
Journal of Communication and Computer 12 (2015) 273-285 
doi:10.17265/1548-7709/2015.06.001 

A Review of Operating System Infrastructure for 

Real-Time Embedded Software 

Luis Fernando Friedrich and Mario A. R. Dantas 

Department of Computer Science, PPGCC, University of Santa Catarina, CEP 88040-900, Florianopolis/SC, Brazil 

 

Abstract: Since their early applications in the 1960s, embedded systems have come down in price and increased dramatically in 
processing power and functionality. In addition, embedded systems are becoming increasingly complex. High-end devices, such as 
mobile phones, PDAs, entertainment devices, and set-top boxes, feature millions of lines of code with varying degrees of assurance 
of correctness. Nowadays, more and more embedded systems are implementing in a distributed way, and a wide range of 
high-performance distributed embedded systems have been design and deployed. As many aspects of embedded system design 
become increasingly dependent on the effective interaction of distributed processors, it is clear that much effort needs to be focus on 
software infrastructure, such as operating systems, to ensure that they provide functionality to fulfill these requirements. This paper 
reviews some of the approaches associated with the operating systems used to fulfill these needs. 
 
Key words: Embedded systems, real-time operating systems, multi-core. 
 

1. Introduction 

An embedded system can be defined as an 

combination of devices that includes a programmable 

computer and perhaps additional parts, either 

mechanical or electronic, and is designed to perform a 

dedicated function, but is not itself intended to be a 

general purpose computer. The word embedded 

reflects the fact that these systems are typically a 

fundamental part of a larger system. Embedded 

systems are also call embedded real-time systems. 

Embedded systems play an important role, in a wide 

variety of applications, from small stand-alone 

systems, like a network router, to complex DREs 

(distributed real-time embedded systems) supporting 

large-scale mission-critical domains such as avionic 

applications. 

All embedded systems have dedicated functionality 

and are therefore dedicated systems. “Dedicated 

functionality”, means that the system has been design 

for a specific purpose and for a set of pre-defined 

                                                           
Corresponding author: Luis Fernando Friedrich, Dr. Eng., 

professor, research fields: distributed and real-time embedded  
operating systems. 

tasks. Moreover, the system functionality predefine in 

the hardware and software. 

The wide variety of applications implies that the 

properties, platforms, and techniques on which 

embedded systems are based on vary widely. 

Hardware needs can sometimes be meet with general- 

purpose processors. For instance, high-end devices, 

including mobile phones, PDAs, and consumer 

electronics (entertainment devices such as TVs and 

DVD players, set-top boxes, etc.), have incorporated 

microprocessors as a core system component, instead 

of using application-specific hardware. However, in 

many systems specific processors are required, for 

instance, DSP devices to perform fast signal 

processing. In exceptional cases where required 

reaction times are extremely short, microprocessor 

technology cannot always satisfy the timing 

constraints and hard-wired electronic logic devices 

must be use instead. 

Functionality can be modified or adjusted through 

software changes. It is possible to add functionality to 

a device through a software upgrade as long as the 

hardware does not need to be modified, and the 

available memory space is large enough to 

D 
DAVID PUBLISHING 



A Review of Operating System Infrastructure for Real-Time Embedded Software 

 

274

accommodate the changes. For instance, high-end 

devices feature millions of lines of code with varying 

degrees of assurance of correctness. They may 

incorporate third-party components, and even 

complete operating systems (such as Linux) that can 

be installed by the manufacturer, suppliers and even 

the end user. In such cases, it becomes impossible for 

embedded system vendors to provide guarantees about 

the behavior of the device, when supporting such 

devices using a traditional unprotected real-time 

executive approach. Failure or malicious behavior of a 

single software component on the device will affect 

the whole device. 

It is also possible to modify part of the hardware 

functionality, using for example, technology such as 

FPGA (field-programmable gate array). Memory 

management capabilities are necessary in some 

systems to provide memory protection and virtual 

memory. Special purpose interfaces are also need to 

support a variety of external peripheral devices, 

control energy consumption, and carry out other 

functions. 

In mission-critical systems besides having to meet 

deadlines, tasks are essentially critical and require 

special real-time responsiveness. However, beyond 

survivability mission-critical systems must also satisfy 

the same rigid requirements of reliability and fault 

tolerance. Dealing with such requirements demands a 

high degree of system function adaptability. 

Nowadays, the use of processor-based devices has 

increased dramatically for most human activities, both 

professional and leisure. Rapid progress in processor 

and sensor technology combined with the expanding 

diversity of application fields is placing enormous 

demands on the facilities that software infrastructure 

such as operating systems must provide to ensure that 

they provide functionality to fulfill the requirements. 

This paper reviews the current state of embedded 

systems from small stand-alone systems to distributed 

real-time systems, looking at some of the software 

infrastructure used to provide the functionality they 

need. Software infrastructure includes embedded 

operating systems, real-time operating systems and 

other forms of middleware. First, the paper presents 

the concepts and characteristics of embedded systems. 

Next, one presents some of the requirements that are 

generally useful for embedded systems. In the next 

section, we present some alternatives for the software 

infrastructure that are intend to provide the necessary 

functional and non-functional requirements for 

embedded system software to execute. Finally, we 

present conclusions on software infrastructure for 

embedded applications.  

2. A Review of Embedded Systems 

An embedded system is hided inside a system or 

environment, performing some dedicated function. 

The hosting system may be a specific system such as a 

car or an aircraft, a machine or a factory, but it may 

also be a person in the case of an intelligent pace 

maker or some hearing device, where the embedded 

system replaces or extends the human capabilities. 

