

(a)

(c)

Bernoulli Numbers & Vandermonde Matrices

Nick Huo Han Huang

Received: November 19, 2015 / Accepted: December 12, 2015 / Published: February 25, 2016.

Abstracts: Matrix structuring is a very beautiful way to place Bernoulli numbers, by which a new view to the numbers is opened. Natural Numbers are mathematics seeds and Natural Number System (NNS) breeds the whole world mathematically.

Key Words: Algebra, Arithmetic Operation, Number Process, Repeating, Matrices, and Determinant.

Giving $s_0=0$ and build the below number sequence.

$$s_i = s_{i-1} + d(i), i \in \mathbb{N}$$

Then d(i) is also s number sequence and the sum of the first n terms of d(i) can be described as below.

$$\Sigma d(i) = s_n - s_0 = s_n$$

This Equation (a) is the seed for differentials and integrals.

Consider $d(i)=i^p$, we have s_n as below.

By observation, the above sum of n-items can be expressed with a (p+1)'s polynomial as below.

Sr.

$$=\sum a_i * n^i, i=0 \text{ to } p+1$$

with p+2 items, and the below set of linear equations of a_i are formed.

 $\sum a_i * n^i = \sum j^p$, i=0 to p+1 and j=0 to n

Which will be rational Diophantine if $n \le p+1$ or there are solutions for a_i for which at least p+2 equations can be formed, i.e. j=0 to p+1. And giving $p, n \in 0 \& N$ and $p \le n$, without loss of generality, it is obvious to have the below results.

$$a_0=0$$
 for any p

$$\sum a_i * n^i = \sum j^p$$
 for i=1 to p+1 and j=1 to n (b)

i.e. p+1 degree polynomial of n is enough to define $\sum j^p$, j=1 to n, the sum of p powers of the consecutive natural numbers equal to and less than n, which, the Equation (b), is *the seed for Fourier Transformations*.

The above linear equations can also be rewritten as below in general.

 $[r_{ij}]x[a_{ij}]=[s_{ij}]$

While i, j=1 to p+1 and $r_{ij}=i^j$, $s_{ij}=\sum k^{(j-1)}$ and k=1 to i.

$\begin{bmatrix} 2 & 2 & 2 & 2 & \dots & 2^{p} & 2^{p} \\ 3 & 3^{2} & 3^{3} & 3^{4} & \dots & 3^{p} & 3^{p+1} \\ 4 & 4^{2} & 4^{3} & 4^{4} & \dots & 4^{p} & 4^{p+1} \\ & & & & & & \\ & & & & & & \\ & & & & $	$ \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & \dots & 1 & 1 \\ 2 & 2^2 & 2^3 & 2^4 & & & 2^p & 2^{p+1} \end{pmatrix} $	$a_{11} a_{12} a_{13} \dots a_{1p}$	a_{1p+1} $s_{11} s_{12} s_{13} \dots s_{1p} s_{1p+1}$
$\begin{bmatrix} 4 & 4^{2} & 4^{3} & 4^{4} & \dots & 4^{p} & 4^{p+1} \\ \dots & \dots & \dots & \dots \\ 2^{2-3} & 4 & \dots & p & p+1 \end{bmatrix} \begin{bmatrix} X & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2 3 4 $p p+1 0 0 0$	$4 4^2 4^3 4^4 \dots 4^p 4^{p+1}$	^	$= \frac{1}{1 + 1} \frac{1}{ \mathbf{s}_{ij} = \sum k^{j-1}, k=1 \text{ to } i}$
$ \begin{pmatrix} p & p^2 & p^3 & p^4 & \dots & p^p & p^{p+1} \\ (p+1) & (p+1)^2 & \dots & (p+1)^p & (p+1)^{p+1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & \dots & a_{pp} & a_{pp+1} \\ 0 & 0 & 0 & \dots & 0 & a_{p+1p+1} \end{pmatrix} = \begin{pmatrix} s_{p1} & s_{p2} & s_{p3} & \dots & s_{pp} & s_{pp+1} \\ s_{p+11} & s_{p+12} & \dots & s_{p+1p} & s_{p+1p+1} \end{pmatrix}_{[1]} $	$ \begin{array}{c} p & p^2 & p^3 & p^4 & \dots & p^p & p^{p+1} \\ (p+1) & (p+1)^2 & \dots & (p+1)^p & (p+1)^{p+1} \end{array} $	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Bernoulli Numbers & Vandermonde Matrices

e.g. (Matrices are written in a line, one row after another.)

