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Abstract: Human economic and social needs can be in conflict with ecosystem needs. Land development increases impervious 
surfaces causing significant negative impacts to aquatic ecosystems. Many impervious surface estimates are derived from remote 
sensing data, developed by using different methods and often out of date. Remote sensing data is often at scales applicable to 
regional management, but not local planning decisions. To date, no standardized annual dataset of percent impervious surface exists 
for use at both local and watershed scales. Effective communication between natural resource managers and local planners has been 
lacking. One solution is to monitor percent impervious surface with a relative index rather than direct measure. A relative index 
model can use a currency, like foundation square feet per hectare, which is useful for all decision makers. One data source for 
developing a relative index of impervious surface is property tax data. These data document annual land development at local scale. 
Here, the author presents the use of Maryland property tax data to index land development and percent impervious surface. 
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1. Introduction 

Land development in the form of impervious 

surfaces (IS) such as roads, parking lots and buildings 

increases concentrations of pollutants like nitrogen, 

phosphorus, heavy metals and suspended solids in 

storm water [1, 2]. While, reduce infiltration of water 

into soil and rapidly delivering it to aquatic systems 

resulting in significant habitat alteration [3-6]. Percent 

IS, therefore, provides an index of these multiple 

stressors that are indicative of urbanization. Direct 

measure of IS using aerial photographs is the most 

accurate method to determine %IS, but this method is 

time intensive for relatively small catchments making 

it impractical and costly for county wide planning [7]. 

Satellite based remote sensing imagery, such as that 

collected by Landsat Thematic Mapper (TM), is a 

lower cost alternative to estimate %IS [8]. While 

                                                           
Corresponding author: Marek Topolski, natural resources 
biologist, research field: fish habitat. E-mail: 
marek.topolski@maryland.gov. 

commonly used, there are drawbacks. Development 

of %IS estimates from remote sensing data requires 

significant expertise [9-11] to correct for external 

factors that increase classification error including land 

cover heterogeneity, patch size of land cover, sensor 

resolution, spectral similarity among different feature 

types and classification methodology [12-14]. The 

complexity associated with interpreting satellite based 

data prohibits its use as an annual estimation of %IS 

changes by local land use decision makers. 

Indexing %IS with another more readily available 

landscape measure is one option. An index is a 

derived variable based on empirical measures of other 

variables [15] from which a functional relationship 

can be defined [16]. Index reference points can be 

established for habitat thresholds such as critical %IS 

values for brook trout (Salvelinus fontinalis) [17], 

southern two-lined salamanders (Eurycea cirrigera) 

and northern dusky salamanders (Desmognathus 

fuscus) [18] and minimum dissolved oxygen levels for 
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fish and shellfish [16]. In general, increased %IS is 

associated with reduced aquatic habitat quality and 

changes to aquatic community composition [4, 7, 9, 

10, 19], suggesting that a %IS index would be a useful 

tool for land use planning and management [4, 8]. 

Accuracy of %IS estimates varies among land uses 

and aggregation of similar land cover types. Land Use 

and Land Cover (LULC) classifications are often 

based on the four tier Anderson classification system 

[20]. Land types are classified into categories such as 

residential, manufacturing, transportation, resource 

extraction and undeveloped. Categories are subdivided 

as the Anderson level increases from I to IV. Effective 

use of the Anderson classification system requires a 

LULC classification accuracy ≥ 85% [20].  

Overall classification accuracy of the 1992 National 

Land Cover Database (NLCD) can varry between 

46% and 60% at Anderson level II and between 70% 

and 83% at Anderson level I [21]. For areas smaller 

than 10% IS, it predicted that %IS was consistently 

underestimated when using Landsat TM imagery 

compared to aerial photographs [5, 17]. Percent IS 

estimation error may result from land cover 

heterogeneity and patch size induced classification 

error [13, 22]. Hu and Weng [12] and Ji and Jensen [6] 

significantly improved IS interpretation accuracy of 

remote sensing imagery by using subpixel classifiers 

to detect subpixel level differences in spectral 

signature which enable the detection of IS in wooded 

and low-density residential areas. However, the 

subpixel classifier analyses excluded water, wetland, 

forest and grassland LULCs. Also, subpixel spectral 

analyses are unable to accurately interpret shaded 

areas and different but spectrally similar surfaces (dry 

dirt versus bright IS). Thus, make them most useful 

for urban areas [12]. Bauer et al. [8] used high 

resolution aerial photography and orthophoto quarter 

quads of Minnesota’s twin cities—Metropolitan Area 

(TCMA) to improve Landsat TM %IS estimates to 

3.5% of actual %IS. Despite improved accuracy, 

Bauer et al. [8] cautioned that time and imagery costs 

make the approach best suited for city scale analyses 

rather than larger areas such as the entire 7,700 km2 

TMCA. 