Embedding computation into the environment and 

everyday objects (also called pervasive computing) 

would enable people to cooperate with 

information-processing devices in a more informal 

way than they currently do, and independent of their 

location or situation they find themselves.  

As there is an enormous variety of embedded 

systems from small, intelligent sensors to vast aircraft 

control systems and vehicle simulators, the functions 

they performed may vary a lot. Examples of how 

real-time and embedded systems provide us with 

services are in Automotive or Avionics, Health and 

Medical Equipment, Consumer Electronics and 

Intelligent Homes, and Telecommunications. 

2.1 Categories of Embedded Systems 

Unlike PCs and workstations that execute regular 

non-real-time general-purpose applications, such as 

our editor and network browser, the computers and 

networks that run embedded real-time applications are 



A Review of Operating System Infrastructure for Real-Time Embedded Software 

 

275

often hide from our view. Concurrently, embedded 

systems are becoming smaller and smaller, heading 

more and more towards networked. In this paper, we 

aim embedded systems, which in turn we have 

subdivided in two categories: stand-alone embedded 

systems and networked embedded systems. 

2.1.1 SES (stand-alone embedded systems) 

The last two decades have witnessed a significant 

evolution of stand-alone embedded systems. These 

systems are being assembly from IP(intellectual 

property) components, which are assembly on a SoC 

(system-on-chip). SoCs offer a potential to embed 

complex functionalities and to meet demanding 

performance requirements of applications such as 

DSPs, network, and multimedia processors. 

Most of CE (consumer electronics) devices are 

classify as SES. For instance, the explosion of the CE 

market over the past decade has generated products 

mainly in three categories:  

Low-end devices generally built around application 

specific hardware like ASIC or SoC with small 

amounts of program memory (ROM), usually around 

256 Kbytes, and inexpensive processors; 

Mid-range consumer devices, such as video 

cameras, are characterized by moderate amounts of 

program memory like 1 to 2 Mbytes; 

High-end devices, such as smart phones and set-top 

boxes, usually have much more memory, up to 32 

Mbytes. In most cases, they use powerful processors 

and are develop by large programming teams. 

2.1.2 NES (Networked embedded systems) 

Networked embedded systems may come in many 

different forms. Fundamentally, networked embedded 

system is a collection of spatially and functionally 

distributed embedded nodes interconnected by means 

of wireline or wireless communication infrastructure 

and protocols, with some sensing and actuation 

elements interacting with the environment [1].  

In order to be in accordance to the different forms 

that Networked Embedded Systems may come, in this 

paper we consider three types of networked embedded 

systems, based on what is proposed in [2]: Embedded 

Systems, Sensor Systems, and Distributed Real-Time 

and Embedded. 

ES (embedded systems) are systems where the 

computing components are embed into some other 

purpose built device (an aircraft, a car, or a home). 

Here the characteristic is that these systems are 

usually not mobile and often not all devices are 

connected, usually with only one other server machine 

and most of the time not to external networks.  

SN (sensor networks) are most of the time 

composed by a large number of possibly tiny devices 

having a single task which is monitoring some 

conditions within an environment and report back to a 

central server. Wireless sensor networks are a widely 

deployed example of networked embedded systems. 

There is a great interest both the industry and 

academia in wireless sensor networks technologies 

that enable deployment of a wide range of applications, 

such as military, environmental monitoring, e-health, 

etc. 

DRES (distributed real-time and embedded systems) 

play an increasingly important role in modern 

application domains, including military command and 

control, avionics and air traffic control, and medicine 

and emergency response. Distributed real-time and 

embedded systems outline a computational 

infrastructure of many large-scale mission-critical 

domains to control a variety of artifacts across a 

number of sites. In life-critical military DRE systems 

[3], to provide the right answer at the right time is 

crucial. 

2.2 Properties of Embedded Systems 

Traditional, embedded software can be quite 

complex and have a number of requirements. These 

have implications both for the application and for the 

software infrastructure, such as the operating system. 

According to Crespo [4], embedded software have 

several common features (properties) such as the 

following: 



A Review of Operating System Infrastructure for Real-Time Embedded Software 

 

276

Rc (resource-constrained computing), meaning they 

are frequently rigorously constrained regarding 

available resources. As a result of these restrictions, 

the system needs to use efficiently its computational 

resources. For instance, the operating system must be 

able to operate in resource-constrained environments; 

Rt (real-time requirements) are needed because 

many embedded applications interact deeply with the 

real world, they often have strict real-time 

requirements to fulfill such as temporal requirement, 

or deadline; 

Ec (embedded control systems), because most of 

the embedded systems perform control activities 

involving input data acquisition (sensing) and output 

delivery (actuation); 

Qs (quality of service), having an efficient use of 

the system resources is necessary in embedded 

systems. Feedback based approaches are being used to 

adjust the performance or quality of service of the 

applications as a function of the available resources; 

Mc (multi-Core platforms) are becoming very 

common. The great majority of CPU manufacturers 

have migrated to multicore technology as a mean to 

keep improving the performance of their product 

lines; 

Embedded systems are getting more and more 

complex, dynamic, and open, while interacting with a 

progressively more demanding and heterogeneous 

environment. As consequence, the reliability and 

security of these systems have become major concerns. 

