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Abstract: A numerical model was developed by using the dual boundary element method to investigate the dynamic behavior of a 
moored floating structure with a pair of vertical and flexible skirts attached at its bottom in the linear wave field. Theoretical conception 
is based on potential theory with linear external forces. The motions of the structure were assumed to be small and linear. The flexible 
skirts mounted beneath the structure were assumed uniform flexural rigidity and the thickness of the skirts was negligible. Comparison 
between the present model and Gesraha’s solution was made to verify the results for a moored floating structure with or without rigid 
skirts. The influence of the skirt rigidity on the moored floating structure, moored lines and waves is investigated in this study. The 
results show that, the natural frequencies of structure’s oscillation, moored force, wave reflection and transmission tend to the region of 
short-period waves when the flexible rigidity gradually decreases. Positive correlation exists between the aft mooring force and the 
pitch motion of the floating structure. 
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1. Introduction 

In recent decades, floating structures are increasingly 

used in near shore regions to protect against wave 

energy or to control shoreline erosion. With the 

development of various types and the advantage of 

easy installation, the floating structures offer engineers 

another suitable choice to design a relatively 

inexpensive structure for local environments or for 

special requirements. Though the floating structures 

have many excellent applications for improvement in 

the coastal environmental improvement, they are often 

preferred in relatively low wave energy regions. 

Many papers have discussed the character and 

efficiency of floating structures, not only in various 

analytic theories but also in the improvement of 

structure type. Murali, et al. [1] discussed the reflection 
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and transmission characteristics of cage floating 

breakwaters through the use of experimental manners. 

Isaacson, et al. [2] showed the responses of floating 

breakwater and compared the results with experimental 

and field data. Sannasiraj, et al. [3, 4] utilized the 

two-dimensional finite element method to analyze the 

mooring forces and the responses of a single floating 

pontoon-type breakwater, and this method has also 

been adopted to evaluate hydrodynamic coefficients 

and the responses in sway, and heave of multiple 

floating structures. Lee and Cho [5] investigated the 

numerical study of how the incident wave interacted 

with a moored pontoon-type floating breakwater. 

Kashiwagi [6] presented research on the wave-exciting 

forces and wave-induced motion of a floating body in 

two-layer fluids with finite depth. Huang and Tang [7] 

studied the wave-body interaction of floating dual 

pontoon structures in a 2D fully nonlinear numerical 

wave tank based on the BIEM (boundary integral 
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equation method). Wang and Sun [8] experimentally 

studied a novel floating breakwater fabricated with 

large numbers of diamond shaped blocks. 

On the other hand, some authors have devoted their 

research to develop various forms of thin breakwaters. 

Williams, et al. [9, 10] carried out the effects of the 

various wave and structural parameters on the 

efficiency of the breakwater as a barrier to wave action. 

His work has also considered the dynamics of a flexible 

floating breakwater which extended the entire water 

depth, and the dynamics of a submerged compliant 

breakwater consisting of a flexible, beamlike structure 

anchored to the seabed and kept under tension by a 

small buoyancy chamber at the tip. The reflection and 

transmission of incident waves interacting with a long 

rectangular breakwater with two thin sideboards 

protruding vertically downward was studied by 

Gesraha [11]. He also studied the exciting forces, 

added-mass and damping coefficients, responses of the 

structure, and the transmission coefficient. Wang and 

Ren [12] presented the reflection and transmission of 

small amplitude waves by a flexible, porous and thin 

beamlike breakwater in the seabed. 

In this study, a floating structure with vertical 

flexible skirts was improved by the character of the 

floating structure. A numerical model was developed 

for analyzing the behaviors of a floating structure by 

using the DBEM (dual boundary element method) and 

a suitable Green function analyzing the flexible skirts 

in this paper. The RAOs (response amplitude operators) 

of the structure, wave reflection and transmission 

coefficients, and forces on mooring line were calculated 

and analyzed for different rigidity of skirt with the 

whole range of a dimensionless parameter ka. 

