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Abstract: Recently we have proposed anew method combininginterior and exterior approaches to solve linear programming 
problems. This method uses an interior point, and from there connected to the vertex of the so called station cone which is also a 
solution of the dual problem. This allows us to determine the entering vector and the new station cone. Here in this paper, we present 
a new modified algorithm for the case, when at each iteration we determine a new interior point. The new building interior point 
moves toward the optimal vertex. Thanks to the shortened from both inside and outside, the new version allows to find quicker the 
optimal solution. The computational experiments show that the number of iterations of the new modified algorithm is significantly 
smaller than that of the second phase of the dual simplex method. 
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1. Introduction 

Inventing linear programming by Danzig [4] in 

1947 is recognized as one of the greatest mathematical 

discoveries of the 20th century. Since then, thousands 

of papers and monographs have appeared and 

dedication to this important mathematical field [see 1, 

5, 12, 13]. Great sense of Danzig’s simplex method is 

probably not in the mathematical difficulty level, 

which is at the level of broad application in all areas 

of human life. Therefore any extension or modification 

of the simplex algorithm toward better are welcome. 

In 1979 Khachian has opened a new horizon for the 

linear programming as prove that the linear 

programming problem be solved in polynomial time 

[7]. Khachian’s ellipsoid method gives a bound of 

ܱሺ݊ହܮሻ arithmetic operations on number with ܱሺ݊ܮሻ 

digits. Despite its major theoretical advance, the 

ellipsoid method had little practical impact as the 

simplex method is more efficient for many classes of 

linear programming problems [1, 8, 12, 13]. 

Other important invention of the linear 

programming was in 1984, when Kamarkar [6] 
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proposed a new projective method for linear 

programming which requires ܱሺ݊ଷ.ହܮሻ  operations. 

Kamarkar’s algorithm not only improved Khachian's 

theoretical worst-case polynomial bound but in fact 

provides practical test results better than the simplex 

method. There are several important open problems in 

the theory of linear programming. One of them is the 

question: To be or not a variations of simplex 

algorithm that run in polynomial time? 

In [3] Chu N.N, Duong P.C and Hue L.T have 

proposed a new algorithm combining interior and 

exterior approaches to solve linear programming 

problems. This method can be viewed as a variation of 

simplex method in combination with interior approach. 

Here in this paper, we present a new modified 

algorithm for the case, when at each iteration we 

determine a new interior point. The new building 

interior point moves toward the optimal vertex. 

Thanks to the shortened from both inside and outside, 

the new version allows to find quicker the optimal 

solution.  

The paper is organized as follows. In section 2 we 

introduce the concept of station cone which is 

fundametal important for the construction of the 

algorithm. In section 3, we describe the criterion of 
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selecting the leaving variables. The section 4 proposes 

the selecting rule for entering vectors. The section 5 

describes the ogirinal algorithm in [3]. The new 

modified algorithm is presenting in section 6. The 

section 7 presents the computational experiments. 

Finally, some discussions have been made in section 

8. 

2. Station Cone 

For the convenience of the reader, we would like to 

briefly present here the concept station cone[3]. 

Consider a linear programming problem in the matrix 

form 

 
max  ,

: ,  0 ,

c x

x P x Ax b x   
      (2.1) 

where xn m n m nc ,A A ,b , x .       Let 

1 2 mA ,A ,...,A  denote the row vectors.Through this 

paper we suppose that (2.1) and its dual problem are 

nondegenerated.We also suggest the feasible region ܲ 

of (2.1) has strict interior points. For simplicity of 

argument, we assume that the matrix A has full 

column rank n and n < m. 

Let    1 2, ,..., 1,2,...,n nI i i i m   such that the 

vectors ,  i nA i I  are linear independent. This 

means the vector ,  i nA i I  establish a basis of ܴ௡. 

Therefore any vector n
lA   can be expressed as a 

linear combination of the vectors i nA ,i I .
 

Let 

kli  be the linear coefficient of the vector lA  in the 

basis ,  
ki k nA i I , then 

1

,   1,2,..., ,  1,2,..., .
k k

n

lj li i j
k

a a j n l m


    

Consider the system of homogeneous linear 

inequalities 

0,   . 
ki k nA x i I           (2.2) 

We indeed need to introduce the following 

definition. 