For example, safety-critical systems must not only 

guarantee real-time behavior but furthermore they 

require absolute dependability and availability of 

system service; 

The Dp (notion of dependability) includes aspects 

of reliability and availability. Reliability and 

availability relate to the probability of working 

continuously for a given duration and the percentage 

of uptime, respectively; 

Sf (Safety) is concerned with the prevention of the 

loss of life and/or serious damage to people, property 

or the environment. This is straightforward for 

medical devices, but the characteristic is also valid for 

an aircraft, a car, etc.; 

Sc (Security) is concerned with the capability to 

prevent information and system resources from being 

use or altered by unauthorized users. A secure system 

is one where only intended use of the system will be 

permit.  

As embedded systems get networked, the scenario 

gets a little more complex and while some common 

features become more stringent, other requisites 

become very important to be provided.  

Now, supporting properties such as Fh (failure 

handling) are relevant to NES (networked embedded 

systems). In NES, nodes may fail or experience 

problems due to several reasons. The failure of 

individual nodes should not affect the overall task of a 

networked embedded system thus leading to an 

increased need for providing mechanisms to ensure 

fault tolerance to the applications. 

Table 1 summarizes the different categories of 

embedded systems (presented in Sections 2.1.1 and 

2.1.2) and properties (introduced in Section 2.2) 

which are usually required in each of them.  

In order to establish the importance of the 

properties to the different embedded systems they are 

classify as M (mandatory) in case you must fulfill the 

requirement, W (wanted) when it is advantageous to 

have it, O (optional) when to have it or not is not a big 

issue. 

3. A Review of Operating System 
Infrastructure for Embedded Systems 

Embedded systems have been around at least as 

long as the microprocessor. The software for these 

systems has been build, more or less successfully, 

using several different paradigms. The manufacturer 

builds some systems from scratch with all software 

being created specifically for the device in question. 

Not all components of embedded systems need to be 

design from scratch. For instance, software infrastructure 
 



A Review of Operating System Infrastructure for Real-Time Embedded Software 

 

277

 

Table 1  Properties of embedded systems. 

 Rc Rt Ec Qs Mc Dp Sf Sc Fh 

SES          

Low-end M M M W M W M W W 

Med-end W W M M M W W W W 

High-end O W M M M W W W W 

NES          

ES M M M M W M M W M 

SN M W M M O M W M M 

DRES W M M M W M M M M 
 

such as OS (operating systems), are examples of 

reusable software components. Such components are 

available from independent software vendors and in 

some cases as open source software. 

The rapid progress in processor and sensor 

technology combined with the expanding diversity of 

application fields is placing huge demands on the 

facilities that an embedded operating system must 

provide. The variety of applications where embedded 

systems are being important also implies that the 

properties, platforms, and techniques on which 

embedded systems founded can be very different. All 

the types of embedded systems, from SES 

(stand-alone embedded systems) to NES (networked 

embedded systems), need some specific type of 

service from software infrastructure such as operating 

system. For instance, these services are supposed to be 

prepared to attend to functional and non-functional 

requirements. In this section, we give an overview of 

presently available software infrastructures for 

embedded systems, starting with operating systems 

architectures. In addition, it presents an overview of 

existing operating systems divided in two categories: 

real-time embedded systems and domain specific 

embedded systems. 

For each one of these categories it presents a table 

in order to survey how the embedded systems 

properties, introduced in Section 2.2, have being 

support by these operating systems. The table gives 

you a view on how the operating systems provide and 

enforce a certain property: A (adequately) when the 

OS provides and enforces the property; P (poorly) 

when the OS provides the property but does not 

enforce it and N (none) when the OS is not able to 

support the property. 

3.1 Real-Time Embedded Operating Systems 

Architectures 

Embedded systems typically have requirements that 

are very different from the ones for desktop computers, 

and hence operating systems for embedded systems 

are diverse from GPOS (general-purpose operating 

systems). Operating systems for embedded systems 

usually are design to be tailor for a specific 

application and therefore are more static than GPOS. 

In addition, most embedded systems are application 

specific and require real-time guarantees to function 

correctly. Therefore, they need RTOS (real-time 

operating systems), which can be flexible and 

customized towards the application at hand. 

Designing a proper RTOS architecture needs some 

delicate decisions. The basic services like process 

management, inter-process communication, interrupt 

handling, or process synchronization have to be 

provided in an efficient manner making use of a very 

restricted resource budget. The kernel design, one of 

the most common Operating Systems architectures 

has been around for almost 40 years and offers a clear 

separation between the operating system and the 

application running on top of it. The processes can use 

the kernel functionality by performing system calls. 

System calls are software interrupts which allow 

switching from the application to the operating system. 

Various techniques such as library-based approaches, 



A Review of Operating System Infrastructure for Real-Time Embedded Software 

 

278

monolithic kernels, microkernels, or virtual machines 

have been develop in order to structure the OS, each 

of them dedicated to specific demands [5]. The 

challenge is how to implement applications that can 

execute efficiently on limited resource and that meet 

non-functional requirements such as timeliness, 

robustness, dependability, performance, and so on. 

3.1.1 Library-Based Architecture 

Not all embedded systems need to be support by 

operating system functionality. Usually, the simplest 

embedded systems are building without an explicit 

operating system. Such systems do not require 

complex mechanisms or real-time scheduling of 

concurrent tasks, and therefore the implementation of 

then use a simple main loop or executive cyclic 

approaches. In addition, dedicated networked 

embedded systems usually do not need an operating 

system for its implementation, but only a stand-alone 

protocol stack. For instance, in systems without 

MMUs, RTOS are building as a library linked 

together with the application. The result is one single 

executable that executed in one single address space. 

In this particular case, system calls simply 

implemented as function calls and no context-switches 

are required when calling an operating system 

function. In addition, no loader is required to load 

applications at run-time. This is often more efficient 

and less time consuming as a full context switch with 

address space changes when having an RTOS 

implemented as a kernel in a separated address space. 