2. Theoretical Development 

2.1 Problem Definition 

The definition sketch of the analyzed region is 

shown in Fig. 1. A moored floating structure of a 

rectangular cross section consists of two flexible skirts 

and is situated on the sea at a uniform depth h. 

Cartesian coordinates are employed with the z-axis 

directed vertically upwards from its origin on the 

undisturbed free surface. The structure is located 

symmetrically at x = 0, and linked on the sea floor by 

an idealized mooring system. Motions of the structure 

are assumed to be small and linear, when the structure 

is subjected to a train of small amplitude waves of a 

height of 0  and frequency   traveling in the 

negative x-direction. The usual assumptions of fluid of 

analytic region are inviscid and incompressible. Under 

the above assumptions made, motion of fluid will be 

irrotational and can be described in terms of velocity 

potential: 

0( , , ) ( , ) i tg
x z t x z e  


         (1) 

and the potential of analytic region must satisfy 

Laplace’s equation. 

2 ( , ) 0x z               (2) 

The analytic region was divided into three 

sub-regions further to simplify the problem. Those 

sub-regions are each termed as Region I ( 1x ), 

Region II ( 2 1- x   ) and Region III ( 2-x   ). 

Region II includes the floating structure; the inner fluid 

motion of this region will contain a scattered and 

radiated effect. Regions I and III are set at the positions 

far away from the structure and are assumed to be 

beyond the disturbance caused by the floating 

structure’s motions; this sets two auxiliary boundaries 

1x  and 2-x   . The potential of Regions I and III 

can be described in the following form, respectively. 

1 1( ) - ( )
1

cosh ( )
( , ) ( )

cosh
ik x ik x

r

k h z
x z e K e

kh
   

        (3) 

2( )
3

cosh ( )
( , )

cosh
ik x

t

k h z
x z K e

kh
  

       (4) 

where, rK  and tK  are the reflected coefficient and 

transmitted coefficient. k  is the incident wave number 

which is the root of the linear dispersion relationship 

khgk tanh2   where g  is the acceleration of 

gravity. The potentials of Regions I and III, combined 

with their normal derivatives at auxiliary boundaries 
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Fig. 1  Definition sketch. 
 

1x  and 2-x   , are expressed as: 

1 1

cosh ( )
( , ) (1 )

coshr

k h z
z K

kh
 

       (5) 

1 1

cosh ( )
( , ) (1 )

coshr

k h z
z ik K

kh
 

      (6) 

3 2

cosh ( )
(- , )

cosht

k h z
z K

kh
 

           (7) 

3 2

cosh ( )
(- , ) -

cosht

k h z
z ikK

kh
 

         (8) 

2.2 Boundary Condition 

The boundary condition on the auxiliary 

requirements of continuity of mass and energy flux 

across the fluid interfaces between each region imply 

the following matching condition: 

1 1 2 1( , ) ( , )z z               (9) 

1 1 2 1( , ) ( , )z z               (10) 

3 2 2 2(- , ) (- , )z z             (11) 

3 2 2 2(- , ) (- , )z z             (12) 

The boundary condition on the free surface and the 

impermeable sea floor are subject to the following 

equations, respectively. 

2
2 2( , ) / ( ( , )) , 0x z g x z z         (13) 

2 ( , ) 0, -x z z h            (14) 

On the floating structure boundary, for the analysis 

of structure response, it is assumed that, the structure 

behaves as a two-dimensional rigid structure and the 

structure will undergo small amplitude surge, heave 

and pitch motions when it is in response to the incident 

and diffracted waves. The displacement for those three 

mode motions may then be expressed as: 

0 0

0 0

ˆ

ˆ

i t

i t

i t

X x x e

Z z z e

e











 

   

   

 

           (15) 

In which 0 0( , )x z  is a coordinate of the center of 

mass of the structure at rest and 0 0( , )x z is its 

instantaneous position.  ,   and   are amplitude 

of surge, heave and pitch motions, respectively. 