Definition 1. Thelinear inequality 

0       lA x            (2.3) 

is called the consequent linear inequality of the system 

(2.2) if and only if all the solutions of the system (2.2) 

satisfy the linear inequality (2.3). 

We need the following well known result in theory 

of linear inequalities.  

Theorem 2.1 [2]. The linear inequality (2.3) is a 

consequent linear inequality of the system (2.2) if and 

only if 

  
k k k

n

l li i li k n
k 1

A A , 0, i I 


    

Definition 2. Let polyhedral cone M be defined by 

system  

1 1 2 2
,  , ...., ,

n ni i i i i iA x b A x b A x b    

where 
1 2
, ,...,

ni i iA A A  are linear independent. Then 

M is called a station cone if the vector c is a 
nonnegative linear combination of the vectors 

1 2
, ,..., .

ni i iA A A  The vertex x* is called a station 

solution and the vectors 
1 2
, ,...,

ni i iA A A  is called a 

basis of a station cone. 

In other words, the solutions of the system of linear 

inequalities that create the station cones satisfy the 

inequality *, ,c x c x , whereas x* is the vertex 

of the station cones. This is equal to the fact that the 

inequality *, ,c x c x  is the consequent 

inequality of the system of the linear inequalities, 

which formulate the station cone. This also means that 

the vector c is the nonnegative linear combination of 

the basic vectors of the station cone.  

We have the following result 

Theorem 2.2 [3]. If the station solution x* satisfies 

all the constraints of the problem (2.1) then x* is an 

optimal solution.  

3. Selecting the Leaving Vector 

In this section, for convenience, we will repeat the 
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rule for selecting the leaving vector [3]. Let 

1 2
, ,...,

ni i iA A A  be the basis of the station cone and 

0
1 1

,  ,    1, 2,...
k k

n n

k i j kj i
k k

c A A A j m 
 

     

Then from definion 2.1 follows that 

0,   1, 2,...ko k n    . 

We assume that all ko  are strictly positive, i.e.  

0 0,  1, 2,...,k k n   . 

It is obvious that 0 0,  1,2,..., ;  k k n  

0 0,  1,...,k k n m     is a basis solution of the 

dual problem of (2.1): 

 min  , \ , 0T Tb A c       (3.1) 

where mR  . The assumption 0 0,  k 

1, 2,...,k n  means that the dual problem (3.1) is 

nondegenerated. 

So we have proved the following 

Theorem 2.3 [3]. Let 
1 2
, ,...,

ni i iA A A  be the basis 

of the station cone. Suppose we replaced 
ri

A  by sA . 

Then 
1 1 1
,..., , , ,...,

r r ni i s i iA A A A A
 

 is the basis of the 

station cone if the leaving vector 
ri

A  was chosen by 

condition 

0 0 ,min   0,   0.   r k
rsksk

rs ks

  
 

     (3.4) 

Theorem 2.4 [3]. Among the coefficients ks , k = 

1, 2,..., n at least one rs  exists such that 0rs  . 

4. Selecting the Entering Vector 

The idea of algorithm in [3] is moving from one 

vertex kx  of a station cone kM to another vertex 

 1kx 
 of another station cone k 1M   with a better 

value of the objective function. The movement 

depends on the cutting hyperplane s sA x b  which 

will be defined by the intersection of the feasible 

polytope P and the segment connecting the vertex kx  

of the station cone kM  and the given interior point 

O P.  The movement stops when the vertex kx of 

the station cone kM  becomes a feasible point.  

Let O be a strict interior point of P. Denoted by

0 ,  1,2,...,i i n  the projections of ܱ  onto ݊ 

facets of the station cone ܯ௞. Let ,  1, 2,...,iH i n

be the intersection points of the boundary of  

P and the segments 0,  0 ,  1,2,...,i i n . Then the 

new point ܱכ will be calculated by the following  

formula 

1

1
*

1

n

i
i

O H O
n 

     
             (4.5) 

It is obvious that ܱכ in (4.5) is the barycenter of 

the polytope 1 2, ,..., ,0.nH H H  Let us connect the 

point ܱכ with vertex ݔ௞ of the station cone ܯ௞. Let 

,כ௞ denote the intersection point of P and ሾܱݖ  ,௞ሿݔ

such that ݖ௞ א ܲ ,ሺݖ௞,  ௞ሿ ܲ. Then the inequalityݔ

ݔ௦ܣ ൑ ܾ௦ with ܣ௦ݖ௞ ൌ  ܾ௦ will bechosen as entering 

variable. This means the inequality ܣ௦ݔ ൑ ܾ௦  will 

enter the next station cone ܯሼ௞ାଵሽ(if ܣ௜ݖ௞ ൌ  ܾ௜ for 

some 1 2, ,..., ,0.nH H H  then we can choose any 

݅ א ሼ݅ଵ, ݅ଶ, …, ݅௞ሽ ). The point 
kz  will be calculated 

as follows. 