However, when using a library based RTOS running 

on systems without MMU, we have no security 

through hardware memory separation. The 

implementation of all application and operating 

system activities are in the same address space. Bugs 

in one part of the system easily propagate to the whole 

system. On small microcontrollers where only one 

application execute this disadvantage is acceptable. 

3.1.2 Monolithic Kernel Architecture 

The monolithic approach of building a kernel 

asserts that all functionality provided by the OS are 

within the kernel itself, “The structure is that there is 

no structure” [6]. The kernel composes by a set of 

procedures that are able to call each other without any 

restrictions. These procedures include service 

functions that are the entry points for the interrupts to 

the kernel. The advantage of monolithic kernel 

organization is performance, low overhead in doing 

system calls. However, the big problem in the case of 

monolithic kernels is that any single fault occurring 

within the kernel functions can lead to a total crash of 

the whole system. In most cases, device drivers 

included in a monolithic kernel are very error-prone. 

Several studies on software dependability report fault 

densities of 1 to 16 bugs per 1,000 lines of executable 

code. Drivers, which typically comprise 70% of the 

operating system code, have a reported error rate that 

is 3 to 7 times higher. 

3.1.3 Microkernel Architecture 

In order to better organizing monolithic kernels the 

microkernel architecture was develop. The basic 

assumption is to reduce the services provided by the 

kernel dramatically by putting all services, which are 

not essentially necessary for the microkernel, into user 

space as isolated processes. In this case, to use a 

service a client application process needs to send a 

message requesting the service to a server process 

which receives the request, completes the request and 

sends back a response message to the client 

application process. Usually, the following services 

are located into the microkernel itself: Dispatcher, 

Scheduler, and Memory Manager. The advantage of 

microkernel’s if compared to monolithic kernels is the 

separation of services from the kernel itself. As a 

result, making the kernel a very small piece of 

software is more dependable and maintained more 

easily than a monolithic kernel. However, to get better 

structuring and dependability, it does need a lot of 

inter-process communication through message passing 

and much context switching. In comparison to 

monolithic kernels, it also has an effect on the 

real-time behavior. In microkernel architecture, 



A Review of Operating System Infrastructure for Real-Time Embedded Software 

 

279

system calls do not necessarily execute at the time 

they have been initiate, because the services behave 

like regular processes that have to be schedule by the 

real-time scheduler. 

3.1.4 Multi-Core Architecture 

Multi-core architectures are an attempt to solve the 

lack of computational power in embedded systems by 

enabling computational concurrency. By using several 

slower cores together with lower-level hardware 

support for very specific tasks instead of 

cost-expensive high performance processors, you can 

get very good parallel performance and correspond to 

the cost constraints of the embedded system market. 

However, multi-core architectures imply further 

challenges on the software and hence on operating 

systems that support these architectures. The design of 

an operating system applied in multi-core systems is 

strongly dependent on the underlying system 

architecture. The software design process is strongly 

coupled or even an inherent part of the hardware 

design. Depending on the architecture, the cores in a 

multi-core system typically share many more things, 

such as interrupt controllers, devices, and caches. 

Multi-core architectures need special techniques for 

process management, memory management, and 

synchronization. Although multicores and operating 

systems can be mix in a wide variety of configurations, 

there are some use cases that are more common than 

others are. When utilizing a multicore, there are two 

fundamental ways the operating system can manage 

the cores: SMP (symmetric multiprocessing) and 

AMP (asymmetric multiprocessing).When using SMP, 

one operating system is controlling multiple cores. 

When a core becomes available, it will run the next 

thread on the ready queue. AMP, on the other hand, is 

using one operating system per core. It could be two 

copies of the same OS or two very different OSes 

such as an RTOS and a general purpose OS like 

Linux. 

There are advantages and disadvantages of both 

approaches, and the best choice depends on the 

application. SMP has the advantage that it can 

load-balance threads over the cores as long as there 

are more threads that typically can run than there are 

processors. In addition, it is generally easier to 

manage and develop for only one operating system. 

AMP, on the other hand, is more efficient because 

there is less synchronization needed between the cores. 

In addition, AMP has other advantages such as 

dependability, if one core goes down, the rest can 

continue to operate; and scalability, AMP typically 

scales to a larger number of cores. 

Regarding the scheduling algorithms, Brandenburg 

[7] categorizes the scheduling approaches that an 

Operating System can adopt into partitioned, global 

and clustered. The partitioned approach employs 

processor affinity, forcing each thread to run into a 

specific core, and scheduling each core individually. 

The global scheduling approach permits threads to 

migrate from one core to another, thus the cores share 

a single run queue. Finally, a clustered approach, 

which groups some cores together and provides a 

single run queue for each group, using global 

scheduling within a group. 

3.1.5 Virtual Machine Architecture 

The main idea of system virtual machines is to 

provide an exact copy of the available hardware for 

every virtual machine. Therefore, a small control 

program is necessary to assign the available hardware 

to the virtual machines. This program is called the 

VMM (virtual machine monitor) or hypervisor. A 

hypervisor is a piece of code that manages one or 

more operating systems that run on top of it. This 

program is the only code executed in supervisor mode 

and ensures that the virtual machines are clearly 

isolated from each other. It does that by creating 

partitions (or virtual boards) that run on top of the 

hypervisor, by virtualizing certain aspects of a system. 