On the surface of the floating structure, the 

displacement for the floating structure may be 

expressed as: 

0 0 0( ) ( )X x x z z     

)()( 000 xxzzZ    

The first order kinematic boundary on immersed 

surface of structure may be written as: 

0 0 0 0

0 0

( ) ( )

( ) ( )

x x z zx z

n t n t n
x z

z z x x
t n n





     
 

    
          

   (16a) 

The boundary condition on the flexible skirt is 

slightly different from the floating structure; the 

velocity of the skirt’s motion is added to the dynamic 
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boundary condition, and assuming the vertical 

component of the skirt’s velocity is small and ignoring, 

and the variation of the angular velocity by skirt’s 

motion is small too. 

On the flexible skirts, the displacement for the 

floating structure may be expressed as: 

0 0 0( ) ( ) ( , )X x x z z U z t      

)()( 000 xxzzZ    

Therefore, the first order kinematic boundary on the 

flexible skirts of structure attaches skirts may be 

written as: 

0 0 0 0

0 0

( ) ( ) ( , )

( ) ( )

x x z zx z U z t x

n t n t n t n
x z

z z x x
t n n





       
  

      
          

 

(16b) 
where, ( , ) ( ) i tU z t z e   is the displacement 

amplitude of the flexible skirts, n  is the boundary 

normal vector. 

2.3 Equation of Structure’s Motions 

The hydrodynamic force on the floating structure 

acted up by fluid pressure and external forces, the 

equation can be calculated by integrated the pressure 

around the wetted floating structure surface as: 

2

2

ˆ
ˆd

b
xx xS

X x
m p s K X K

t n 
 
   
      (17) 

2

2

ˆ
ˆ ˆd d

b
b

zzS
S

Z z z
m p s g Z s K Z

t n n
  

   
     (18) 

2

0 02

0 0 0

[( ) ( ) ]d

( ) [( ) ( ) ]d

ˆ

b

b

S

S

x

x z
I p z z x x s

t n n
x z

g x x z z x x s
n n

K X K 



 



  
    

  
 

     
 

 



  (19) 

where, m  is the mass of the floating structure, I  is 

the mass moment of inertia about the center of the mass 

of the structure, p  is the dynamic pressure of the 

fluid. 

0- - i tp i g e
t

   
 


      (20) 

The mooring system is considered the symmetric 

fore and aft of the structure. Considering a mooring line 
AB, with its spring constant K  and pretension 0F , 

the coordinates of the attachment point on the structure 

and sea floor are ( , )a ax z  and ( , )b bx z , respectively. 
By ignoring the inertia effects of the mooring line and 

the viscous forces on the line, Weng and Chou [13] 

derived each component of the forces and moments 

coefficient by using the mooring system: 

]
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 

  }))(())((

))(())(({2
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0

2
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ab
aabbaab

aabbaab
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l

F
xxxxzzzz

xxzzzzxx
l

K
K


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2.4 Flexible Skirt Boundary 

The flexible skirt is taken to behave as a 

one-dimensional beam of uniform flexural rigidity  

with various kinds of Young’s modulus, assuming the 

zero thickness of the idealized. The equation of the 

motion of the flexible skirt is acted upon by fluid 

pressure which may be written in terms of the  
complex displacement amplitude )(z  as Clough and 

Penzien [14]: 

4
2

04

( )
( )s

z
EI m z i g

z

     
 


     (21) 

where,   is the fluid density, then the boundary 

conditions are: 
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1

d
0 on -

d
z q h

z

            (22) 

2

1 22

d
0 on -( )

d
z q h q h

z


       (23a) 

3

1 23

d
0       on   -( )

d
z q h q h

z


       (23b) 

Eq. (22) implies zero displacement, zero slope at the 

tip of the flexible skirts at 1-z q h . Eqs. (23a) and 

(23b) imply bending moment and shearing force at the 

tip of the flexible skirts at 1 2-( )z q h q h  , 

respectively. 

A suitable Green function ( ; ')G z z  for the 

structural problem satisfies each boundary condition. 

