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Abstract: Recently, a new type of IMM (interacting multiple model) method was introduced based on the relatively new SVSF 
(smooth variable structure filter), and is referred to as the IMM-SVSF. The SVSF is a type of sliding mode estimator that is formulated 
in a predictor-corrector fashion. This strategy keeps the estimated state bounded within a region of the true state trajectory, thus creating 
a stable and robust estimation process. The IMM method may be utilized for fault detection and diagnosis, and is classified as a 
model-based method. In this paper, for the purposes of fault detection, the IMM-SVSF is applied through simulation on a simple battery 
system which is modeled from a hybrid electric vehicle. 
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1. Introduction 

Modern control theory relies on reliable state 

estimates in order to provide accurate and safe control 

of mechanical and electrical systems. Estimation 

theory is therefore an important tool for providing 

accurate state and parameter estimates. The most 

popular estimation method to date remains the KF 

(Kalman filter) which was introduced and applied on a 

number of systems in the 1960s [1, 2]. It yields a 

statistically optimal solution for linear estimation 

problems in the presence of Gaussian noise [1]. In other 

words, based on the available information on the 

system, it yields the best possible solution in terms of 

estimation error [3]. The KF assumes that the system 

model is known and linear, the system and 

measurement noises are white, and the states have 

initial conditions and are modeled as random variables 

with known means and variances [4, 5]. However, 

these assumptions do not always hold in real 
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applications. If one of these assumptions is violated, 

the KF performance becomes sub-optimal and could 

potentially become unstable [6]. 

As presented in Ref. [7], the ability to detect and 

diagnose faults is essential for the safe and reliable 

control of mechanical and electrical systems. In the 

presence of a fault, the system behaviour may become 

unpredictable, resulting in a loss of control which can 

cause unwanted downtime as well as damage to the 

system. There are two main types of methods to detect 

and diagnose faults: signal-based and model-based [8]. 

Signal-based fault detection methods typically use 

thresholds to extract information from available 

measurements [9, 10]. This information is then used to 

determine if a fault is presented. Model-based methods, 

as the name suggests, make use of faults which can be 

modeled, typically through system identification. This 

type of fault detection and diagnosis is popular when 

well-defined models can be created and utilized. 

The IMM (interacting multiple model) strategy 

makes use of a finite number of models, and is 

associated with filters that run in parallel. The output 

from each filter includes the state estimate, the 
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covariance, and the likelihood calculation (which is a 

function of the measurement error and innovation 

covariance). The output from the filters is used to 

calculate mode probabilities, which gives an indication 

of how close the filter model is to the true model. The 

IMM method has been successfully applied on 

mechanical and electrical systems for fault detection 

and diagnosis [4, 11]. Typically, the IMM implements 

the KF strategy for determining the state estimates. 

However, this paper studies the results of using the 

SVSF (smooth variable structure filter) instead of the 

KF, as applied on a HEV (hybrid electric vehicle) 

battery system. 

2. Filtering Strategies 

2.1 Kalman Filter 

In 1960, Rudolph Kalman presented a new approach 

to linear filtering and prediction problems, which 

would later become known as the KF (Kalman filter) 

[1]. This method was successfully applied by NASA 

for their lunar and Apollo missions, and quickly 

became the “workhorse” of estimation [5, 12]. The KF 

yields a statistically optimal solution for linear 

estimation problems in the presence of Gaussian noise. 

The KF is a model based method, derived in the time 

domain and a discrete-time setting. A continuous-time 

version was developed by Kalman and Bucy, and is 

consequently referred to as the Kalman-Bucy filter [2]. 

Like many other filters, the KF is formulated in a 

predictor-corrector manner. The states are first 

estimated using the system model and input, termed as 

a priori estimates, meaning “prior to” knowledge of the 

observations. A correction term is then added based on 

the innovation (also called residuals or measurement 

errors), thus forming the updated or a posteriori 

(meaning “subsequent to” the observations) state 

estimates. The KF has been broadly applied to 

problems covering state and parameter estimation, 

signal processing, target tracking, fault detection and 

diagnosis, and even financial analysis [13, 14]. The 

success of the KF comes from the optimality of the 

Kalman gain in minimizing the trace of the a posteriori 

state error covariance matrix [1]. The trace is taken 

because it represents the state error vector in the 

estimation process [6]. 

