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Abstract: The marine area of Japan, including territorial waters and the exclusive economic zone, is the sixth largest in the world at 
about 4,470,000 km2. Therefore, it is becoming necessary to establish appropriate means of transportation other than ships in order to 
utilize the area efficiently. In this respect, ultra-light seaplanes are attracting attention from the viewpoint of protecting the natural 
environment. Accordingly, JRPS (Japan Reinforced Plastics Society) is currently developing FRP (fiber-reinforced plastic) floats for 
such planes. In this study, we conducted simulations of seaplane behavior during alighting by using the smoothed particle 
hydrodynamics method, which is one of the functions in the PAM-CRASH solver, and we present the observed trend in the vertical 
acceleration of the floats as a first step toward deriving the impact force from analytical data. 
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1 Introduction 

The marine area of Japan, including territorial 

waters and the exclusive economic zone, amounts to 

about 4,470,000 km2, which is the sixth largest in the 

world. Accordingly, seaplanes are increasingly 

attracting attention due to the demand for establishing 

new means of appropriate transportation other than 

ships which can efficiently utilize the vast Japanese 

marine resources. 

If routes which are necessary for takeoff and 

alighting of seaplanes can be secured, seaplanes could 

prove to be economical since they do not require the 

immense resources and are necessary for building 

airports, and it has also been pointed out that they 

could provide a solution to certain social problems, for 

example, by preventing environmental damage 

inflicted by land reclamation in coastal areas and 

providing a means for emergency transportation of 

goods to remote islands at times of disaster. However, 

the floats used in lightweight planes at present are 
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made of metal or rubber, which are not ideal in terms 

of weight and resistance to corrosion. For this reason, 

we have started development of FRP (fiber-reinforced 

plastic) floats shown in Fig. 1. 

In addition to an excellent strength-to-weight ratio 

and specific rigidity, FRP also exhibits high resistance 

to corrosion and impact, and, therefore, it can serve as 

appropriate material for floats, which repeatedly come 

in contact and detach from the water surface during 

takeoff and alighting. In addition, further weight 

reduction and corrosion and impact resistance 

improvements can be achieved by using a core made 

of a porous material sandwiched between FRP 

surfaces, allowing for the development of highly 

efficient seaplane floats. 

In this study, we conducted alighting experiments 

and numerical simulations on the basis of the alighting 

positions specified in the Airworthiness Standards [1], 

and we compared the alighting behavior and vertical 

acceleration response of seaplane floats. Furthermore, 

we used strain gauges to measure the stress and its 

distribution generated in the floats by the impact force 

during alighting, and we examined the dynamic 
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response and the impact force used in designing 

seaworthy FRP floats.  

The stress measurements in the current experiment 

are ongoing, and detailed results will be reported at 

the time of presenting this paper. 

The evaluated FRP floats were HY03 floats 

developed for seaplanes under a seaplane development 

project undertaken by the JRPS (Japan Reinforced 

Plastics Society). 

2. Composition of Floats 

A sandwich structure consisting of a porous material 

at the core and glass FRP (GFRP (glass 

cloth/unsaturated polyester resin)) at the surface was 

used for the FRP float structure. The shape and 

dimensions of the FRP floats (Table 1 and Fig. 2) are 

shown together with the details about the structural 

materials [2, 3]: 

(1) core material: polystyrene; 

(2) surface material: glass cloth: 

 thickness of a single layer covering the entire unit: 

0.25 mm; 

 thickness of three layers at the keel: 0.75 mm (a 

total of four layers); 

 thickness of two layers at the upper surface:    

0.5 mm (a total of three layers); 

(3) bulkhead plating: glass cloth—GFRP plates 

consisting of 12 layers for 3-mm thickness were 

installed 1,500, 2,000 and 2,700 mm from the front; 
 

 
Fig. 1  Lightweight seaplane with FRP floats.  
 

(4) resin: unsaturated polyester resin; 

(5) weight: a single float weighs 32 kg (including the 

parts for attaching supporting structures and brackets). 

