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Abstract: In the absence of a simple technique to predict convection heat transfer on BIPV (building integrated photovoltaic) surfaces, 
a mobile probe with two thermocouples was designed. Thermal boundary layers on vertical flat surfaces of a PV (photovoltaic) and a 
metallic plate were traversed. The plate consisted of twelve heaters where heat flux and surface temperature were controlled and 
measured. Uniform heat flux condition was developed on the heaters to closely simulate non-uniform temperature distribution on 
vertical PV modules. The two thermocouples on the probe measured local air temperature and contact temperature with the wall surface. 
Experimental results were presented in the forms of local Nusselt numbers versus Rayleigh numbers “Nu = a·(Ra)b”, and surface 
temperature versus dimensionless height (Ts – T∞ = c·(z/h)d). The constant values for “a”, “b”, “c” and “d” were determined from the 
best curve-fitting to the power-law relation. The convection heat transfer predictions from the empirical correlations were found to be 
in consistent with those predictions made by a number of correlations published in the open literature. A simple technique is then 
proposed to employ two experimental data from the probe to refine empirical correlations as the operational conditions change. A 
flexible technique to update correlations is of prime significance requirement in thermal design and operation of BIPV modules. The 
work is in progress to further extend the correlation to predict the combined radiation and convection on inclined PVs and channels. 
 
Key words: Natural convection heat transfer, PV, BIPV, experimental method, empirical correlations. 
 

Nomenclature 

z 
Vertical distance from the base of the metallic plate 
and PV (m) 

h Overall vertical height of the metallic plate and the PV 

T Temperature (°C) 

h Convection heat transfer coefficient (W/(m2·K)) 

1. Introduction 

Building services and air conditioning consume up 

to 50% of total energy in buildings and produce a 

significant proportion of CO2 in the atmosphere. In 

response, renewable energy technologies and PV 

(photovoltaic) modules was integrated in buildings [1-3]. 

Photovoltaic modules offer a promising solution, 
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cogenerating clean local electricity and enhancing 

cooling and/or heating through natural or forced 

convection in buildings. 

A conventional mono-crystalline silicon PV reflects 

back around 10% of the incoming solar (photonic), and 

converts into electricity up to 16%, and into low 

temperature thermal energy 74%. Application of low 

temperature heat in air-conditioning systems 

minimises entropy-rise and irreversibility in the heat 

transfer processes as outlined in Bejan [4]. 

Hirata and Tani [5] reported that, in the traditional 

first generation mono and poly-crystalline silicon PV 

modules, electricity-conversion efficiency of the PV 

drops with increase of surface temperature. It may 

suggest that, when a PV is exposed to solar radiation, 

its surface temperature, heat flux and conversion 

efficiency are not uniform. 

D 
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Prediction of convection heat transfer from a PV is 

an important requirement in design and operation of 

BIPV (building integrated photovoltaic). This is 

especially urgent at the University of Technology 

Sydney, where PV modules are being integrated on the 

facade of new buildings. This paper serves to introduce 

a simple technique for engineers and researcher to 

estimate convection heat transfer from the PV system 

on their buildings. 

The natural convection heat transfer and passive 

cooling have been researched experimentally, 

numerically and analytically during past few decades. 

The natural convection from a flat surface with UHF 

(uniform heat flux) or temperature distribution is 

investigated considerably and refined over the years. A 

number of empirical correlations are proposed for in air, 

water and mercury. 

Saunders [6] was the first to study experimentally 

and theoretically natural convection in laminar and 

turbulent flows on an isothermal vertical plate in water 

and mercury. He expressed his results in a power-law 

form. McAdams [7] studied natural convection heat 

transfer for a vertical laminar flow in an isothermal 

surface. He covered Rayleigh number (Ra) for laminar 

flow in the range of 104 < Ra < 109 and developed a 

correlation in the power law form for air, Nu = 

0.59Ra0.25. 

Sparrow and Gregg [8] studied natural convection 

on a vertical surface with UHF and derived an exact 

solution for Prandtl numbers in the range of 0.1 to 100 

and presented an expression for Nusselt number as a 

function of Prandtl number and Rayleigh number. 

Sparrow and Gregg [9] also studied natural convection 

in the laminar boundary layer over a vertical flat plate 

with two families of surface temperature variations, 

namely the power law and exponential. The power law 

distribution of Ts – T = N·Zn. The exponential 

distribution of Ts – T = M·emz. They developed a 

correlation with 0.25 as the exponent for Gr or Pr. 