The following five equations form the core of the KF 

algorithm, and are used in an iterative fashion. Eqs. (1) 

and (2) define a priori state estimate ݔො௞ାଵ|௞ based on 

knowledge of the system ܣ and previous state estimate 

ො௞|௞ݔ , and the corresponding state error covariance 

matrix ௞ܲାଵ|௞, respectively: 

ො௞ାଵ|௞ݔ ൌ ො௞|௞ݔܣ ൅  ௞         (1)ݑܤ

 ௞ܲାଵ|௞ ൌ ܣ ௞ܲ|௞்ܣ ൅ ܳ௞            (2) 

The Kalman gain ܭ௞ାଵ is defined by Eq. (3), and is 

used to update the state estimate ݔො௞ାଵ|௞ାଵ as shown in 

Eq. (4). The gain makes use of an innovation 

covariance ܵ௞ାଵ, which is defined as the inverse term 

found in Eq. (3). 

௞ାଵܭ ൌ ௞ܲାଵ|௞்ܥ൫ܥ ௞ܲାଵ|௞்ܥ ൅ ܴ௞ାଵ൯
ିଵ

   (3) 

ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅ ௞ାଵݖ௞ାଵ൫ܭ െ  ො௞ାଵ|௞൯  (4)ݔܥ

The posteriori state error covariance matrix 

௞ܲାଵ|௞ାଵ  is then calculated by Eq. (5), and is used 

iteratively, as per Eq. (2): 

௞ܲାଵ|௞ାଵ ൌ ሺܫ െ ሻܥ௞ାଵܭ ௞ܲାଵ|௞         (5) 

The derivation of the KF is well documented, with 

details available in Refs. [1, 3, 6]. The optimality of the 

KF comes at a price of stability and robustness. The KF 

assumes that the system model is known and linear, the 

system and measurement noises are white, and the 

states have initial conditions with known means and 

variances [5]. However, the previous assumptions do 

not always hold in real applications. If these 

assumptions are violated, the KF yields suboptimal 

results and can become unstable [15]. Furthermore, the 

KF is sensitive to computer precision and the 

complexity of computations involving matrix 

inversions [16]. 

2.2 Smooth Variable Structure Filter 

The SVSF (smooth variable structure filter) was 

presented in 2007 [17]. The SVSF strategy is also a 

predictor-corrector estimator based on sliding mode 
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From Eqs. (19) and (20), the mode-matched 

innovation covariance ௝ܵ,௞ାଵ|௞  (21) and 

mode-matched priori measurement error ௝݁,௭,௞ାଵ|௞ (22) 

are calculated. 

௝ܵ,௞ାଵ|௞ ൌ ௝ܥ ௝ܲ,௞ାଵ|௞ܥ௝
் ൅ ܴ௞ାଵ          (21) 

௝݁,௭,௞ାଵ|௞ ൌ ௞ାଵݖ െ  ො௝,௞ାଵ|௞          (22)ݔ௝ܥ

The update stage is defined by the following four 

equations. The mode-matched SVSF gain ܭ௝,௞ାଵ  is 

calculated in Eq. (23) and used to update the state 

estimates ݔො௝,௞ାଵ|௞ାଵ (24). 

௝,௞ାଵܭ ൌ

௝ܥ
ା݀݅ܽ݃ൣ൫ห ௝݁,௭,௞ାଵ|௞ห ൅

௝หߛ ௝݁,௭,௞|௞ห൯ݐܽݏ൫ ത߰
௝
ିଵ

௝݁,௭,௞ାଵ|௞൯൧݀݅ܽ݃൫ ௝݁,௭,௞ାଵ|௞൯
ିଵ

 (23) 

ො௝,௞ାଵ|௞ାଵݔ ൌ ො௝,௞ାଵ|௞ݔ ൅ ௝,௞ାଵܭ ௝݁,௭,௞ାଵ|௞   (24) 

The corresponding state error covariance matrix 

௝ܲ,௞ାଵ|௞ାଵ  is then calculated in Eq. (25) and the 

posteriori measurement error ௝݁,௭,௞ାଵ|௞ାଵ  may be 

found in Eq. (26). 