 $p=0, r_{11}=1, s_{11}=1 \text{ and } a_{11}=1;$

p=1, $r_{11}/r_{12}/r_{21}/r_{22}=1/1/2/4$, $s_{11}/s_{12}/s_{21}/s_{22}=1/1/2/3$ and $a_{11}/a_{12}/a_{21}/a_{22}=1/"1/2"/0/"1/2"$;

 $p=2, r_{11}/r_{12}/r_{13}/r_{21}/r_{22}/r_{23}/r_{31}/r_{32}/r_{33}=1/1/1/2/4/8/3/9/27,$

 $s_{11}/s_{12}/s_{13}/s_{21}/s_{22}/s_{23}/s_{31}/s_{32}/s_{33} = 1/1/1/2/3/5/3/6/14$,

 $a_{11}/a_{12}/a_{13}/a_{21}/a_{22}/a_{23}/a_{31}/a_{32}/a_{33}=1/"1/2"/"1/6"/0/"1/2"/"1/2"/0/0/"1/3";$

.....

 $\text{Det}|[r_{ij}]|=\prod k!, k=1 \text{ to } p+1.$

 $[r_{ij}]$ is a Vandermonde matrix and $[s_{ij}]$ is a matrix with sums of powers of all related natural numbers, and $[a_{ij}]$ can be called *matrix with Bernoulli numbers*, which is upper triangle. So,

 $\text{Det}|[s_{ij}]|=\prod k!, k=1 \text{ to } p.$

Because [sij] can obviously be transformed to a Vandermonde by replacing k-row with each item subtracting corresponding item of k-1-row, k=2 to p+1. And so,

 $Det|[a_{ij}]|=1/(p+1)!.$

Giving a natural number p, the corresponding Bernoulli numbers a_{ip} (i=1 to p) can be obtained by solving the below linear p-equation set, i.e. j=1 to p.

 $[r_{ji}][a_{ip}]=[s_{ip}]$

While $r_{ji}=j^{i}$, $s_{ip}=\sum i^{(p-1)}$

Triangulating [r_{ij}]

Giving $[r_{ij}]_p$ of p-order square matrix, after triangulation, elements of the matrix will be transformed into below forms.

r_{1j} unchanged, j=1 to p,

 $r_{21}=0, r_{2j}=R2_{2j}/R1_{11}^{[2]}, \text{ while } R1_{11}=\text{Det}|r_{11}|=r_{11}, R2_{2j}=\text{Det}|[r_{11}/r_{1j}/r_{21}/r_{2j}]| \text{ and } j=2 \text{ to } p,$

 $r_{31}=r_{32}=0, r_{3j}=R3_{3j}/R2_{22}, \text{ while } R3_{3j}=\text{Det}|[a_{11}/r_{12}/r_{1j}/r_{21}/r_{22}/r_{2j}/r_{31}/r_{32}/r_{3j}]| \text{ and } j=3 \text{ to } p,$

.

 $r_{p\text{-}11} = r_{p\text{-}12} = \dots = r_{p\text{-}1p\text{-}2} = 0, r_{p\text{-}1j} = R(p\text{-}1)_{p\text{-}1j}/R(p\text{-}2)_{p\text{-}2p\text{-}2},$

While $R(p-1)_{p-1j} = Det[[r_{11}/.../r_{1p-2}/r_{1j}/.../r_{p-11}/.../r_{p-1p-2}/r_{p-1j}]]$ and j=p-1 and p, and

 $r_{p1}=r_{p2}=...=r_{pp-1}=0, r_{pp}=Rp_{pp}/R(p-1)_{p-1p-1}.$

While Rp_{pp}=Det|[r_{ij}]|, and

Until here the $[r_{ij}]$ has been transformed into an upper-triangle-matrix. And r_{kk} (k=1 to p+1) for the above Vandermonde matrix $[r_{ij}]$ can be obtained as below after triangulation process.