For example, by virtualizing the CPU, you can run 

multiple virtual CPUs on top of one physical CPU or 

core. In addition, virtualization usually applied to 

memory in order to split the physical memory up so 



A Review of Operating System Infrastructure for Real-Time Embedded Software 

 

280

that multiple partitions can use some part of the real 

memory. Finally, when multiple virtual boards need to 

share devices such as serial ports, Ethernet ports, 

graphics, and so forth, you need to virtualize the 

devices as well.  

There are two types of hypervisors. Type 1 is a 

dedicated hypervisor (also called embedded 

hypervisor) that is small and runs directly on the 

hardware. Type 2 (also called server hypervisor) 

typically runs on top of or in conjunction with an 

operating system and uses the resources of that host 

operating system. The main differences between an 

embedded hypervisor and a server hypervisor are due 

to very different requirements. For instance, 

performance and isolation are the two main goals for 

an embedded hypervisor while for a server hypervisor 

it is very important to be able to run a guest OS 

unmodified. 

3.2 Real-Time Embedded Operating Systems 

Traditional RTOS (real-time embedded operating 

systems) such as VxWorks [8], and QNX [9], are 

typically large (requiring hundreds of KB or more of 

memory), general-purpose systems consisting of a 

binary kernel with a rich set of programming 

interfaces. Such RTOS target systems with greater 

CPU and memory resources, and generally support 

features such as full multitasking, memory protection, 

TCP/IP networking, and POSIX-standard APIs that 

are undesirable (both in terms of overhead and 

generality) for sensor network nodes. They provide 

memory protection given the appropriate hardware 

support.  

QNX Neutrinois a RTOS with a microkernel 

architecture [10]. In the traditional SMP scheduling 

style, the QNX Neutrino allows threads to migrate 

from one processors to another, once all cores are 

peers for the scheduling of threads. This scheduling 

style is equivalent to the global approach. Besides the 

SMP and AMP styles mentioned before, the QNX 

Neutrino also employs a third, and more restrictive, 

style of Symmetric Multiprocessing, called BMP 

(bound multiprocessing). In this style, a single 

instance of an OS is responsible to manage all CPUs, 

like in the ordinary SMP, however it applies 

“processor affinity” [10], where it is not allowed 

thread migration from one core to another. The BMP 

falls under the Brandenburg’s partitioned scheduling 

approach. 

The Wind River’s VxWorks RTOS is implemented 

as a monolithic kernel that supports both Symmetric 

and Asymmetric Multiprocessing [11]. The former is 

as an add-on under the name of VxWorks SMP. On 

SMP systems, the VxWorks allows CPU affinity 

(partitioned scheduling approach), or it can 

automatically load balance the threads among the 

available cores (global scheduling approach). Along 

with the SMP capabilities, VxWorks provides new 

features such as Spin-locks, Read-write semaphores, 

Atomic operators and Thread-local storage. 

Several embedded systems have taken a 

component-oriented approach for application-specific 

configurability [12]. These systems consist of a set of 

components that are wired together to form an 

application. Components vary in size from 

fine-grained, specialized objects to larger classes and 

packages.  

The most widely adopted free, open source RTOS, 

eCos (embedded Configurable operating system) [13] 

was release in 1986. It provides a 

graphical-configuration tool and a command 

line-configuration tool to customize and adapt the 

RTOS to meet application-specific requirements. eCos 

kernel configuration can be done with the bitmap 

scheduler or the MLQ (multilevel queue) scheduler. 

Both schedulers support priority-based scheduling 

with up to 32 priority levels. The bitmap scheduler is 

somewhat more efficient and only allows one thread 

per priority level. The MLQ scheduler allows multiple 

threads to run at the same priority.  

Contemporary OS such as Linux has been use for 

embedded applications because of its capabilities 



A Review of Operating System Infrastructure for Real-Time Embedded Software 

 

281

supporting soft real-time applications. Linux also has 

extensions that enable them to support hard real-time 

applications. These RTOSes such as RTAI [14] are 

only suitable for large real-time systems due to 

footprint required. Other Linux extensions such as 

Embedded Linux [15] and µClinux [16] are more 

embedded compliant but do not provide real-time 

support. These extensions have an architecture that is 

very much alike the Linux architecture, except they do 

not have MMU (memory management hardware) 

support. Table 2, summarizes some operating systems 

for embedded systems and how they provide the 

properties (requirements) of section 3. Most of the 

RTOSes for embedded systems provide the necessary 

functionalities such as multitasking, memory 

management, file system, network, etc., through its 

API. They provide various architecture approaches 

such as monolithic kernel, micro-kernel based, 

components based, and library based. However, they 

do not provide and enforce some important properties 

that are necessary in embedded systems especially the 

properties usually required in networked embedded 

systems. In addition, most of the RTOS listed required 

large amount of memory to run and do not deal with 

low power consumption. According to 2012 

Embedded Market Survey [17], 40% of embedded 

systems developers are using commercial operating 

systems or RTOS products for their current project, 31% 

are using open-source operating systems in their 

projects, and 20% are developing their own operating 

systems for their projects. 

3.3 Domain Specific Embedded Operating Systems 

A Domain Specific Embedded Operating System 

provides specific characteristics for different domains 

of embedded systems such as automotive, avionics, 

mission critical systems and sensor networks systems, 

without loose OS functionality. This section presents 

two specific domains: Safety-critical Systems and 

Embedded Sensor Networks. 