௝ܲ,௞ାଵ|௞ାଵ ൌ ൫ܫ െ ௝൯ܥ௝,௞ାଵܭ ௝ܲ,௞ାଵ|௞൫ܫ െ ௝൯ܥ௝,௞ାଵܭ
்

൅

௝,௞ାଵܭ௝,௞ାଵܴ௞ାଵܭ
்      (25) 

௝݁,௭,௞ାଵ|௞ାଵ ൌ ௞ାଵݖ െ  ො௝,௞ାଵ|௞ାଵ    (26)ݔ௝ܥ

Based on the mode-matched innovation matrix 

௝ܵ,௞ାଵ|௞  (21) and the mode-matched a priori 

measurement error ௝݁,௭,௞ାଵ|௞  (22), a corresponding 

mode-matched likelihood function ߉௝,௞ାଵ based on the 

SVSF estimation method may be calculated, as follows 

[4]: 

௝,௞ାଵ߉ ൌ ࣨ൫ݖ௞ାଵ; ,௝,௞ାଵ|௞ݖ̂ ௝ܵ,௞ାଵ൯    (27) 

Eq. (27) may be solved as follows [4]: 

௝,௞ାଵ߉ ൌ
ଵ

ටหଶగௌೕ,ೖశభห
݌ݔ݁ ቆ

ିభ
మ

௘ೕ,೥,ೖశభ|ೖ
೅ ௘ೕ,೥,ೖశభ|ೖ

ௌೕ,ೖశభ
ቇ  (28) 

Utilizing the mode-matched likelihood functions 

 :௝,௞ may be updated by [4]ߤ ௝,௞ାଵ, the mode probability߉

௝,௞ߤ ൌ
ଵ

௖
௝,௞ାଵ߉ ∑ ௜௝݌

௥
௜ୀଵ  ௜,௞        (29)ߤ

where the normalizing constant is defined as [4]: 

ܿ ൌ ∑ ௝,௞ାଵ߉ ∑ ௜௝݌
௥
௜ୀଵ ௜,௞ߤ

௥
௝ୀଵ            (30) 

Finally, the overall IMM-SVSF state estimates 

 ො௞ାଵ|௞ାଵ (31) and corresponding covariance ௞ܲାଵ|௞ାଵݔ

(32) are calculated: 

ො௞ାଵ|௞ାଵݔ ൌ ∑ ො௝,௞ାଵ|௞ାଵݔ௝,௞ାଵߤ
௥
௝ୀଵ         (31) 

௞ܲାଵ|௞ାଵ ൌ ෍ ௝,௞ାଵሼߤ ௝ܲ,௞ାଵ|௞ାଵ ൅

௥

௝ୀଵ

 

൫ݔො௝,௞ାଵ|௞ାଵ െ ො௝,௞ାଵ|௞ାଵݔො௞ାଵ|௞ାଵ൯൫ݔ െ ො௞ାଵ|௞ାଵ൯ݔ
்

ሽ (32) 

The formulation of the IMM-SVSF may be 

summarized by Eq. (15) through Eq. (32), where there 

are ݅, ݆ ൌ 1, … ,  models. It is noted that Eqs. (31) and ݎ

(32) are only used for output purposes, and are not part 

of the algorithm recursions [4]. Furthermore, it is noted 

that the IMM-KF strategy is the same process as above 

but Eq. (19) through Eq. (26) are replaced with the KF 

prediction and update equations. 

4. HEV Battery Model 

A variety of batteries have been studied in literature, 

most notably lead-acid and lithium-ion batteries 

[22-26]. Lead-acid batteries are the oldest type of 

rechargeable batteries, and are most commonly found 

in motor vehicles. Lithium-ion batteries are also a form 

of rechargeable battery, which contain lithium in its 

positive electrode (cathode). These batteries are 

usually found in portable consumer electronics (i.e., 

laptops or notebooks) due to particularly high 

energy-to-weight ratios, slow self-discharge, and a lack 

of memory effect (i.e., where a battery loses its 

maximum energy capacity over time) [23]. 

In recent years, lithium-ion batteries have slowly 

entered the hybrid electric vehicle market, due to the 

fact that they offer better energy density compared to 

standard batteries [27]. 