4 2

4

1 2 1

d
( ')

d
on -( ) -

G s
G

m
z z

z EI
q h q h z q h

     

  
     (24) 

1

d
0 on -

d
G

G z q h
z

           (25) 

2

1 22

d
0 on -( )

d
G z q h q h

z


       (26a) 

 
3

1 23

d
0      on   -( )

d
G z q h q h

z


       (26b) 

The flexible skirt boundary conditions may be 

obtained by the method of Laplace transforms, and the 

complex displacement amplitude G  may be written: 

1

1 2

-

0

-( )

( ) - ( ; ) ( , )d
q h

G G

q h q h

i g
z z x

EI

      


    (27) 

where  

 










 



















4

4

4

4

4

4

4

4
0

440

)'(sin)'(sinh

2

1

sinsinh

2

coscosh
2

)';(

A

zzA

A

zzA

A

A
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A

zA

A

zAzA
A

zzG





 

in which  EImA s
2 . 





-1 4 4 4
0

4 4
1 2 1 2

4 4
1 2 1 2

4 4
1 2 1 2

4 4
1 2 1 2

. sinh ' sin '

sinh ( ') cos ( )

sin ( ') cosh ( )

cosh ( ') sin ( )

cos ( ') sinh ( )

D A Az Az

A q h q h z A q h q h

A q h q h z A q h q h

A q h q h z A q h q h

A q h q h z A q h q h

  

   

   

   

   

 





1 4 4
0

4 4
1 2 1 2

4 4
1 2 1 2

4 4
1 2 1 2

4 4
1 2 1 2

- . cosh ' cos '

cosh ( )cos ( ')

cos ( )cosh ( ')

sinh ( )sin ( ')

sin ( )sinh ( ')

A D Az Az

A q h q h A q h q h z

A q h q h A q h q h z

A q h q h A q h q h z

A q h q h A q h q h z

  

   

   

   

   

 

and 

4 4
1 2 1 22 1 cosh ( ) cos ( )D A A q h q h A q h q h       

2.5 Floating Structure Boundary Condition 

When a moored floating structure is at rest, the fluid 

pressure, mooring line tension, buoyancy and mass 

force should be a balanced state, and taking into 

consideration the exciting wave and radiation wave by 

the floating structure’s motion. Therefore, when the 

floating structure is subjected to a train of small 

amplitude waves, the motion amplitude of the floating 

structure can be acquired after arranging Eqs. (17)-(19), 

and the equation can then be simplified to a simpler 

form. The amplitudes of surge, heave and pitch motion 

may be expressed as: 

2 3
0

2 1 0 0

-
d

( ) ( ) d

b

b

S

S

i x
B C s

R n

x z
B C z z x x s

n n

 




   
           





    (28) 

 1 3 3 1
0

-
d

bS

i z
A C A C s

R n

 



 

      (29) 

3 2
0

1 2 0 0

-
- d

( ) ( ) d

b

b

S

S

i x
A B s

R n

x z
A B z z x x s

n n

 




   
           





 (30) 



Dynamic Behaviors of a Moored Floating Structure with Flexible Skirts 

  

18

where, )( 13312 CACABR   and  

g

m

g

K
A xx

2

1



 ; 

g

K
AC x


 31 ; 

2

2 - d
b

zz

S

Km z
B s

g n g

 
  

   ; 

2
0

3

0 0 0( ) ( ) ( ) d
bS

K I
C

g g

x z
x x z z x x s

n n

 
 

 

         
 

Substituting Eqs. (28)-(30) into Eq. (16), associating 

with Eq. (15), the potential on the immersed surface of 

the floating structure with flexible skirts is: 

 

2

2 3

2 1 0 0

1 3 3 1 3 2

1 2 0 0

0 0

d

( ) ( ) d

d d

( ) ( ) d
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b
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b b
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S S

S

x x
B C s

n gR n n

x x z
B C z z x x s
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z z x
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n n n
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z z x x
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

 


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        









 
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1 2

-

4 40
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4 4
0
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sinh sin

2

1 sinh ( ') sin ( ')
d '

2
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g
Az Az

n EI A

Az Az

A A A

A z z A z z x
z

nA A A









 


 
   