3. Alighting Impact Experiment 

Alighting impact experiments were conducted by 

wide water tank with wave-maker at Ocean 

Architecture Laboratory in Department of Oceanic 

Architecture and Engineering of Nihon University, AS 

shown in Fig. 3. In the experiments, a lightweight 

seaplane equipped with FRP floats was dropped from a 

height of 1,200 mm, and the impact exerted by the 

water surface on the floats for front, central and rear 

alighting was measured, as specified in the 

Airworthiness Standards [1]. At this stage, the 

dynamic response of the FRP floats was also measured 

by accelerometers installed at two points on the upper 

surface of both floats. This measurement was used to 

verify the validity of the numerical results and the 

dynamic  response for  the still  water is  compared with 
 

Table 1  Dimensions of float.  

Length (mm) Width (mm) Height (mm) 
Displacement 
(L) 

4,000 523 480 443 
 

 
 

 
Fig. 2  FRP float model.  
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the Ministry of Land, Infrastructure, Transport and 

Tourism. Lastly, since the sinking speed Vd is 

commonly taken as 2~4 ft/s (equal to 1.22~2.44 m/s) 

for civilian aircrafts, the experiments were conducted 

by setting the value of Vd to 4 ft/s. As the results of this 

calculation, the alighting impact test was carried out by 

landing distance of 1.2 m. 

Table 3 presents the measurement results for the 

maximum vertical acceleration obtained at the impact 

of the floats during water landing for still water. 

Fig. 6 shows the time history of float acceleration 

and strain for the still water and swell conditions. For 

still water, maximum acceleration and the strain are 

measured at the same time and larger than those for 

swell condition. Maximum strain under the swell was 

about half in the case of the still water. 

The measured strain under the swell would never be 

greater than maximum strain for still water with the 

change of the top of swell, as shown in Fig. 7. 

5. Numerical Analysis 

In the analytical model, the floats, supporting parts, 

weights, alighting areas and boundary walls were created 

in CAD (computer-aided design) software (CATIA-V5) 

and divided into elements with auto meshersoftware 

(HyperMesh 10.0). The analytical model in Fig. 8 was 

constructed by applying SPH (smoothed particle 

hydrodynamics), which is one of the options in the 

dynamic explicit finite element method solver 

PAM-CRASH, to the alighting areas and regarding the 

water continuum as a collection of particles. 

Next, the material properties used in the analytical 

model are shown in Table 4. The numerical analysis 

was conducted by using elastic shell elements for the 

GFRP of the floats, elastoplastic solid elements for the 

porous polystyrene core material and rigid shell 

elements for the boundary walls, the attachment 

structures of the floats and the weights. 

Furthermore, the analysis conditions were set as 

follows by considering the alighting impact experiment: 

(1) The state immediately before alighting when the 

floats were dropped was modeled, assigning a free fall 

speed of −4.44 m/s; 
 

Table 3  Maximum vertical acceleration.  

Water landing position Left float Right float 

Central alighting (G) 13.67 12.27 

Front alighting (G) 13.31 12.30 

Rear alighting (G) 12.34 13.35 
 

 
(a) 

 
(b) 

Fig. 6  Dynamic response of alighting acceleration and strain of the float for: (a) still water; (b) the swell.  
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Fig. 7  Maximum strain of the alighting experiment for still water and various swell conditions.  
 

 
Fig. 8  Analytical model.  
 

Table 4  Material properties.  

Property GFRP 
Polystyrene 
foam 

Mount Weight 

E (GPa) 43 0.025 207 207 

Poisson ratio 0.28 0.3 0.3 0.3 
ρ×10-6 
(kg/mm3) 

1.70 0.012 3.95 2.00 

 

(2) The combined weight of the weights and the 

structure equipped with floats (32 kg × 2) was set to 

232.3 kg; 

(3) In SPH, the five surfaces other than the ones 

involved in the alighting were surrounded with rigid 

walls in the form of shell elements, thus restricting the 

overall degrees of freedom; 

(4) For understanding the behavior of the floats 

during alighting, nodes were set at roughly the same 

locations as during the experiment; 

(5) Dynamic transient response analysis was 

conducted for 150 ms with a time step of 0.04 ms. 

