The resulting profiles of the solutions described in 

subsection 3.4 are shown in Figs. 2, 3, 6 and 8. In 

simulations we used 
44 10N    cells within the 

range from the TMZ center to the boundary. The 

initial values of quantities in simulations were ν0 = 

15.7675, E0 = 0.042, d0 = 0.0023. 

As one can see from Fig. 2, the discrepancy in 

profiles is insignificant: both 2D simulations nearly 

coincide, which indicates that they converge with 

respect to the number of computational cells, and that 

the flow is sufficiently close to incompressible. The 

same is valid for the turbulent energy (Fig. 3): an 

insignificant discrepancy between solution in 

subsection 2.4 and results of the both 2D simulations 

(which coincide) is observed. 

Eq. (28) should be written in the following form:  

 2
0 0 ( )D u t t d     ,  0 0

y

u t t
 

 
. 

Here, 0t  is the intersection point of x axis and the 

linear (self-similar) section of dependence 

     0.9 0.1b̂ t z t z t   (the line of black dots in Fig. 
4a). According to data in Fig. 4a, 0t = − 0.064 for N = 

400 and N = 1000, and 0t  = 0.285 for N = 200. 

Note that there is almost no difference between the 

results in simulations with N = 400 and N = 1000. The 

turbulent energy maximum in TMZ as a function of 

time demonstrates the same behavior: we can see in 

Fig. 4b that it quickly achieves one and the same 

constant value in all simulations.  
 

 
Fig. 1  Initial problem geometry.  

 

Table 5  Options of simulations.  

Number of cells along у axis N = 200 N = 400 N = 400 N = 1000 

Size of cell h = 0.01 h = 0.005 h = 0.005 h = 0.002 

Pressure (P0) 10 10 50 10 
 

ux 

ux

x 

y

0

2

1
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Fig. 2  The velocity profiles in 2D simulations: 1 –N = 1000, Р0 = 10; 2 –N = 400, Р0 = 50; 3 –solution in subsection 3.4; 4 
–approximate solution.  
 

 
Fig. 3  The turbulent energy profiles. 2D simulations: 1-N = 1000, Р0 = 10; 2-N = 400, Р0 = 50; 3–solution 3.4; 4–approximate 
solution. 
 

Fig. 5a illustrates function  0mF t t     of the 
TMZ-maximum value m  of the turbulent energy 

dissipation rate. This function also quickly achieves 

one and the same constant value. Function 

 0/D mF D t t   of the TMZ-maximum value Dm of 

the turbulent viscosity coefficient is shown in Fig. 5b. 

This function also quickly achieves its constant  

value, which is almost the same in simulations with 

various N.  

It follows from the analysis of this data that we 

observe convergence of the 2D simulation results 

obtained by varying the computational grid in use. 

Simulation results for grid N = 200 insignificantly 

differ from those for grids N = 400 and N = 1000 

(which, in turn, are actually indistinguishable). 

We see in Fig. 6 that there is an insignificant 

discrepancy between the turbulent viscosity coefficient 

profile calculated with the method in subsection 3.4 
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(a) 

 
(b) 

Fig. 4  The turbulent quantities vs time in 2D simulations: (a) TMZ width b̂ , (b) turbulent energy maximum in TMZ: 1 – 

Р0 = 10, N = 200; 2 - Р0 = 10, N = 1000; 3 - Р0 = 10, N = 400; 4 – Р0 = 50, N = 400. 
 

and profiles in both 2D simulations (they coincide). 

There is a satisfactory agreement, in general, with the 

approximate analytical solution. 

In solution 3.4 at the right boundary, both the flux 

of turbulent energy dissipation rate, Dc   e  and 

the flux of turbulent energy itself become zeroes (Fig. 

7). There is an insignificant discrepancy between the 

profiles of turbulent energy dissipation rate in solution 

3.4 and in 2D simulations (which are almost 

coincident) (Fig. 8). 