3.3.1 RTOS for Safety Critical Systems 

Computer systems that operate systems of critical 

responsibility called safety critical systems. Typically, 

a small deviation in the environment or the system’s 

behavior, a failure or an error appearing within such a 

system can yield in hazardous situations and may 

cause catastrophes. Safety-critical systems therefore 

must not only guarantee real-time behavior but 

furthermore they require absolute dependability and 

availability of system service. To free application 

developers from implementing safety and real-time 

mechanisms into each application, operating systems 

serve as the underlying platform designed towards 

supporting real-time and all safety-incorporating 

non-functional features.  

As recent trends are heading towards the integration 

of applications of different criticality levels on one 

single platform, operating systems for safety-critical 

applications face the challenge of guaranteeing the 

availability of the processor time as well as the 

availability of resources.  

Significant work has been performed within the 

avionics domain to achieve the stated objectives. The 

main body of work has been performed under the 

banner IMA (integrated modular avionics). The 

ARINC 653 [18] is a standard that specifies a 

programming interface for a RTOS. In addition, it 

establishes a particular method for partitioning 

resources over time and memory. ARINC 653 defines 

an  APEX  (application executive)  for space  and time 
 

Table 2  Embedded systems properties supported by RTOSes. 

 Rc Rt Ec Qs Mc Dp Sf Sc Fh 

VxWorks P P A A A P P A P 

QNX P P A A A A P A P 

eCos A P A P P N P P N 

RTAI N A P P P P N P N 

uClinux A N A P N N N P N 



A Review of Operating System Infrastructure for Real-Time Embedded Software 

 

282

 

partitioning that may be used wherever multiple 

applications need to share a single processor and 

memory, in order to guarantee that one application 

cannot bring down another in the event of application 

failure. Each partition in an ARINC 653 system represents 

a separate application and makes use of memory space 

dedicated to it. MILS (multiple independent levels of 

security and safety) approach [19] is proposed to 

provide a reusable formal framework for high assurance 

system specification and verification. Separation of 

kernel is the big issue. In the MILS architecture, the 

kernel only does four very simple things. A MILS 

kernel is responsible for enforcing data isolation, control 

of information flow, periods processing and damage 

limitation policies, and nothing else. Each of these 

policies counters one or more of the basic 

foundational threats to system assurance. The MILS 

kernel has two special characteristics. First, the kernel 

is the only code that runs in supervisor or privileged 

mode. The second characteristic is that because the 

separation kernel is so simple it can be very small, 

approximately 4,000 lines of C language source code. 

LynxSecure [20] and PikeOS [21] are examples of 

MILS compliant OS, used especially in military and 

avionics industries. Another system, RTEMS [22] that 

is not MILS compliant also used for military and 

avionics applications.  

LynxSecure provides a robust environment within 

which multiple secure and non-secure operating 

systems can perform simultaneously with no 

compromise of security, reliability, or data. Lynx 

Secure expands on the proven real-time capabilities of 

the LynxOS® RTOS (real-time operating system) 

with time-space partitioning and operating system 

virtualization. It conforms to the Multiple MILS 

architecture, with strict adherence to data isolation, 

damage limitation and information flow policies 

identified in this architecture. To fulfill the separation 

kernel concept of MILS architecture, LynxSecure 

utilizes virtualization.  

PikeOS is a microkernel-based real-time operating 

system, targeted at safety and security critical 

embedded systems. It provides a partitioned 

environment for multiple operating systems with 

different design goals, safety requirements, or security 

requirements to coexist in a single machine. The goal 

of PikeOS is to provide partitions that comprise a 

subset of the system’s resources. Processing time is 

one of those resources. It is expected that the 

partitions to host a variety of guest operating systems 

with different requirements regarding timely 

execution. PikeOS combines resource partitioning and 

virtualization, in order to fulfill the MILS separation 

kernel concept. PikeOS provides a build-in Health 

Monitoring feature that implements all features 

described in the ARINC-653 standard.  

RTEMS (real-time executive for multiprocessor 

systems) is a free open source RTOS (real-time 

operating system) designed for embedded systems. On 

a conceptual level, RTEMS is defined for three layers: 

hardware support, kernel and APIs. The user then 

develops his application by using the available APIs. 

The hardware support layer encompasses the processor 

and board dependent files as well as a common 

hardware library. RTEMS provides a notion of 

executive that encapsulates the API layer and the kernel.  

Table 3 summarizes how the operating systems for 

avionics domain embedded systems provide the 

properties (requirements) of Section 2. 

All systems tend to be compliant to ARINC and 

MILS specifications, where the big issue is Security 

and Safety. However, some basic requirements for 
 

Table 3  Embedded systems properties RTOS for avionics.  

 Rc Rt Ec Qs Mc Dp Sf Sc Fh 

Lynxsecure P P P A A A A A P 

PikeOS P P P A A A A A P 

RTEMS P A P A A A A A P 



A Review of Operating System Infrastructure for Real-Time Embedded Software 

 

283

 

embedded systems such as resource constrains and 

real-time are not adequately handled. In addition, it 

seems that failure handling is not a very concern for 

these systems. 

3.3.2 Operating Systems for Embedded Sensor 

Networks  

Recently, the availability of cheap and small tiny 

sensors and low power wireless communication 

allowed the large-scaled deployment of sensor nodes in 

ESN (embedded sensor networks). An embedded 

sensor network is a network of embedded computers 

placed in the physical world that interacts with the 

environment. These embedded computers, or sensor 

nodes, are often physically small, relatively 

inexpensive computers, each with some set of sensors 

or actuators [23].  