6. Comparisons of Experimental and 
Analytical Results 

The alighting behavior in the experiment and the 

analysis can be seen in Fig. 9, and Fig. 10 shows the 

time history response curve of the vertical acceleration 

at the moment of alighting of the floats. The vertical 

acceleration standards recommended by SAE (Society 

of Automotive Engineers) were referred to in both the 

analytical and the experimental results, and in this case 

we used CFC60 (equivalent to −40 dB/oct (dB per 

octave) cutoff 100 Hz). 

We found that the maximum vertical response 

acceleration was 13.31 G in the experiment and   

16.21 G in the analysis, thus showing a slight 

difference, but the time history responses for the 

acceleration were in close agreement [6]. Furthermore, 

we confirmed that the trends observed during front and 

rear alighting were the same as those presented above. 
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Fig. 9  Aligh
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(a)                                                   (b) 

Fig. 12  Measured dynamic response strain of FRP float: (a) experimental strain in lengthwise direction of the base of the 
FRP float in the alighting impact experiment; (b) experimental strain around the upper surface connection with the aircraft 
body in the alighting impact experiment. 
 

elements connecting the rear parts of the floats with the 

body of the aircraft, as well as in the vicinity of the 

bulkhead at the base, and the computational results 

showed high tensile stress at the base and high 

compressive stress at the upper surface of the floats 

during alighting. Considering this stress distribution, 

strain measurements in the alighting impact experiment 

were taken at seven locations at the joints where the 

floats are connected to the aircraft body and in the 

vicinity of the bulkhead, and the response strain was 

measured in an alighting impact experiment. 

Fig. 12 shows the time history response for the 

measured strain for each part of the FRP float in the 

alighting impact experiment. Fig. 12a shows the 

dynamic response of the strain in lengthwise direction 

in the vicinity of the bulkhead at the lower rear part of 

the FRP float, and the maximum value of the 

generated strain at R6, which was close to the location 

where the maximum stress was generated in the 

numerical analysis, was measured to be around  

±1,000 × 10-6ε. Furthermore, Fig. 12b shows the time 

history response in the vicinity of the joints 

connecting the upper surface of the FRP floats and the 

aircraft body, and, similarly to the numerical analysis 

results, the maximum value was higher than   

−1,000 × 10-6ε on the compressive side. Since we 

measured the triaxial strain at the upper surface of the 

floats, the maximum principal stress is calculated 

from the measurement results, yielding a value of  

42.1 MPa in the compression direction. This 

maximum value of the principal stress is rather small 

in comparison to the allowable stress of 270 MPa for 

GFRP, and it is considered to possess sufficient 

durability with respect to repeated alighting. 

7. Conclusions 

Following points can be drawn from the study: 

(1) In order to develop highly impact-resistant 
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GFRP floats for seaplanes, we conducted numerical 

simulations and alighting impact experiments and 

elucidated the dynamic response characteristics and 

the locations of stress concentration in FRP floats 

during alighting; 

(2) As a result of both performing numerical 

analysis and alighting impact experiments to examine 

the response acceleration generated when FRP floats 

with a sandwich structure impact the water surface, 

the results of the numerical analysis and those of the 

alighting impact experiments were found to be in 

close agreement, thus confirming the validity of the 

numerical analysis; 

(3) The maximum value and the locations where 

dynamic response strain was generated in the FRP 

floats in each alighting position (front, central and 

rear) were examined by numerical analysis, and the 

validity of computational results was verified through 

an alighting impact experiment; 

(4) Stress generated in the GFRP floats used in this 

experiment is sufficiently low in comparison to the 

allowable stress of FRP, and we confirmed the 

durability of the structure with respect to alighting 

impact.  

In future work, we plan to investigate the 

appropriate shape for FRP floats for both alighting 

impact and takeoff performance. Furthermore, the 

resistance of FRP floats against wave impacts will be 

examined by conducting alighting impact experiments 

in the presence of waves. 
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