The integrated data obtained by solving the system 

of ordinary differential Eqs. (30)-(33) describing the 

self-similar regime of shear flow are as follows:  

from subsection 3.4: 

 0/    bb u t   

0.1105, max( ) 0.0373. mk k       (47) 

Here, according to the definition in Refs. [9, 10], 

0.95 0.1b z z   is the TMZ width found for level 
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(a) 

 
(b) 

Fig. 5  TMZ-maximum value of turbulent quantities vs time in 2D simulations: (a) the function of turbulent energy 
dissipation rate, (b) the turbulent viscosity coefficient function: 1 – Р0 = 10, N = 200; 2 - Р0 = 10, N = 1000; 3 - Р0 = 10, N = 400. 
4 –Р0 = 50, N = 400. 
 

0.95 0.45
0 0

( ) ( ) 0.45x xu u
z

u u
   

and 

0.1 0.4
0 0

( ) ( ) 0.4x xu u
z

u u
   , 

or in the spacer plate’s coordinate system: 

0.95
0

( ) 0.95xu
z

u



 and 0.1

0

( ) 0.1xu
z

u



. 

The values in Eq. (47) are close both to the results 

of 2D simulations with the k-ε model (β = 0.1154, 

mk  = 0.0388) and results of the approximate 

analytical solution (β = 0.1156, mk = 0.042). The β 

value in (47) also agrees with the 3D ILES results in 

[4, 5], 3D LES results in [12] and 3D DNS results in 

[13, 14] (see Appendix A) and measurement results in 

[9] (see Appendix B). The maximum values of 

turbulent energy in all the 2D simulations are close 

and do not contradict the available measurement 

results. 
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Fig. 6  The turbulent viscosity coefficient profiles in 2D simulations: 1 – N = 1000, Р0 = 10; 2 – N = 400, Р0 = 50; 3 – solution 
3.4; 4 – approximate analytical solution.  
 

  
 

(a)                                                          (b) 

Fig. 7  Profiles of the turbulent energy flux (left) and dissipation rate flux (right) in solution 3.4. 
 

Thus, the velocity profiles in 2D simulations 

satisfactorily agree with results of the numerical 

integration of ordinary differential equations (29)-(32) 

describing the self-similar regime of shear flow and 

with the approximate analytical solution, as it is 

clearly seen in Figs. 2, 3, 6 and 8. 

4. Discussion of results and conclusions 

The 2D EGAK code results of the numerical 

simulation using the k-ε model demonstrate quick 

transition to the self-similar regime, the initial values 

of k and  are forgotten. This regime is characterized 

by a linear growth of TMZ width with time and by 

time-constant maxima of turbulent energy in TMZ 

( mk ) and functions of its dissipation rate (εm), as well 

as the turbulent viscosity coefficient (Dm): εm(t − t0) 

and Dm/t. 

A system of ordinary differential equations has 

been constructed for the self-similar regime of shear 

flow and the equation system solution methods are 

presented. The solutions found are in a good 

agreement with the 2D EGAK code simulation results. 

Thus, they can be used for the code verification.  

The obtained solutions agree with the approximate 

analytical solution and, hence, it can be used for the 

preliminary selection of the k-ε model coefficients 
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Fig. 8  Profiles of the dissipation rate coefficient of turbulent energy: simulations: 1 – N = 1000, Р0 = 10; 2 – N = 400, Р0 = 50; 
3 – solution 3.4, 4 – approximate analytical solution.  
 

1 2, , , ,k c c c     , if there is a need to change one, 

or several coefficients to specify data of experiments, 

or 3D simulations for the particular flow.  

In the present work, we obtained β = 0.116 in 2D 

simulations with coefficients from paper [1], while the 

solution of self-similar equations gives β = 0.11. The 

linear fitting for experimental data leads to β = 0.104. 

The averaged 3D ILES results on finer computational 

grids are also close to the results obtained in the 

present work. Thus, the k-ε model coefficients taken 

in [1] provide a satisfactory description of a plane 

shear layer of mixing and are preferable, in 

comparison with the standard coefficients, for 

describing the gravitational mixing in a plane 

interfacial layer and a plane light (heavy) layer, as 

well as the decay of homogeneous isotropic 

turbulence. 
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Appendix A: Review of experimental data on shear mixing. 