Their correlation in laminar convection air flows on 

non-isothermal surfaces can be fitted into a second 

order parabola form for air. Nu/(Gr/4)0.25 = -0.09n2 + 

0.43n + 0.4 for air Pr = 0.7, R² = 0.965. Their 

correlation is in power-law format Nu = a·(Ra)0.25, with 

a = 0.462 and 0.53 for an isothermal surface and an 

UHF surface, respectively with Ra < 109. Sparrow and 

Gregg [9] also studied effects of fluid-property in 

laminar free convection on an isothermal vertical flat 

plate. For a number of specific cases, they solved 

conservation equations for the boundary layers with 

variable-property situations. They used “reference 

temperatures” to extend the results derived for 

constant-property fluids to variable-property situations. 

For gases, the constant-property heat transfer results 

are generalized to the variable property situation by 

replacing  (expansion coefficient) by 1/T∞ and 

evaluating the other properties at the reference 

temperature of Tr = Tw – 0.38(Tw – T∞). They observed 

that, the film temperature can adequately serve as 

reference temperature for most engineering 

applications.  

Vliet and Liu [10] experimentally studied natural 

convection in water on an UHF vertical surface and 

developed the local and the average correlations for 

laminar flow in the form of For local values: Nu = 

0.6(Ra)0.2 for 105 < Ra < 1013 . 

Natural convection in laminar flows over vertical 

plates or channels has been reviewed by Rohsenow, et 

al. [11] and Olsson [12]. Ménézo et al. [13] have 

recently developed a correlation for prediction of heat 

transfer on an electrically heated vertical flat surface 

in the form of the local Nusselt and Rayleigh numbers: 

Nuz = 0.16(Ra)0.256. The heater consisted of a thin 

metal foil (8 m thick) of CuNi44 alloy. 

Their results showed that, surface temperature 

increases up to 0.6 m and then remains almost constant 

for the rest of the 1.6 m height of the heater, with a 

small temperature-drop at the trailing edge. This may 

suggest that, correlations developed for isothermal 

surfaces can be used in iso-flux surfaces in certain 

conditions. 

Shateyi [14] has recently studied radiation effects on 
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natural convection over an isothermal, vertical, flat 

plate and concluded that the natural convection flow is 

appreciably influenced by thermal radiation [14]. He 

observed that, increasing the thermal radiation 

produced significant increases in the fluid temperature 

which consequently induced more fluid in the 

boundary layer through buoyancy effect, causing the 

velocity in the fluid there to increase. 

The hydrodynamic boundary layer and thermal 

boundary layer thicknesses were observed to increase 

as a result of increasing radiation.  

Shateyi [14] research may suggest that, convection 

heat transfer coefficient is higher in the boundary layer 

flows exposed to thermal radiation and consequently a 

new correlation need to be developed for a surface where 

convection and radiation heat transfer are coupled. 

Mamun, et al. [15] investigated effects of heat 

generation on natural convection flow along and 

conduction inside a vertical flat plate. The interaction 

between the conduction inside and the buoyancy forced 

flow of fluid along a solid surface is termed as CHT 

(conjugate heat transfer) process. They argued that, the 

convection in the surrounding fluid significantly 

influences the conduction inside a wall. Accordingly, 

the conduction in the solid body and the convection in 

the fluid should be considered simultaneously when a 

correlation is developed. 

Natural convection is widely used in the thermal 

control of many systems because of its cheapness, easy 

maintenance and reliability. The characteristics of 

natural convection in open enclosures similar to actual 

building façades have been studied. For this reason, 

several configurations with different boundary 

conditions are investigated [16-28]. 

Madadnia and Park [1] tested a PV in the 

UTS-laboratory and observed non-uniform 

distributions both for surface temperature and 

electricity-conversion efficiency. 

The fore-mentioned empirical correlations 

experience discrepancies of up to 50% in the prediction 

of convection heat transfer coefficient as reviewed by 

Rohsenow, et al. [11] and Olsson [12]. The reviews 

showed that, the large number of correlations which 

are developed to predict convection heat transfer on 

different conditions, did not include BIPV. A simple 

technique based on local measurements is investigated 

here. 