 
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

 

(31) 

2.6 Forces on Mooring Lines 

For a mooring line in Fig. 1, its coordinate of 

attachment point on structure is transferred from 

( , )a ax z  to 
, ,( , )a ax z  when structure is oscillated in 

response to fluid forces. Forces on the mooring line can 

be estimated easily from lengthening   and spring 

constant abK  of mooring line ( ab abF K   ). The 
lengthening   can be written as: 





0 0 0 0

0 0

-1
( )( ) ( )( )

[( )( ) ( )( ) ]

b a b a
ab

b a a b a a

x x x x z z z z
l

x x z z z z x x





     

     
 

Thus, when mooring lines are treated as a linear 

system, and is expressed as: 

0 0 0 0

0 0 0

0 0
0

-1
( ) ( )

[( )( ) ( )( )]

ab
b a b a

ab ab

b a a b a a

F x x z z
x x z z

K l

x x z z z z x x

  




  
   




      


 

(32) 

where, 22 )()( ababab zzxxl  . 

2.7 Coefficients of Reflection and Transmission 

The coefficients of reflection and transmission are 

determined using the continuity of mass and energy 

flux on the fictitious boundaries. Substituting Eq. (6) 
into Eq. (10), multiplying with )(cosh zhk  , and 

integrating from -z h  to 0z , the reflection 

coefficient, rK , can be expressed in terms of the 

normal derivatives of potential, 1 , as: 

0

1-
0

1 cosh ( )d
sinhr h

i
K k h z z

N kh
    

on 1x  (33) 

where, 
0 (1 2 / sinh 2 ) / 2N kh kh  . 

Substituting Eq. (33) into Eq. (5), associating with 

Eq. (9), the relationship between the potential of the 

auxiliary boundary 1x , and its normal derivative 

can be written as: 

1

0

1-
0

cosh ( )
( , ) 2

cosh
cosh ( )

2 ( , ) cosh ( )d
sinh 2 h

k h z
z

kh
k h z

i z k h z s
N kh









 





 (34) 

Similarly, the coefficient of transmission can be 
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derived by substituting Eq. (8) into Eq. (12), 
multiplying with )(cosh zhk  , and integrating from 

-z h  to 0z , to yield the following form: 

0

2-
0

cosh ( )d
sinht h

i
K k h z z

N kh
    

on 
2-x    (35) 

The relationship between the potential and its 

normal derivative on the auxiliary boundary, 2-x   , 

can be obtained by substituting Eq. (35) into Eq. (7), 

and associating with Eq. (11): 

2
0

0

2-

cosh ( )
(- , ) 2

sinh 2

. (- , ) cosh ( )d
h

k h z
z i

N kh

z k h z s














     (36) 

2.8 Dual Boundary Element Method 

The above problem for the fluid potential of Region 

II is solved numerically by using the dual boundary 

element method. According to Green’s second identity 

law, the first equation of the dual boundary element 

method for the potential of any point on the boundaries 

of Region II is subject to the potential on the 

boundaries combined with its first normal derivative: 

2

' ' ( , ) 1 1
π ( , ) [ (ln ) ( , ) (ln )d

xz xz

s
n r n r

        
 

 
  (37) 

where, r/1ln  is the solution of Laplace equation. xzn  

is the normal vector of point ( , )  . When the 

boundaries enclosing Region II are partitioned into N 

segments, Eq. (37) indicates a matrix form as follows. 

  ( , 1, 2, ..., )ij i ij
j

G H i j N
n


             

 (38) 

The second equation of the dual boundary integral 

formulation for the points on the boundaries is derived 

as: 

2

' '

2

( , )
π

( , ) 1 1
[ (ln ) ( , ) (ln )]d

xz

xz xz xz xz

n

s
n n r n n r

  

     






  


   
 

(39) 

where, zxn  is the normal vector of point 
' '( , )  . 

