More about Bernoulli Numbers

Nick Huo Han Huang

Received: November 19, 2015 / Accepted: December 12, 2015 / Published: March 25, 2016.

Abstracts: Bernoulli Numbers are coded with Deterministic Redundancy of Arithmetic Operations, adding and multiplying or exponent, in Natural Number System. And based on the redundancy, a process for obtaining the Bernoulli Numbers is elaborated.

Key Words: Arithmetic Operation, Number Process, Repeating, Matrices, and Determinant.

Given \(s_0 = 0 \) and build the below number sequence.

\[
s_i = s_{i-1} + d(i), \quad i \in \mathbb{N}
\]

Then \(d(i) \) is also a number sequence and the sum of the first \(n \) terms of \(d(i) \) can be described as below, which is independent from the \(s \) sequence by which it is carried through.

\[
\sum d(i) = s_n, \quad s_0 = s_n
\] (a)

Consider \(d(i) = i \cdot p \), we have \(s_n \) as below.

\[
s_n = \sum i \cdot p
\]

By observation, the above sum of \(n \)-items can be expressed with a \((p+1)\)'s polynomial of \(n \) as below.

\[
s_n = \sum a_{ij} \cdot n^j, \quad i, j = 0 \text{ to } p+1
\]

with \(p+2 \) items, \(a_{ij} \)'s, \(j = 0 \text{ to } p+1 \), are the Bernoulli Numbers in the below set of linear equations of \(a_{ij} \) are formed.

\[
\sum a_{ij} \cdot n^j = \sum i \cdot p, \quad i=0 \text{ to } n \text{ and } j=0 \text{ to } p+1
\]

Which will be rational Diophantine (Non Deterministic) if \(n < p+1 \) or there are solutions for \(a_{ij} \) for which at least \(p+2 \) equations can be formed, i.e. \(j=0 \text{ to } p+1 \). And giving \(p, n \in \mathbb{N} \) and \(p < n \), without loss of generality, it is obvious to have the below results.

\[
a_{ij} = 0 \text{ for any } j = 0 \text{ to } p+1
\]

\[
\sum a_{ij} \cdot n^j = \sum i \cdot p \text{ for } j=1 \to p+1 \text{ and } i=1 \to n
\] (b)

i.e. a \((p+1)\)-degree polynomial of \(n \) is enough to define \(\sum i \cdot p \), \(i=1 \text{ to } n \), the sum of \(p \)-power of the consecutive natural numbers equal to and less than \(n \), The Deterministic Redundancy appears when \(n > p+1 \).

By analogy, \(n'\cdot(p+1) \) can be a summation of \(p \)-degree polynomial of “\(i \)” for \(i=1 \to n \). i.e. the below set of linear equations for \(b_{pj} \).

\[
n^{p+1} = \sum b_{pj} \cdot i^j, \quad i=0 \to p
\]

It is easy to observe that the solutions for \(b_{pj} \)'s correspond to entries of the Pascal’s Triangle, and the below equations.

\[
b_{pj} = (-1)^{p+1} \binom{i}{p+1}, \quad i=0 \to p
\] (c)

And by expanding equations (c), we have:

\[
n^{p+1} = \sum (b_{pp} \cdot i^p + b_{pp-1} \cdot j^p + b_{pp-2} \cdot j^p + \ldots + b_{p2} \cdot j^2 + b_{p1} \cdot j + b_{p0})
\]

That is,

\[
\sum j^p = \sum (b_{pp} \cdot i^p + b_{pp-1} \cdot j^p + b_{pp-2} \cdot j^p + \ldots + b_{p2} \cdot j^2 + b_{p1} \cdot j + b_{p0})
\]

By analogy, \(n'j^p \) can be expressed by a summation of \(\sum \) combination and \(k=0 \text{ to } p-1 \) and is less then \(p \), which can be ordered down to \(p=0 \), i.e. \(\sum 1=n \).

And we have:

\[
a_{p+1p+1} = 1/b_{pp} = 1/(p+1),
\]

\[
a_{p+1p} = (-1) \cdot b_{pp-1}/(b_{p+1p-1} \cdot b_{pp}) = 1/2.
\]

Actually, the Bernoulli Numbers \(a_{ij} \) can be obtained by the below iteration process.

\[
p=0, \quad b_{00}=1, \text{ then } a_{11}=1, \text{ i.e. } \sum 1=n
\]

\[
p=1, \quad b_{10}=1, \quad b_{11}=2, \text{ then } a_{22}=1/2, \quad a_{21}=1/2, \text{ i.e. } \sum j=n^2/2+n/2
\]

\[
p=2, \quad b_{20}=1, \quad b_{21}=-3, \quad b_{22}=3,
\]

and we have the equations (e) as below.

\[
\sum j^3 = \{3 \cdot \sum (i-3)i^3 \}/3 = n^3/3+
\]

\[
\sum j \cdot \sum 1/3 = n^3/3+n^2/2+n/2-n/3 = n^3/3+n^2/2+n/6, \text{ i.e. }
\]

\[
a_{31}=1/6, \quad a_{32}=1/2, a_{33}=1/3
\]
p=3, b_{30}=-1, b_{31}=4, b_{32}=-6, b_{33}=4, and then we have the equations (e) as below.

\[\sum_{j}^{3} = \{ n^4 - \sum ((-6)j^2 + 4j - 1) \}/4 = n^4/4 + \sum j^2/6 + \sum j + 1/4 = n^4/4 + n^3/2 + n^2/4, \text{ i.e.} \]

\[a_{41} = 0, a_{42} = 1/4, a_{43} = 1/2, a_{44} = 1/2. \]

......

Mathematics is there to be discovered and to be recognized.

References