Alternate data sources have been used to estimate 

land use change and %IS within an area. For example, 

Reilly et al. [11] incorporated measures of 

employment and home construction into a 

predictive %IS model. Bird et al. [23] and Exum et al. 

[5] integrated population density and major road IS 

with remotely sensed land cover estimates. Moglen 

and Beighley [24] used Maryland property tax records 

and maps to determine land use change and model 

peak discharge into streams within urbanizing 

watersheds. Wu, Silvanhyphen, and Wang [25] used 

building count and building shape from tax data to 

estimate %IS within a 250 square mile section of 

Austin, Texas. Stone [26] modeled %IS using parcel 

attributes (lot size, lot frontage, front yard setback and 

residential capacity) and street network design (street 

width and street intersection density).  

Property-based models are promising, considering 

that impervious surface area increases with building 

and infrastructure construction [11]. Tax records 

document structure presence and size for each land 

parcel. Tax map data are standardized, annually 

updated and readily accessible. Considering that tax 

map data tracks the presence and absence of structures 

on land parcels, these data should be useful for 

developing an index of %IS. Multiple remotely 

sensed %IS datasets exist for Maryland. It is likely 

that each %IS dataset will result in a unique tax map 

index [16]. This study evaluated the feasibility of 

developing a tax map based index for %IS. These 

indices would provide a range of %IS status and 

trends that could inform local land use and resource 

management decisions. 

2. Materials 

2.1 Data Development 

Geo-processing was done using ESRI ArcMap 10.1 

and the Spatial Analyst extension [27]. All files were 
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projected in NAD 1983 State Plane Maryland FIPS 

1900 (Meters). Maryland tax data is available by 

county as point feature shapefiles from the Maryland 

Department of Planning (MDP) as part of the 

MdProperty View dataset [28]. All tax datasets used 

in the analysis included attributes for x, y coordinates, 

the year a primary structure was built and the primary 

structure’s foundation footprint in square feet (Table 

1). Each year’s tax data was compiled into a single 

statewide file prior to geo-processing. Tax records 

without x, y coordinates and year built data were 

removed. Tax data has been updated annually since 

1996. However, data from 1996 to 1998 did not 

include the century in which a structure was built 

(1700s, 1800s or 1900s) and were not used in the 

analysis. Tax data for years prior to 1999 were derived 

from the 1999 dataset. Tax data were queried for 

records between 1700 and the years 1990, 1992, 1996, 

2000, 2001, 2005 and 2006 which corresponded with 

available %IS datasets for Maryland. 

Maryland Department of Natural Resources 

(MDNR) created the shapefile SWSHED [29], herein 

12 digit to delineate third-order watersheds (Fig. 1) 

based on the Strahler designation method [30] and 

adjusted based on U.S. Geological Survey (USGS) 7.5 

minute quadrangle map sheets. Watersheds that 

exceeded 6,070 ha were split into subwatersheds when 

possible. Maryland 12 digit watersheds are 

comparable to USGS 12 digit hydrologic unit codes 

(HUCs). 
 

Table 1  Number of tax records by Maryland county and the number which had x, y coordinates from the 2006 MdProperty 
View data. The number of records used based on structure year built or foundation footprint data is indicated. Percent of tax 
records are in (). 