Given the recent advances in SN technology, it is 

possible to construct low-cost and low-power 

miniature sensor devices that are spreading across a 

geographical area in order to monitor their physical 

environment. Consisting of nodes equipped with a 

small processing unit, memory, a sensor, a battery and 

a wireless communication device, SNs enable a myriad 

of applications ranging from human-embedded sensing 

to ocean data monitoring. Since each single node has 

only constrained processing and sensing capabilities, 

coordination among devices is necessary [24]. Due to 

their specific nature, sensor networks have different 

requirements compared to standard systems, such as 

self-configuration, energy-efficient operation, 

collaboration, in-network processing, as well as, a 

useful abstraction to the application developer.  

Given these requirements, a SN OS must have a 

very small footprint. At the same time, it must provide 

a limited number of common services for application 

developers , such as hardware management of sensor, 

for sensing and data delivery to neighbors; task 

coordination, using event-based or preemptive 

approaches to run tasks; power management, using 

different power management techniques.  

The sensor networking community typically uses 

embedded (and, possibly, real-time) versions of 

existing operating systems such as Linux for the larger 

devices. These embedded versions provide largely the 

same programming support as their regular 

counterparts, but with additional device-level support 

for embedded controllers, flash memory, and other 

peripherals specific to these devices. As such, not 

much research has been required on new operating 

systems support for these larger devices. On the other 

hand, the smaller devices (such as the motes) have 

required novel directions in operating system design. 

TinyOS [25], a very efficient OS for SNs and 

widely used by many research groups as well as in 

some segments of industry, deviates significantly from 

the traditional multi-threaded model of modern 

operating systems. TinyOS uses event based task 

coordination in order to run on very 

resource-constrained nodes. The execution model is 

similar to a finite state machine. It consists of a set of 

components that are included in the applications when 

necessary. TinyOS addresses the main challenges of a 

sensor network: constrained resources, concurrent 

operations, robustness, and application requirement 

support. Each TinyOS application consists of a 

scheduler and a graph of components. The 

concurrency model in TinyOS consists of a two-level 

scheduling hierarchy: events preempt tasks, but tasks 

do not preempt other tasks. Each task can issue 

commands or put other tasks to work. Events initiate 

by hardware interrupts at the lowest levels. They 

travel from lower to higher levels and can signal 

events, call commands, or post tasks. Wherever a 

component cannot accomplish the work in a bounded 

amount of time, it should post a task to continue the 

work. This is because a non-blocking approach 

implemented in TinyOS. 

MOS (MantisOS) [26]. The MOS (mantis operating 

system) is a SN OS designed to behave similarly to 

UNIX and provides a larger functionality than TinyOS. 

It is a lightweight and energy-efficient multithreaded 

OS for sensor nodes. In contrast to TinyOS, the 



A Review of Operating System Infrastructure for Real-Time Embedded Software 

 

284

 

Table 4  Embedded systems properties OS for sensor networks.  

 Rc Rt Ec Qs Mc Dp Sf Sc Fh 

TyniOS A P A P N P N N N 

Contiki A P A P N P N N N 

MantisOS A P A P N P N N N 
 

MANTIS kernel uses a priority-based thread 

scheduling with round-robin semantics within one 

priority level. To avoid race conditions within the 

kernel, binary and integer semaphores are support. 

The OS offers a multiprogramming model similar to that 

present in conventional OS, i.e., the OS complies with 

the traditional POSIX-based multithreading paradigm. 

All threads coexist in the same address space. The 

kernel of Mantis OS also provides device drivers and a 

network stack. The network stack is implemented using 

user-level threads and focuses on the efficient use of 

the limited memory. 

Contiki [27]. The Contiki operating system 

provides dynamic loading and unloading of programs 

and services during run-time. It also supports dynamic 

downloading of code enabling the software upgrade of 

already deployed nodes. To provide this it uses more 

memory than TinyOS but less than Mantis OS. The 

main idea of Contiki is to combine the advantages of 

event-driven and preemptive multithreading in one 

system: the kernel of the system is event-driven, but 

applications desiring to use multithreading facilities 

can simply use an optional library module for that. In 

Contiki system, the partition (core and loaded 

programs) is determined at compilation time. The core 

comprises the kernel, program loader, run time 

libraries, and communication system. 

Table 4 summarizes how operating systems for 

sensor networks domain provide the properties 

(requirements) of Section 2. 

One of the characteristics of OSes for sensor 

networks is to be adequately able to deal with resource 

constraints such as memory and low power. They all 

provide and ensure this particular requirement. 

However, most of the systems do not provide an 

adequate real-time behavior. Regarding some of the 

important requirements for distributed embedded 

systems, these OSes perform very poorly. Therefore, 

it seems that those requirements have to be supported 

in a different level than operating system, such as 

middleware level. 

4. Conclusions 

The paper presented various operating systems  

tailored for different types of embedded systems, from 

stand alone embedded systems such as adigital câmera 

to distributed real-time embedded systems such as a 

military defense system. For SES (stand-alone system) 

the important requirements are basically supported by 

the OSes. However, there is currently no OS that can 

provide and enforce most o the requirements for 

network edembedded systems. For instance, the many 

types of DRE systems all have one requirement in 

common: to deliver the right response at the right time. 

This is crucial for life-criticalmilitary DRE systems, 

such as those defending ship sagainstmissile attacks. It 

is also crucial for safety-criticalcivilian DRE systems, 

such as those regulating the temperature of coolant in 

nuclear reactors and maintaining the safe operation of 

steel manufacturing machinery. It is hard to design 

DRE systems that implement their requiredQoS 

(quality of service) capabilities, are dependable and 

predictable, and are cost-conscious in their use of 

computing resources, with only the support of 

operating system software infrastructure. It is even 

harder to build the mon time and within budget. As a 

result, distributed real-time and embedded systems are 

now being built using a common layerof software 

infrastructure, called middle ware, that serves two 

purposes. The first is to ease application development 

by abstracting a way the particular details of the 

hardware and operating system a teach computing site. 