2. Description of the Problem 

Prediction of convection heat transfer from a PV is 

important in design and operation of BIPV modules 

especially at UTS where PV modules are integrated 

into new buildings. Empirical correlations to predict 

convection heat transfer on a photovoltaic panel are 

very scarce, suggesting that, not much work has been 

done in this field. This paper serves to investigate 

viability of application of a mobile probe to predict 

surface temperature and heat transfer on photovoltaic 

modules. 

3. Apparatus and Experimental Procedures 

The PV apparatus is described in details in 

Madadnia and Park [1]. In brief, the vertical PV panel 

in Fig. 1b is the first generation PV module with 

polycrystalline silicon materials and known as the BP 

solar SX 201 which has thermal capacity of 903 kJ/(kg·K), 

emissivity of 0.8, absorptivity of 0.8, maximum 

nominal power output of 20 W, W = 0.5 m wide and h 

= 0.4 m height with a total surface area of 0.20 m2. The 

dimensions of the PV module are 690 mm height and 

294 mm wide, providing a total surface area of 0.203 m2. 

Two top photos in Fig. 1a show the schematic layout 

(left) and a photographic view of the mobile probe 

(right) with two thermocouples at a fixed distance 

apart.  

Fig. 1c shows the schematic layout of the associated 

experimental set up. 

Fig. 2 shows a photographic view of 12 vertical 

stainless steel heaters with 12 embedded 

thermocouples with controllable heat flux and surface 

                                                           
1  http://www.solarpanelsaustralia.com.au/downloads/bpsolar_ 
sx20-30.pdf. 
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Fig. 2  A photographic view of the vertical plate with 12 
electrical-heater. 
 

The experimental apparatus in this project are 

considered as a simplified and scaled representation of 

a BIPV. In such cases, the vertical wall and the PV 

modules act as thermal sources, thus thermal 

boundary layer is formed by free convection, and 

surface temperature varies as boundary layer thickness 

increases. 

A purpose-built mobile probe was designed as 

shown in Fig. 1a. It is a rectangular-shape probe with 

dimensions of 100 mm × 8.42 mm × 72 mm. There is a 

cylindrical convection hole of 3 mm in diameter 

tangent to the tip-surface of the probe. Two k-type 

thermocouples are positioned on the tip and in the hole, 

2 mm apart, and connected to a LabView data-acquisition 

board via a long wire of 1 mm in diameter (model 

818-0.015). Distance between thermocouples on the 

mobile probe remains fixed at 2 mm. 

The probe inside the convection hole in the probe 

measures local air temperature (Tair) and the second 

thermocouple measures contact temperature (T1) when 

probe is in contact with a wall. Steady state reading is 

selected from the thermocouple readings. The accuracy 

obtained after calibration and automatic correction of 

the cold junction is ±0.5 °C. 

A series of experiments is carried out by traversing 

the probe in the thermal boundary layers formed over 

both the heater and the photovoltaic. The experiments 

on the heater was carried at a UHF of 25 W/m2 and a 

room temperature of T∞ = 20 °C. 

The thermocouple on the tip of the probe was in 

complete contact with the wall surface during the 

span-wise traverse. Temperature and heat flux in each 

electric heater are measured using an embedded 

thermocouple and heat flux meter in the heater. Those 

primary measured quantities were used to quantify the 

local surface temperatures, convective heat transfer 

coefficients and dimensional-less parameters the local 

Nusselt number Nu and Rayleigh number Ra. 

The uncertainty analysis, conducted according to the 

procedures described by Moffat [27], resulted in less 

than 0.5 °C for the thermocouples readings in the 

calibration range of 15-65 °C as compared with the 

pyrometer reading. 

Fig. 3 shows the photographic view of an oscilloscope 

screen displaying the two thermocouples readings on 

the probe. Local air temperature and local contact 

temperature are shown in white and red respectively. 

Both thermocouples read the same ambient temperature 

(T∞) before the contact is made with the wall surface 

(region “I”). A sharp increase in temperatures is 

noticed when the probe is inserted inside the thermal 

boundary layer and a contact is made with the hot 

surface (region “II”). Region “III” associated with 

cooling of thermocouples when probe is detached from 

the wall and moves out of the thermal boundary layer. 
 

 
Fig. 3  Shows transient readings of thermocouples in the 
probe. Local air temperature (Tair) is shown in white and 
local contact temperature (T1) is shown red. 
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The steady state condition is assumed when a change of 

less than 0.1 °C in thermocouple readings is noticed. 

Each complete cycle of reading starts and ends with 

steady state conditions. The steady state period is 

defined with a negligibly small rate of temperature 

change and transient conditions are the periods in 

which the probe experienced warming-up or cooling 

down. 