Consider homogeneous flows coming from a spacer plate at velocities 1u  and 2u . It is precisely these tests that have been used 

to study a plane mixing layer and described, in particular, in papers [9-11]. It is assumed that density is uniform in the problem. Thus, 

the problem is one-dimensional in coordinates of fluid, but it is time-dependent, because in the self-similar regime the plane mixing 

layer’s width grows linearly with time in proportion to the difference 0u  between the jet velocity and the surrounding medium 

velocity 

0b u t   . 

Here, according to the definition in [9-11], 0.95 0.1b y y   is the TMZ width determined for level 

0.95 0.45
0 0

( ) ( ) 0.45x xu u
z

u u
   and 0.1 0.4

0 0

( ) ( ) 0.4x xu u
z

u u
   , or in the spacer plate coordinates: 

0.95
0

( ) 0.95xu
z

u



 and 0.1

0

( ) 0.1
xu

z
u

. Quantity β should be represented using quantity  0/ /   b db dx b x x , 

which is measured directly in experiments.  

With regard to  0 1 2 / 2   x x u u t  and 0 2 1u u u  , we obtain 

2




b


, where 
2 1

2 1





u u

u u
 , 

as defined in [9]-[11]. In other words, with regard to 1 2/m u u  the expression for β can be written as  

 
 
1

2 1

mb

m


 
 


. 

Paper [9] gives the b values calculated by various authors for different values of . We present this data (see Table A1) 

for 0.54   (these values are not too large) corresponding to 0.3m  . 
 

Table A1  Experimental data from [9] for the mixing rate.  

λ m β 

0.1474 0.743 0.120 

0.2470 0.604 0.071 

0.2515 0.598 0.105 

0.2546 0.594 0.084 

0.2553 0.593 0.095 

0.2561 0.592 0.087 

0.3366 0.496 0.094 

0.4316 0.397 0.085 

0.4324 0.396 0.094 

0.4324 0.396 0.093 

0.4430 0.386 0.112 

0.5380 0.300 0.084 

0.5418 0.297 0.094 

Fig. A1 illustrates experimental data in the form of plots for β(m) function. Measurement results are approximated with the linear 

dependence 

0.0196 0.084m                                   (A1) 

With m=1 we obtain β=0.1036 (see also Fig. A1). The root-mean-square deviation of experimental data from straight line (A1) is 

 
1/22

    0.023 (here, symbols mean “averaging”), it is shown in Fig. A1. As one can see, with 1m   there 
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is a satisfactory agreement with the 2D simulation results. Remember that our temporal mixing layer studies described in this paper 

correspond to experimental investigations for the spatially evolving configuration in the limit of m 1. 

Paper [9] also presents results of various authors, who measured maximum values of root-mean-square fluctuations of different 

velocity components (see Table A2). The turbulent energy values calculated using these measurement results are also given in this 

table. 

These results agree with all the simulation results presented in the present paper.  

Results of 2D simulations and self-similar solutions 3.4 are also illustrated by Fig. A2, which shows the reciprocal of growth rate 

of the mixing layer’s width: 

 0.1 0.9

1.855 x

z z
 

 

, 

where,  0.1 0.9z z   is the distance between two points, at which relative velocity    2 1 2ˆ /  u u u u u  equals 0.1 and 

0.9. 

Similar to [3], the jet length (х-хo) in experiments is assumed to be correspondent to time (t - t0): 

1 2( ) ( ) / 2 ( ).    o ox x u u t t Since 0 0.4 0.4 0 0.4( ) ( ) 2 ( )o oz u t t u t t            , we have 

0.4 0.4

1.855 (1 ) 1.855

4 (1 ) 4

m

m


  
 

 
    

, 

 

 
Fig. A1  The mixing rate in a plane layer vs velocity ratio. 1 – experimental data of various authors from paper [9] and 
linear fitting (4), 5-6 – approximation with root-mean-square deviation; 2 – 2D simulations; 3 – solution of self-similar 
equations.  
 

Table A2  The root-mean-square fluctuations of velocity components.  