A Review of Operating System Infrastructure for Real-Time Embedded Software 

 

285

The second is to provide a family of services that are 

common to many applications, simplifying component 

design and increasing reusability while all owing 

specific optimizations for a particular deployment. 

Networked embedded systems, especially DRE 

systems can span a variety of network types, to 

pologies and scales, ranging from next-generation 

local sensor/actuator networks tolarge-scale traffic or 

power-grid management systems. A general theme of 

these systems is that independently of network 

characteristics, the stringent application-specific 

constraints must been forced by all in frastructure 

software services, including OS, middle ware and 

applications as well as end-to-end by the network. 

Moreover, applications with different constraints will 

share the network and other physical and logical 

resources.  

How to provide different service classes and ensure 

the proper allocation and protection of shared 

resources consistently across all layers, including 

operating systems, is another important challenge. 

Creating the proper interfaces between network 

infrastructure and applications is still an open research 

issue for operating systems area. 

References 

[1] NRC. 2001. Embedded, Everywhere: A Research Agenda 
for Networked Systems of Embedded Computers. 
Committee on Networked Systems of Embedded 
Computers, National Research Council. 

[2] FP6-IP-RUNES. 2005. “D5.1 Survey of Middleware for 
Networked Embedded Systems, January 2005. 
http://www.ist-runes.org/docs/deliverables/D5_01.pdf. 

[3] Lee, I., Leung, J., and Son, S. 2008. “Handbook of 
Real-Time and Embedded Systems.” Chapman & 
Hall/CRC Computer &Information Science Series. 

[4] Crespo, A., Ripoll, I., Gonzalez, H. M., and Lipari, G. 
2008. “Operating System Support for Embedded 
Real-Time Applications.” EURASIP Journal on 
Embedded Systems 2008 (February): 1-2. 

[5] Ecker, W. 2009. Hardware-Dependent Software-Chapter 
2. Berlin: Springer Science. 

[6] Tanenbaum, A. 2008. Modern Operating Systems 3rd 
Edition. New Jersey: Prentice Hall, Upper Saddle River. 

[7] Wolf, W., and Jerraya, A. 2004. Multiprocessor 
Systems-On-Chips. San Mateo: Morgan Kaufmann. 

[8] VxWorks. 2008. http://www.windriver.com. 
[9] Hildebrand, D. 1992. “An Architectural Overview of 

QNX.” In Proceedings of the Workshop on Micro-kernels 

and Other Kernel Architectures, 113-26. 

[10] www.qnx.com/products/neutrino-rtos/. 

[11] www.windriver .com/products/vxworks/. 

[12] Friedrich, L., Stankovic, J., Humphrey, M., Marley, M. 

and Haskins, J. 2001. “A Survey of Configurable 

Component-based Operating Systems for Embedded 

Applications.”IEEE Micro (May): 54-68. 

[13] Massa, A. 2003. Embedded Software Development with 

eCos. New Jersey: Prentice Hall. 

[14] Dozio, L., and Mantegazza, P. 2003. “Real Time 

Distributed Control Systems Using RTAI.” Presented at 

the Sixth IEEE International Symposium on 

Object-Oriented Real-Time Distributed Computing, 

Hakodate, Hokkaido, Japan. 

[15] Embedded Linux. 2008, www.linuxdevices.com/. 

[16] µClinux. 2008. Embedded Linux Microcontroller Project. 

www.uclinux.org/. 

[17] UBM Electronics. 2012. Embedded.com and EETimes, 

2012 Embedded Market Survey. 

www.eetimes.com/electrical-engineers/education-training

/webinars/4369712/2012-Embedded-Market-Study. 

[18] ARINC. 1996. ARINC 653: Avionics Application 

Software Standard Interface (Draft 15). Airlines Electronic 

Engineering Committee (AEEC), June 17th, 1996. 

[19] Alves, F. J., Harrison W.S., Oman, P. and Taylor, C. 

2006. “The MILS Architecture for High-Assurance 

Embedded Systems.” International Journal of Embedded 

Systems: 239-47. 

[20] DeLong, R. J. 2007. LynxSecure Separation Kernel—A 

High-Assurance Security RTOS. LynuxWorks, San Jose, 

CA. www.lynuxworks.com. 

[21] Kaiser, R., and Wagner, S. 2007. The PikeOS Concept 

History and Design, SYSGO. www.sysgo.com. 

[22] RTEMS. 2008. www.rtems.com/. 

[23] Heidemann, J., and Govindan, R. 2004. “An Overview of 

Embedded Sensor Networks.” In: Handbook of Networked 

and Embedded Control Systems, Springer-Verlag. 

[24] Stojmenovic, I. 2005. Handbook of Sensor Networks: 

algorithms and Architectures. New York: Wiley.  

[25] TinyOS. 2008. www.tinyos.net/. 

[26] Bhatti, S. 2005. “MANTIS OS: An Embedded 

Multithreaded Operating System for Wireless Micro 

Sensor Platforms.” ACM/Kluwer Mobile Networks 

&Applications (MONET), Special Issue on Wireless 

Sensor Networks 10 (August): 563-79. 

[27] Dunkels, A., Gronvall, B., and Voigt, T. 2004. 

“Contiki— A Lightweight and Flexible Operating System 

for Tiny Networked Sensors.” In Proceedings of the First 

IEEE Workshop on Embedded Networked Sensors.  