County 
Total number of tax 
records 

Records with x, y coordinates, 

 with structure (year built),  

 with structure size (ft2)

Allegheny 41,013 39,487 (96) 27,502 (67) 27,481 (67) 

Anne Arundel 202,254 200,248 (99) 169,087 (84) 168,980 (84) 

Baltimore city 235,081 234,579 (100) 167,994 (71) 166,591 (71) 

Baltimore 292,309 287,267 (98) 234,217 (80) 234,028 (80) 

Calvert 41,066 40,596 (99) 30,889 (75) 30,542 (74) 

Caroline 16,218 16,153 (100) 11,857 (73) 11,852 (73) 

Carroll 65,206 64,395 (99) 55,136 (85) 54,730 (84) 

Cecil 45,465 44,922 (99) 32,780 (72) 32,418 (71) 

Charles 58,146 57,444 (99) 46,636 (80) 46,633 (80) 

Dorchester 22,037 21,765 (99) 14,265 (65) 14,121 (64) 

Frederick 89,504 87,264 (97) 76,215 (85) 72,584 (81) 

Garret 28,352 27,941 (99) 15,977 (56) 15,929 (56) 

Harford 93,137 91,833 (99) 79,662 (86) 78,945 (85) 

Howard 95,516 94,650 (99) 84,236 (88) 84,104 (88) 

Kent 13,152 12,971 (99) 8,786 (67) 8,767 (67) 

Montgomery 325,015 323,341 (99) 293,172 (90) 292,240 (90) 

Prince George 279,807 276,493 (99) 234,692 (84) 230,676 (82) 

Queen Anne 24,456 24,033 (98) 18,444 (75) 18,239 (75) 

Somerset 16,944 16,863 (100) 9,319 (55) 9,161 (54) 

St. Mary’s 44,775 43,765 (98) 32,980 (74) 32,977 (74) 

Talbot 20,302 20,165 (99) 16,268 (80) 16,260 (80) 

Washington 57,866 57,117 (99) 46,575 (80) 46,338 (80) 

Wicomico 45,451 45,162 (99) 33,695 (74) 33,500 (74) 

Worcester 64,215 63,049 (98) 50,832 (79) 50,675 (79) 

Statewide 2,217,287 2,191,503 (99) 1,791,216 (81) 1,777,771 (80) 
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Fig. 1  Map of 12 digit watersheds including ponds, lakes, rivers and Chesapeake Bay in Maryland, USA. 
 

Maryland tax data excludes Washington D.C. 

Portions of 12 digit watersheds within Washington 

D.C. were removed. Watersheds split by Washington 

D.C. boundary were recombined. A total of 1,120 

watersheds remained. Since IS is the manifestation of 

terrestrial development patterns, all bodies of open 

water including estuaries, rivers, reservoirs, lakes and 

ponds (≥ 1.2 ha) were removed from each 12 digit 

watershed and all subsequent calculations. Removal of 

open water ensured that land use impacts in 

watersheds having extensive shorelines were not 

underestimated. Tax records were spatially joined 

with the 12 digit watershed containing it. Records 

having x, y coordinates outside of Maryland were 

joined to the closest 12 digit watershed. Total 

structure foundation square feet per hectare (ft2/h) was 

calculated for each 12 digit watershed. 

Four %IS and LULC datasets were compared with 

the tax data: NLCD [31-33], Coastal Change Analysis 

Program (C-CAP) [34], Mid-Atlantic Regional Earth 

Science Applications Center (RESAC) [35, 36] and 

Towson University (TU) [37]. Each %IS dataset was 

derived from 30 m × 30 m resolution Landsat TM 

imagery. Each dataset used different methodologies to 

produce %IS or LULC estimates, but each was 

validated with aerial orthophotographs. Percent IS 

estimates (Table 2) were on a continuous scale from 

0% to 100%. However, LULC estimates were 

categorical requiring conversion to comparable %IS 

values for developed land from NLCD [38]. All other 

LULC classifications were from MDP [39]. 

The NLCD was produced by the multi-resolution 

land characterization—consortium’s regional land 

cover characterization project [40]. Maryland NLCD 

data is a subset of the federal region-III project area. 

Separate leaves-on and leaves-off mosaic images were 

created from Landsat TM bands 3, 4, 5 and 7. A %IS 

estimate between zero and 100 was determined for 

each raster pixel through an itterative unsupervised 

and supervised classification process. Percent IS 

estimates were validated and corrected with other 

information sources such as: aerial photographs, 

census of agriculture, digital terrain elevation data, 

LULC and national wetlands inventory. NLCD 1992 
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Table 2  LULC categories for C-CAP and MDP datasets. 

