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Abstract: Spiral Magnus is a unique wind turbine system that rotates with cylinders which have spiral-shaped fins coiled around them 
(instead of using the more common propeller-type blades). In the present study, three models (cylinder with no fins, cylinder with 
straight fins and cylinder with spiral fins) were installed, and fluid force measurements were performed by a strain gauge force balance. 
A PIV (particle image velocimetry) system was used to better understand the flow fields around the cylinder. Considering the results of 
the experiment, it was confirmed that, the aerodynamic performance of the rotating cylinder can be improved by the fin. However, the 
straight fin makes the flow close to the cylinder surface ineffective. The rotary cylinder with the spiral fins was able to generate the 
greatest lift among three models, because the spiral fin effectively influences the vicinity of the cylinder surface. 
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Nomenclature 

CL Time-averaged lift coefficient 

d Cylinder diameter (m) 

Re Reynolds number 

U Free stream direction velocity (m/s) 

U0 Free stream velocity (m/s) 

VS Cylindrical surface speed (m/s) 

α Rotational angle (°) 

θ Circumferential speed ratio 

ν Kinematic coefficient of viscosity (m2/s) 

Ω Vorticity 

ω Angular velocity (rad/s) 

1. Introduction 

The development of wind power generation from 

large wind turbines has shown excellent profitability, 

therefore, this form of renewable energy construction is 

accelerating as mainstream around the world. However, 
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these businesses must be built in locations away from 

residential area, from the point of view of the landscape 

and noise. Wind power generation also requires that, 

wind conditions be good and the site be near an electric 

power-consuming region. However, locations fulfilling 

such conditions are few. Therefore, a small wind 

turbine with superior quietness and high performance 

is demanded. This would allow extensive construction 

near residential areas. In addition, development and 

maintenance of the transmission line would also be 

cheaper. 

A Magnus wind turbine uses a rotating cylinder as a 

substitution for the blade of a common wind turbine. 

When the cylinders rotate, lift is generated. This lift is 

sufficient to generate electricity by rotating the wind 

turbine to which the cylinders are attached. The wing 

of the wind turbine is in a column shape, and, in the 

Magnus wind turbine, the power performance rises so 

that the lift becomes bigger. After the invention of a 
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encoder (Ono Sokki LG-919) and a smoke generator 

(Kano Max, 8304). Tracer using an oil mist, the 

particle size is about 1 μm. Rotational speed of the 

cylinder with blades was measured using a reflection 

tachometer. The timing of the laser irradiation is 

synchronized by a pulse generator. 

2.2 Experimental Methods 

The origin of the coordinate system was the center 

of gravity of the experimental model. The main flow 

direction was X, the measurement unit span direction 

was Y, and the height direction was Z. The free stream 

Reynolds number (Re) of flow around a cylinder, with 

a typical dimension for the column diameter d = 0.07 m, 

and the representative speed is the mainstream 

velocity U0 = 4 m/s, was from Re = 1.9 × 104. The 

mainstream and the ratio of the rotary speed of the 

column θ are the important parameters for showing 

the state. The flow field around the cylinder, the outer 

flow 1/2dω, and the mainstream U0 due to the rotation 

of the cylinder. Eq. (1) shows the velocity ratio as a 

circumferential speed ratio θ. 

02

d

U

                  (1) 

Lift measurements were conducted using three 

types of experimental models for θ = 0-1.1. The strain 

gauge, using a two-component force meter that was 

proven in previous experiments [5, 6], using that single 

component force. The measurement data, 5,000 data 

points acquired at a sampling speed of 500 μs, was 

carried out six times, and is determined as an average 

value. The error in this measurement is about 1.9%. 

The flow velocity distribution of the flow field around 

a rotating cylinder was determined by PIV. In addition, 

the peripheral speed ratio at this time is θ = 1. The 

irradiation laser was carried out in two consecutive 

passes, the irradiation interval, and the 500 μs. The 

width of the laser sheet was 5 mm. We analyzed the 

images in the PIV software (FtrPIV, FLOWTECH 

RESEARCH Corp.). However, the laser irradiated 

from the upper side of the model, and hence, it was 

not possible to photograph the entire flow field. 

Therefore, to complete the model, the data from the 

upper half of the surface were reversed for the model 

surface of the lower half, and the upper and lower data 

were then synthesized by the X-axis reference. 

2.3 Experimental Models 

Fig. 3 shows in three experimental models. Fig.3a is 

the reference made no cylinder of the fin. Fig. 3b is a 

cylinder with straight fin cylinder (dual). Fig. 3c is a 

cylinder with a spiral fin (dual). Straight fins with 10 mm 

width and 18 mm height is placed in parallel to the Y 

axis, and the other one was placed similarly in a 
 

 
(a) No fin 

 
(b) Straight fins (dual) 

 
(c) Spiral fins (dual) 

Fig. 3  Three types of test models (dimensions in mm). 
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seen from the results of the PIV processing, the 

intermittent flow field of the straight fin is changed by 

the rotation angle, and the range of the velocity 

fluctuation, and reaches a relatively far area from the 

cylinder. 

Meanwhile, the change of the spiral fins around the 

flow field is continuous. In the area near the cylinder, 

a large speed difference has been shown to occur. This 

is the main cause of the high lift of the spiral fin. 
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