4. Experimental Procedures and Results 

Thermal boundary layers was traversed stream-wise 

by the probe at three span-wise directions (x/h = 0.0, 

0.5, 1.0). The average values were used for further 

data-processing. The uniform heat flux of UHF = 

20 W/m2, and the ambient temperature of T∞ = 20 °C 

were maintained during the experiments. Contact 

temperature (T1) on the heater or PV and the local air 

temperature (Tair) were measured with the probe, while 

UHF and heater temperature were controlled and 

measured by the flux meter and the embedded 

thermocouples for each heater. 

The sampling rate of one signal per 3 s per channel 

was used for the data acquisition system. Each 

traverse was repeated at three span-wise locations to 

confirm repeatability and two-dimensionality at steady 

state conditions and the average values were used. 

Standard relations are used to determine the local 

convection heat transfer coefficient, the local Nusselt 

number and the Rayleigh number. 

Fig. 4 shows stream-wise temperature distributions 

for surface and air temperature. The two thermocouples 

on the probe measured a contact temperature T1 and 

local air temperature Tair at z = 2 mm. The true surface 

temperature of the wall is estimated with assuming Ts = 

(2T1 – Tair)/2. The estimated surface temperature is 

compared with the thermocouple reading embedded in 

the vertical heater highlighted as UHF. The 

experimental results are presented in terms of the 

average working temperature differences (Ts – T) 

along the dimension less vertical coordinate (z/h) 

where h is the height of the wall. 

Temperature distributions from the three traverses 

were fitted to the power-law equation and the best 

curve-fits are shown in solid lines. Experimental results 

showed that at the upper values of (z/h) temperatures 

decreased mainly due to heat transfer from the tip of 

the wall. Trailing edge effect, it has also been reported 

by Ménézo, et al. [13] and Manca, et al. [28]. Fig. 4 

also shows that, surface temperatures are converging at 

higher z/h. A suggestion is made to revisit and to refine 

the relation between the measured contact temperature 

(T1) and the true surface temperature (Ts) in future 

analysis. 

Experimental results from the heater-apparatus are 

used to plot Fig. 5 which shows variations of local 

Nusselt numbers (Nu) with Rayleigh (Ra) numbers in 

logarithmic coordinates. The solid lines represent the 

power-law fits (Nu = a·(Ra)b) to the experimental 

results and the empirical correlations: 

 From the mobile probe: Nu = 0.34(Ra)0.26,      

R² = 0.98; 

 From the embedded probe: Nu = 0.46x0.22 ,     

R² = 0.99; 

 Empirical correlations for local values from open 

literature sources also plotted in solid line and listed 

here for comparison; 

 From McAdams [7]: Nu = 0.59(Ra)0.25; 

 From Sparrow & Gregg [9]: Nu = 0.53(Ra)0.25; 

 From Vliet & Liu ([10]: Nu = 0.6(Ra)0.2; 

 From Fossa et al. [26]: Nu = 0.16(Ra)0.256. 

It is noted that, both empirical correlations from the 

probe and the embedded thermocouple on heater are 

within the range covered with McAdams [7], Sparrow 

& Gregg [9], Vliet & Liu [10] and Fossa et al. [26]. It 

means that, for a fixed Ra, Vliet & Liu [10], and Fossa 

et al. [26] have underestimated Nu and have predicted 

smaller values. While McAdams [7] and Sparrow & 

Gregg [9] have overestimated Nu and have predicted 

bigger values for Nu relative to the predicted Nu from 

the two correlations proposed in this paper. 

Considering the vast number of correlations, it is a 

reasonable validation for the probe and its viability. 
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experimental results satisfactorily. The prediction of 

convection heat transfer Nu from the correlations is in 

agreement with the corresponding correlations 

proposed in the open literature. 

Only two test data from the probe are needed to 

determine the constant values of “a” and “b” and to 

develop a correlation from a wall. This simple 

technique is very practical in thermal design of BIPV 

modules.  

Finally, it may be concluded that, this paper has 

proposed to update the convection heat transfer 

correlations using two local measurements of the probe. 

Universal correction in the power-law format is viable. 

An updated correlation then can predict thermal 

performance using two local test results. The work is in 

progress to further extend the correlation to predict the 

combined radiation and convection on all PV 

configurations, as required in the efficient design of 

BIPV systems. 
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