The operation of batteries may be studied by using 

the ADVISOR (advanced vehicle simulator), which 

was written in MATLAB and Simulink by the US 

Department of Energy and the National Renewable 

Energy Laboratory [28-30]. ADVISOR is used for the 

analysis of performance and fuel economy of three 

vehicle types: conventional, electric, and hybrid 

vehicles [28]. In 2001, the RC (resistance-capacitance) 

battery model was first implemented in ADVISOR 

[31]. The electrical model consists of three resistors 

(ܴ௘, ܴ௖, and ܴ௧) and two capacitors (ܥ௕ and ܥ௖). The 
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first capacitor (ܥ௕ ) represents the capability of the 

battery to chemically store a charge, and the second 

capacitor (ܥ௖) represents the surface effects of a cell 

[30]. The resistances and capacitances vary with 

changing SOC and temperature (ܶ) [30]. 

ADVISOR offers two different datasets for the RC 

battery model: lithium-ion and nickel-metal hydride 

chemistries. For the purposes of this study, the 

lithium-ion chemistry was used in conjunction with the 

RC battery model. 

A standard model of a parallel hybrid electric vehicle 

referred to within ADVISOR as the Annex VII PHEV 

was used for this study. This model has been developed 

by the IEA (International Energy Agency), which is an 

international research community for the development 

and commercialization of hybrid and electric vehicles 

[32]. The model is based on data obtained from 

published sources and national (U.S.) research test data 

[28]. The battery system of the HEV represents the 

battery pack which stores energy on board the HEV. 

The system accepts a power request, and returns the 

available power from the battery, as well as the SOC, 

voltage and current [28]. 

The equation that describes the system voltages may 

be derived from the RC battery model, and is defined as 

follows: 

൤
஼್ܸ,௞ାଵ

஼ܸ೎,௞ାଵ
൨ ൌ ቎

െ ೞ்

஼್ሺோ೐ାோ೎ሻ
൅ 1 ೞ்ோ೎

஼್ሺோ೐ାோ೎ሻ

ೞ்ோ೐

஼೎ሺோ೐ାோ೎ሻ
െ ೞ்

஼೎ሺோ೐ାோ೎ሻ
൅ 1

቏ ൤
஼್ܸ,௞

஼ܸ೎,௞
൨ ൅

቎

ೞ்ோ೎

஼್ሺோ೐ାோ೎ሻ

ೞ்ோ೐

஼೎ሺோ೐ାோ೎ሻ

቏ ௌೖܫ
            (33) 

For the purposes of fault detection of the battery, the 

voltages ஼ܸ௕  and ஼ܸ௖  are treated as states. Normal 

parameter values were selected from the ADVISOR 

model. Two faults were designed to represent a fault in 

one of the capacitors or the resistors. 

5. Simulation Results 

Both the IMM-KF and IMM-SVSF strategies were 

applied on a simulated battery model with injected 

faults. Consider the following scenario: normal 

operation for the first 10 seconds, followed by a 

capacitor fault for 5 seconds, then normal operation for 

another 15 seconds, and finally a resistor fault for the 

last 10 seconds. The system and measurement noise 

covariances are defined respectively as follows: 

ܳ ൌ 10ିଽ ൈ ݀݅ܽ݃ሺሾ1 1ሿሻ       (34) 

ܴ ൌ 10ି଺ ൈ ݀݅ܽ݃ሺሾ1 1ሿሻ       (35) 

Figs. 3-5 show the mode probabilities for normal 

operation, and the presence of the two faults. 

Essentially, it is ideal to follow the true mode 

probability. Although both strategies were able to 

correctly identify the mode of operation, the 

IMM-SVSF strategy was able to provide a more 

accurate determination. For example, between 15 and 

30 seconds, the IMM-SVSF determined with roughly 

90% that the battery system was operating normally. 

However, the IMM-KF strategy had a significantly 

smaller (about 30% less) probability of detection. 

6. Conclusions 

This short paper provided an overview of a 

combined IMM (interacting multiple model) method 

with the relatively new SVSF (smooth variable 

structure filter). A very simple battery model used in a 

HEV system was implemented and studied. Two 

artificial faults were generated and used in a simulation. 

The results demonstrate that the new model-based 

strategy referred to as the IMM-SVSF works more 

effectively than the popular IMM-KF. Future work will  
 

 
Fig. 3  Normal mode probability for the HEV battery model 
simulation. The solid blue line represents the true model. 
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Fig. 4  Capacitance fault probability results for the HEV 
battery simulation. 
 

 
Fig. 5  Resistor fault probability results for the HEV 
battery simulation. 
 

involve studying a more difficult problem, including 

varying degrees of faults.  
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