Eq. (39) also displays a matrix form: 

  ( , 1, 2, ..., )ij i ij
j

G H i j N
n


             

 (40) 

Matrices of Eq. (38) and Eq. (40) are dependent on 

the geography of the analytical domain and have been 

derived by Chen [15]. Boundaries of the flexible skirts 

of the floating structure are degenerate boundaries 

since the thicknesses of the flexible skirts are assumed 

to be zero. Eqs. (38) and (40) are a linearly dependent 

equation and cannot be solved directly. However, the 

degenerated system can be desingularized by 

rearranging the matrix of degenerate boundaries 

between Eqs. (38) and Eq. (40), and formulating a set 

of new independent equations as follows:  

 * * ( , 1, 2, ..., )ij i ij
j

G H i j N
n


             

(41) 

Substituting the boundary conditions of Region II, 

and Eqs. (13), (14), (34), (36) and (31), into Eq. (41), 

the potential and its normal derivative on the 

boundaries of Region II can be obtained. The motion 

amplitude of each mode and the coefficients of 

reflection and transmission can also be acquired by 

substituting the potential on the immersed surface of 

the structure into Eqs. (28)-(30), (33) and (35). 

3. Results and Discussions 

3.1 Verification of Numerical Model 

The efficiency of the numerical model in simulating 

free body dynamics with or without rigid skirts was 

verified by comparing with the results of Gesraha [11]. 

As shown in Fig. 2, a good agreement between 

calculated and Gesraha results are clearly observed 

over the whole range of the dimensionless parameter 

ka . It is obvious that, the natural period of the 

structure’s heave motion tends to increase with the 

length of the skirts. 

3.2 Influence of Skirt’s Rigidity on Structure’s Motions 

The RAOs in surge, heave and pitch of the moored 
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Fig. 2  Comparison between simulated and Gesraha results 
heave RAO with a = 0.5h and q1h/a = 0.5 (line: present 
results, dot: Gesraha results). 
 

floating structure as a function of the dimensionless 

parameter ka were analyzed for various flexible 
rigidities of skirt ( 5/EI gh  0.001, 0.050, 0.500, 

5.000 and rigid case). The floating structure, with its 

draft 2.01 q , width ah 2  and center of mass 

0 1- / 2z q h , is moored by taut springs and prepared 

for simulation. Each spring has constant stiffness 
/ 0.009K gh  , pretension force 

2
0 / 0.0115F gh   

and an incline of 60  to the horizontal bottom. 

The motion responses of the floating structure with 

skirts of 3.02 q  are shown in Figs. 3-5. These figures 

also present the RAOs for the floating structure without 

skirts  ( 2 0.0q  ). The  results  illustrate  that,  the 
 

 
Fig. 3  Influence of the skirt’s rigidity (EI/ρgh5 = 0.001, 
0.050, 0.500, 5.000 and rigid case) on the surge RAO of the 
moored floating structure (h = 2a, q1 = 0.2 and q2 = 0.3; q2 = 
0.0 for the case without skirts). 

 
Fig. 4  Influence of the skirt’s rigidity (EI/ρgh5 = 0.001, 
0.050, 0.500, 5.000 and rigid case) on the heave RAO of the 
moored floating structure (h = 2a, q1 = 0.2 and q2 = 0.3; q2 = 
0.0 for the case without skirts). 
 

 
Fig. 5  Influence of the skirt’s rigidity (EI/ρgh5 = 0.001, 
0.050, 0.500, 5.000 and rigid case) on the pitch RAO of the 
moored floating structure (h = 2a, q1 = 0.2 and q2 = 0.3; q2 = 
0.0 for the case without skirts). 
 

modulations of surge, heave and pitch responses of the 
floating structure with the skirt’s rigidity 5/EI gh  

5.000  are very closed to the results of rigid skirts. 