Denote  1,2,...,I m  such that Ai 
kx > bi, i = 

1, 2, …, m, we have to find ,  i i I   such that

,  ,i i iA z b i I   i.e. 

( (1 ) ) ,  0 1,  .k
i i i i iA O x b i I         

Therefore 

 max (1 ) ,  ,  0 1,  i I

s

k
i i i i i i i iz O x A z b



   



      
 

will define the cutting hyperplane s sA x b  and 

sA  is the entering vector into the next station cone 
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Mk+1. If 
k

i iA z b  for  1 2, ,..., ki i i i  then we 

can choose any  1 2, ,...., ki i i i . 

Theorem 2.5 [3]. Let kx  be a vertex of Mk at step 

k. Suppose 
kx is a unique optimal solution of ,c x , 

ݔ׊  Mk. Thenא

1, ,k kc x c x  . 

Remark 2.1. The assumption
kx  is a unique 

optimal solution of ,c x  on Mk which is equivalent 

to the assumption that the vector c is a strict positive 
linear combination of the basis vectors of Mk i.e. 

0 0,  1,2,...,k k n    . This means the dual 

problem (3.1) of (2.1) is nondegenerated.  

5. Interior Exterior Algorithm 

For convernience, we will describe here the 

algorithm was proposed in [3]. 

1. Initialization 

Determine the starting station cone ܯ. Calculate 

the point ܱכ by formula (4.5). 

Let: ܯ௞ ൌ ;ܯ  ܱ ൌ  .כܱ 

2. Step ሺ࢑ ൌ ૚, ૛, … ሻ 

If the vertex ݔ௞  of the station cone ܯ௞  is a 

feasible point of P, then ݔ௞ is an optimal solution. In 

the contrary case, select the inequality ܣ௦ݔ ൑ ܾ௦ for 

entering the station cone and define the inequality 

௜ೝܣ
ݔ ൑ ܾ௜ೝ

 for leaving the station cone. Determine the 

new station cone ܯሼ௞ାଵሽ with the vertex ݔሼ௞ାଵሽ. 

Go to next step ݇ ൌ ݇ ൅ 1. 

Remark.Except for the calculation for finding the 

entering variable, each step of the above algorithm is a 

simplex pivot. 

With the assumption that the dual problem (3.1) of 

(2.1) is nondegenerated, then 

Theorem2.6 [3]. The above algorithm produces an 

optimal solution after a finite number of iterations. 

6. New Modified Algorithm 

Unlike the algorithm in Section 5, in the section 

below,we will develop algorithms that at each 

iteration k will have to find new points Ok. The 

sequence of interior points Ok moves toward   

optimal vertex. And so we conduct parallel two 

asymptoticall, from outside to inside and from the 

inside out. The interior piont Ok will be defined as 

follows: 

  k
k 1 k k k k n

1
O O 1 z ,

2
        

Clearly that Ok+1 is an interior point of P. Let 

௞ݕ ൌ
2௡ െ 2

2௡ ܱ௞ ൅
2

2௡  ௞ݖ

Wenoticed Ok+1 is also an interior point of the 

following problem 

max<c,x> 

ݔܣ|ݔԖܲ௞ାଵሼݔ ൑ ܾ. ݔ ൒ 0, ሺܿ, ሻݔ ൒ ሺܿ,  ௞ሻሽ.(6.1)ݕ

Obviously, the constraint ሺܿ, ሻݔ ൒ ሺܿ, ௞ሻݕ has 

eliminated part of the feasible region Pk. So the 

problem (6.1) has smaller feasible region after each 

iteration. 

In [9,10] K. G. Murty has shown that from the 

interior point ܱ௞ାଵԖܲ௞ାଵ , can build the biggest 

sphere in Pk+1 with center ܱ௞ାଵ
כ  on the hyperplane 

ሺܿ, ሻݔ ൌ ሺܿ,  ௞ሻ, and the construction sphere requiresݕ

polynomial computational complexity. Here for 

simplicity, instead of finding the center ܱ௞ାଵ
כ  of the 

biggest sphere, we find the point ܱ௞ାଵ
כ  as in (4.5). 