Authors 0/xu u  0/yu u  0/zu u  mk  

Spencer 1970 0.17 0.14 0.145 0.0348 

Yule 1971 0.173 0.16 0.18 0.044 

Oster, Wygnanski 1982 0.18 0.153 0.145 0.0384 
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where, 1 2/m u u  and velocities are associated with the coordinate system of a spacer plate, or a nozzle. Similarly, Fig. A2 

illustrates data of measurements from [8] within the range of m values corresponding to the range of  values. Points in Fig. A2 

show experimental data of various authors from paper [7]. 

One can see that the calculated curves agree with measurement results. The best agreement is observed at large m values, which 

correspond to the considered problem to a higher extent. 

Appendix B: Review of the direct 3D numerical simulation results for shear mixing. 

Papers [4, 5] give the 3D ILES results for different values of Nx (the number of cells in the flow motion direction). We present this 

data in Table A3 after additional post-processing efforts. The TMZ width in the papers above,  0.1 0.9z z   is the distance 

between two points, at which relative velocity    2 1 2ˆ /  u u u u u  equals 0.1 and 0.9. However, according to the 

definitions in [9, 11], we take 0.95 0.1b z z  , i. e. the TMZ width for level 
0.95 0.45

0 0

( ) ( ) 0.45x xu u
z

u u
   and 

0.1 0.4
0 0

( ) ( ) 0.4x xu u
z

u u
   , or in the spacer plate coordinates: 

0.95
0

( ) 0.95xu
z

u


  and 0.1
0

( ) 0.1xu
z

u



. In this case, we obtain the 

values of  0 0

b

u t t
 

 
 given in Table A3. 

Besides, the post-processing of the 3D ILES results from [12] and DNS results from [13] gives us β=0.064÷0.08 and β=0.077, 

respectively. Similar to our simulations, their simulations were performed for a temporal mixing layer. Simulations with the 3D DNS 

method in [14] were performed for a spatially evolving configuration. Regarding that m in [14] equals u1/u2=1/3, we 

have    0.5 1 / 1    b m m b . Here, / /       b db dx y x r y , / 0.0168  r x   according to [14]. 

/   y y   is found using the velocity profiles from [14] and, as a result, we obtain 0.086 0.093    for data in [14]. 

These results agree with the data in [4-5]. 
 

 
Fig. A2  Quantity  as a function of time in the problem of a shear mixing layer. Present paper: 1 – 2D simulations; 2 – 

solution 2.4. 3÷4 –measurements [8], 5÷12 – experimental data of various authors from Ref. [7].  
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Table A3  The integral 3D ILES values.  

Option No. Number of cells  Lz Lx β km 

1 1003 1 1 0.077  0.09 0.033-0.037 

2 1003 1 1 0.07  0.1 0.027 

3 1003 1 1 0.096 0.036 

4 1502 × 200 2 1.5 0.1  0.1075 0.038  0.041 
5 2002 × 400 2 1 0.098  0.1 0.038  0.04 
6 3002 × 400 2 1.5 0.086  0.1 0.033  0.035 
7 3002 × 400 2 1.5 0.13-0.17 0.05 

 

Fig. A3a illustrates the data from [4-5] as a plot of function ( )xN . The linear fitting of this data is  

41.665 10 0.07115xN     .       (A2) 

With Nx=300 we have β=0.121 (see also Fig. A3). The root-mean-square deviation from straight line (A2) is 

 
1/22

    0.024, it is shown in Fig. A3. One can see a satisfactory agreement with the 2D simulation results and 

solutions of self-similar equations. 

Fig. A3b illustrates 3D simulation results for the maximum turbulent energy in the form of ( )m xk N  function plots. The linear 

fitting of this data is  

52.873 10 0.03178m xk N    .      (A3) 

In this case, the root-mean-square deviation of results from straight line (A3) is  
1/22

m m mk k k   0.0055, it is shown 

in Fig. A3b. As one can see, there is a satisfactory agreement with all results of 2D simulations and self-similar equation solutions. 
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(b) 

Fig. A3  The mixing rate of a plane layer (a) and the maximum turbulent energy in TMZ (b) vs. the number of 
computational cells. 1 – 3D ILES results and linear fitting (4); 5-6 –fitting with RMS deviation; 2 – 2D simulations; 3 – 
solution of self-similar equations. 
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