 $r_{kk} = k!$.

And for $[s_{ij}]$, $s_{kk}=(k-1)!$, after triangulation. So,

 $a_{kk} = s_{kk}/r_{kk} = 1/k$, k = 1 to p+1.

And it is also not very difficult to get $a_{kk+1}=1/2$ (k=1 to p).

 $[s_{ij}] \& [r_{ij}]$ and Vandermonde Matrix

After a transformation of $s_{kj}=s_{kj}-s_{k-1j}$ (k=2 to p+1) and $s_{1j}=1$ (j=1 to p+1), $[s_{ij}]$ becomes a unit standardized Vandermonde $[v_{ij}]^{[3]}$ while the same for $[r_{ij}]$ after $r_{ij}=r_{ij}/r_{i1}$ transformation, $r_{i1}=i$.

 $v_{ij}=i^{(j-1)}$ and i, j=1 to p+1

The determinant of $|s_{ij}|$ keeps the same after the above said transformation, i.e. $\prod k!$ (k=1 to p), but the determinant of $|r_{ij}|$ should be multiplied by (p+1)!, which is exactly the Det $|a_{ij}|$.

By continuing triangulating $[r_{ij}]$ and $[s_{ij}]$, it is obvious to conclude the below result, in which the left one is $[r_{ij}]$ and the right one $[s_{ij}]$.

r∖c	12	3	4	5	6	7	8	 j		12	3	4	5	6	7	8	•••	j
)	(_
1	11	1	1	1	1	1	1	 1	1	. 1	1	1	1	1	1	1	•••	1
2	02	6	14	30	62	126	254	 2*s _{2i}	C) 1	3	7	15	31	63	127	•••	$1 + r_{2j-1}$
3	00	6	36	150	540	1806	5796	 3*s _{3j}	C	0 (2	12	50	180	602	1932	1	$r_{2j-1} + r_{3j-1}$
4	0.0	0	24	240	1560	8400	40824	 4*s4j	C	0 (0	6	60	390	2100	10206	1	$r_{3j-1} + r_{4j-1}$
5	00	0	0	120	1800	16800	126000	 5*s _{5j}	C	0 (0	0	24	360	3360	25200	1	$r_{4j-1} + r_{5j-1}$
6	0.0	0	0	0	720	15120	191520	 6*s _{6j}	C	0 (0	0	0	120	2520	31920	1	$r_{5j-1} + r_{6j-1}$
7	00	0	0	0	0	5040	141120	 7*s _{7j}	C	0 (0	0	0	0	720	20160	1	$r_{6j-1} + r_{7j-1}$
8	0.0	0	0	0	0	0	40320	 8*s _{8j}	0	0 (0	0	0	0	0	5040	1	r _{7j-1} +r _{8j-1}
			•••	• • •							••							
i	00	0	0	0	0	0	0	 i*s _{ij}	C	0 (0	0	0	0	0	0	1	$\mathbf{r}_{i-1j-1} + \mathbf{r}_{ij-1}$

These are very interesting and beautiful upper triangle matrices. We can generate the both by giving their 1st rows, which could be seen *as the seeds and the soil*, simply with arithmetic adding and multiplying.

 $s_{ii-k}=r_{ii-k}=0$, k=1 to i-1 and i=1 to p+1 (upper-triangulated)

 $s_{22}=r_{11}+r_{21}=1$ (sum by adding numbers' power)

 $r_{22}=2*s_{22}=2$ (raise the power by multiplying)

 $s_{2j}=r_{1j-1}+r_{2j-1}=2^{(j-1)-1}$ (sum by adding numbers' power)

 $r_{2j}=2*s_{2j}$ (j=3 to p+1) (raise the power by multiplying)

.