Moreover, the results of the floating structure with 
skirt’s rigidity 5/ 0.001EI gh   approach to the 

case without skirts. As the flexible rigidity of skirt 

gradually decreases, the natural frequency of 

structure’s oscillation tends to higher region of ka, and 

the oscillation values in each mode decrease in range as 

the natural frequency approached. 
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3.3 The Wave Reflection and Transmission Coefficients 

Figs. 6 and 7 show the reflection and transmission 

coefficients versus ka when the skirt’s rigidities 
5( / )EI gh  are 0.001, 0.050, 0.500, 5.000 as well as 

rigid case. The results for the moored floating structure 

without skirts ( 2 0.0q  ) are also presented in Figs. 6 

and 7. In general, the reflection coefficient increases 

and transmission coefficient decreases as the wave 

period decreases. However, the resonance of the 

moored floating structure causes a large motion 

corresponding to the structure’s natural frequency in 

each mode of motion, which enhances the wave 

disturbing ability of the structure and has a profound 

effect on both the wave reflection and transmission 

coefficients. In addition, when the thin skirts change 

their flexible rigidity from 5.000 to 0.001, the natural 

frequency of the structure inclines to higher region of 

ka and toward the reflection curve without skirts. 

3.4 The Influences of Mooring Line Forces 

The floating structure has two mooring lines and the 

forces on them can be obtained by using Eq. (32). Figs. 8 

and 9 present the forces on mooring lines of aft and fore 

side, respectively. The forces on mooring lines depend 

on the RAOs of surge, heave and pitch motion. 
 

 
Fig. 6  Correlation between wave reflection coefficient and 
ka for different skirt’s rigidities (EI/ρgh5 = 0.001, 0.050, 0.500, 
5.000 and rigid case) of the moored floating structure (h = 2a, 
q1 = 0.2 and q2 = 0.3; q2 = 0.0 for the case without skirts). 

 
Fig. 7  Correlation between wave transmission coefficient 
and ka for different skirt’s rigidities (EI/ρgh5 = 0.001, 0.050, 
0.500, 5.000 and rigid case) of the moored floating structure 
(h = 2a, q1 = 0.2 and q2 = 0.3; q2 = 0.0 for the case without 
skirts). 
 

 
Fig. 8  Correlation between mooring line forces (fore side) 
and ka for different skirt’s rigidities (EI/ρgh5 = 0.001, 0.050, 
0.500, 5.000 and rigid case) of the moored floating structure 
(h = 2a, q1 = 0.2 and q2 = 0.3; q2 = 0.0 for the case without 
skirts). 
 

Similar curve trends also occurred in the mooring 

forces, i.e., the natural frequency of mooring force 

tends to higher region of ka as the flexible rigidity of 

skirt gradually decreases. The high peak of the mooring 

force gradually decreases in value as the flexible 

rigidity decreases from 5.000 to 0.001. It is noticed that, 

the mooring force at aft side (Fig. 8) positively correlates 

with the pitch RAO of the floating structure (Fig. 5). 
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Fig. 9  Correlation between mooring line forces (aft side) 
and ka for different skirt’s rigidities (EI/ρgh5 = 0.001, 0.050, 
0.500, 5.000 and rigid case) of the moored floating structure 
(h = 2a, q1 = 0.2 and q2 = 0.3; q2 = 0.0 for the case without 
skirts). 

4. Conclusions 

In this study, a numerical model has been developed 

through usage of the DBEM to analyze the dynamic 

behavior of a floating structure with flexible skirts. The 

thickness of the flexible skirt was assumed to be zero. 

Discussions focused on the influence of the skirt 

rigidity on structural motion, reflection and 

transmission coefficients, and mooring line forces. The 

conclusions can be summarized as: (1) The numerical 

model is capable of analyzing the motions of a moored 

floating structure with flexible and extremely thin 

skirts attached to the structure’s bottom, and its validity 

was verified by comparing the analytical results for 

rigid skirts. (2) The flexible rigidity of skirts is a critical 

factor affecting the natural frequency of structure’s 

oscillation as well as moored force, wave reflection and 

transmission. As the flexible rigidity gradually 

decreases, the natural frequencies of structure’s 

oscillation, moored force, wave reflection and 

transmission tend to the region of short-period waves, 

and the oscillation values of three RAOs and moored 

force decrease as the natural frequency approached. In 

addition, the mooring force at aft side positively 

correlates with the pitch RAO of the floating structure. 
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