Let ܱ௞ାଵ ൌ ܱ௞ାଵ
כ . For convenience, we will call the 

algorithm which is described below as station cone 

algorithm.  

1. Initialization 

Determine the starting station cone ܯ. Calculate 

the point ܱכ by formula (4.5).Let:ܯ௞ ൌ ௞ܲ ,ܯ ൌ ܲ, 

Ok= ܱכ.  

2. Step ሺ࢑ ൌ ૚, ૛, … ሻ 

If the vertex ݔ௞  of the station cone ܯ௞  is a 

feasible point of Pk, then ݔ௞ is an optimal solution. In 

the contrary case, select the inequality ܣ௦ݔ ൑ ܾ௦ for 

entering the station cone and define the inequality 

௜ೝܣ
ݔ ൑ ܾ௜ೝ

 for leaving the station cone. Determine the 

new station cone ܯሼ௞ାଵሽ  with the vertex ݔሼ௞ାଵሽ . 
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Calculate the points : ௞ݖ ,yk, Ok+1, ܱ௞ାଵ
כ . Let 

ܱ௞ାଵ ൌ ܱ௞ାଵ
כ . 

Go to next step ݇ ൌ ݇ ൅ 1. 

7. Computational Experiences 

The statione conealgorithm have been tested, using 

MatLab, on a set of randomly generated linear 

problems [11] of the form 

max  ,  

     ,

c x

Ax b





            (7.1) 

Where ܿ ൌ ሺ1, 1, … , 1ሻ א ܴ௡, A is the full matrix of 

( n m ) with ija  is randomly generated from the 

interval [0,1), the vector b has been chosen such that 

the hyperplanes , ,  1,..., i iA x b i m are tangent 

to the sphere(0, 1) with center at origin and radius r = 
1.To ensure that (7.1) has a finite optimal solution we 
add the constraints 

1 ,   1, 2, ..., .ix i n            (7.2) 

The optimal solution and objective function value 

of ((7.1)-(7.2)) have been retested by simplex and dual 

algorithm from MatLab. We tested several hundreds 

of examples. Due to the limited framework of the 

article, here we print out 2 table results. 
 

Table 1  150 300, 200 700n m    . 

n m Problem 
Iterations 

STATION CONE SIMPLEX 

150 200 

1 1014 12367 

2 1251 14973 

3 957 11586 

150 250 

1 1245 14868 

2 1123 13834 

3 976 11676 

200 300 

1 2238 25476 

2 2153 24650 

3 2630 28314 

250 300 

1 3183 36429 

2 3242 37878 

3 3465 41568 

250 500 

1 5357 66946 

2 5403 63309 

3 5162 68936 

300 600 1 7746 108541 

350 700 1 10065 158096 
 

Table 2. n = 40, 100, 300, 400, 500; m=200,1000 

n m Problem 
Iterations 

STATION CONE DUAL SIMPLEX 

40 200 

1 184 1250 

2 196 1633 

3 212 1485 

100 200 

1 621 7654 

2 719 8547 

3 708 8288 

300 1000 1 7843 238321 

400 1000 2 11456 393562 

500 1000 3 18305 587656  
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8. Discussion 

1. The main purpose of the station cone algorithm is 

simultaneously approaching from inside out and 

outside in. From the outside is moving in from one to 

otherstation cone. From the inside out is the building 

sequence of interior points, such that each subsequent 

point near the optimal solution than the previous 

point. 

2. Each iteration of the statione conealgorithm is a 

simplex pivot.If we can figure out how to build point 

Ok so that their numbers are limited on by a 

polynimial, thenwe can construct a polynomial 

algorithm for linear programming. 

3. Test data is generated randomly. All input matrix 

are full density. This has made the tests take quite 

time, especially when m and n are large enough. 

4. Test results show that, with the increase of m and 

n, the number of iterations of the dual simplex rose 

much faster than the number of iterations of the 

station cone algorithm. In other words, the station 

cone algorithm has more advantages when m and n are 

large numbers. 

5.We believe that there is a class of linear 

programming which allow to construct a polynomial 

sequence of interior points converging to the optimal 

solution. And we will try to find a such class of linear 

programming in future research work. 
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