 $s_{pp}=r_{p-1p-1}+r_{p-1p-2}$ (sum by adding numbers' power)

 $r_{pp}=p*s_{pp}$ (raise the power by multiplying)

 $s_{pj}=r_{p-1j-1}+r_{pj-1}$ (sum by adding numbers' power)

 $r_{pj}=p*s_{pj}$ (j=p & p+1) (raise the power by multiplying)

 $s_{p+1p+1}=r_{pp}+r_{pp-1}$ (sum by adding numbers' power)

 $r_{p+1p+1}=(p+1)*s_{p+1p+1}$ (raise the power by multiplying)

then the two $(p+1)\times(p+1)$ matrices are completely generated.

And the below equations about the two matrices are observed deductively.

 $r_{kk} = k * s_{kk} = k * r_{k-1k-1} = k * (k-1) * s_{k-1k-1}$

Considering the Equation (c), we have the below equation.

 $s_{ij}=\sum r_{ik}*a_{kj}$ (i=1 to p+1 and k=i to j, j \geq i) (d)

i.e.

 $a_{ii} = s_{ii}/r_{ii} = 1/i$

 $a_{ii+1} = (r_{ii+1}/r_{ii})/[i^{(i+1)}] = 1/2$, because

 $r_{ii+1}/r_{ii}=i*s_{ii+1}/r_{ii}=i*(r_{i-1i}/r_{ii}+1)=r_{i-1i}/r_{i-1i-1}+i=i*(i+1)/2$ and i=1 to p, by iteration process in equation (a), which also holds for s_{ii} .

It is not difficult to verify the below observed equations.

$$\begin{split} s_{k+1k+1} = &2*s_{k-1k}, \ k=2 \ \text{to} \ p \\ &r_{ij}/r_{ik} = &s_{ij}/s_{ik} \ (k=i \ \text{to} \ j) \\ &s_{ii+1}/s_{i+1i+1} - &1/2 = &r_{ii+1}/r_{i+1i+1} = &(i+1)/2 \ (i=1 \ \text{to} \ p+1) \end{split}$$

Bernoulli Numbers & Vandermonde Matrices

 $s_{ii+1}\!\!=\!\!s_{i+2i+2}\!/2$

.

Giving a natural number p, by iteration process, a complete matrix of Bernoulli numbers can be generated with the below equation.

 $[a_{ij}]_{p+1p+1} = [r_{ij}]^{-1}_{p+1p+1} [s_{ij}]_{p+1p+1}.$

Mathematics is there to be discovered and to be recognized.

Notes:

 $[1] [s_{ij}]$ is as below.

[2] $R(k)_{ij}$ indicates the determinant of a k-order square matrix of the below pattern (i and j=k+1 to p), and the parentheses for k can be omitted.

$$\mathsf{R}(\mathsf{k})_{\overline{i}\overline{j}} \; \mathsf{Det}(\left(\begin{array}{cccccc} r_{11} \; r_{12} \; \ldots \; \ldots \; r_{1k-1} \; r_{1j} \\ r_{21} \; r_{22} \; \ldots \; \ldots \; r_{2k-1} \; r_{2j} \\ r_{31} \; r_{32} \; \ldots \; \ldots \; r_{3k-1} \; r_{3j} \\ \ldots \\ r_{k-11} \; r_{k-12} \; \ldots \; r_{k-1k-1} \; r_{k-1j} \\ r_{11} \; r_{12} \; r_{13} \; \ldots \; \ldots \; r_{k-1i} \; r_{ij} \end{array}\right))$$

Then $R0_{ij}=1$ (i and j=1 to p), $R1_{ij}=r_{11}$ (i and j=2 to p), and $Rp_{00}=[r_{ij}]$ (i and j=1 to p).

[3] Giving an n-order standardized Vandermonde $v_{ij}=a_i^{(j-1)}$ and i, j=1 to n, $[v_{ij}]$ is called a Unit Standardized Vandermonde when $a_i=i$ (i=1 to n).

References

[1] Teubner Taschenbuch der Mathematik, E. Zeidler.