C-CAP 
code 

C-CAP label 
Mean C-CAP IS 
coefficient 

MDP code MDP label 
MDP IS 
coefficient 

1 Unclassified - 11 
Low density 
Residential 

0.14 

2 Developed, high intensity  0.90 12 
Medium density 
Residential 

0.28 

3 Developed, medium Intensity 0.65 13 
High density 
Residential 

0.41 

4 Developed, low intensity 0.35 14 Commercial 0.72 

5 Developed, open space 0.10 15 Industrial 0.53 

6 Cultivated crops 0.02 16 Institutional 0.34 

7 Pasture/hay 0.02 17 Extractive 0.02 

8 Grassland/herbaceous 0.01 18 Open urban land 0.09 

9 Deciduous forest 0.01 21 Cropland 0.02 

10 Evergreen forest 0.01 22 Pasture 0.02 

11 Mixed forest 0.01 23 Orchards 0.02 

12 Scrub/shrub 0.01 24 Feeding operations 0.02 

13 Palustrine forested wetland 0.00 242 Agricultural building 0.02 

14 Palustrine scrub/shrub wetland 0.00 25 Crops 0.02 

15 Palustrine emergent wetland (persistent) 0.00 41-44 Forest/brush 0.00 

16 Estuarine forested wetland 0.00 50 Water 0.02 

17 Estuarine scrub/shrub wetland 0.00 60 Wetlands 0.00 

18 Estuarine emergent wetland 0.00 71 Beaches 0.00 

19 Unconsolidated shore 0.00 72 Bare rock 0.09 

20 Barren land 0.09 73 Bare ground 0.09 

21 Open water 0.00 191, 192 Rural residential 0.04 

22 Palustrine aquatic bed 0.00 - Highway 0.95 

23 Estuarine aquatic bed 0.00 - - - 

24 Tundra 0.01 - - - 

25 Perennial ice/snow 0.01 - - - 

* C-CAP coefficients are from NOAA Coastal Services Center (n. d.) and MDP coefficients are from the Center for Watershed 
Protection (2005, p. 64). IS from highways and roads were not included in this analysis. 
 

data were classified as one of 23 categories developed 

from the C-CAP classification protocol and federal 

geographic data committee standards [14]. NLCD 

1992 LULC classifications were reclassified to the 

corresponding NLCD 2001 mean %IS coefficient [41] 

as described by Bird et al. [23]. Agricultural, forested, 

wetland and bare ground categories were classified 

using MDP %IS coefficients [39]. 

The C-CAP data product is one source of land 

cover information incorporated into the NLCD dataset. 

However, C-CAP data only includes areas within the 

estuarine drainage area (Fig. 1) defined by National 

Oceanic and Atmospheric Administration (NOAA) 

National Ocean Service [9]. C-CAP data are 

scheduled for update at five year intervals and are 

currently available for 1991, 1996, 2001 and 2005 [9]. 

Data was processed using methods comparable to 

those described previously for NLCD [9, 14]. C-CAP 

pixels were assigned to one of 25 LULC categories 

(Table 2). LULC categories were reclassified to the 

mean %IS values for comparable NLCD 2001 

categories [42] and MDP LULC categories (Table 2). 

RESAC was contracted by the Chesapeake Bay 

Program to develop %IS estimates for the Chesapeake 

Bay watershed for the years 1990 and 2000 [42]. 

Several sources of imagery including Landsat 5 TM, 

Landsat 7 ETM+, IKONOS and orthophotos [43] 

were used. High resolution IKONOS imagery allowed 
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for a sub-pixel regression tree classification process to 

estimate %IS from the Landsat imagery [43]. Percent 

IS validation was based on comparisons with IKONOS 

and orthophoto imagery from Montgomery County, 

Maryland and the surrounding Mid-Atlantic region. In 

the dataset available to the author, features having less 

than 10% IS had been assigned a value of zero. 

Towson University was contracted by MDNR to 

develop %IS estimates for Maryland 12 digit 

watersheds (McGinty Margaret, MDNR, personal 

communication). Imagery used was from 1999 and 

2000. Differences in development from 1999 to 2000 

were assumed to be insignificant. Eight broad LULC 

categories were defined: deciduous, evergreen, 

herbaceous, impervious high, impervious low, bare 

ground and water. These broad categories are 

comparable to Anderson level I categorization. Tax 

data for the year 2000 was used for comparison with 

the TU %IS data.  

NLCD, C-CAP and RESAC raster cells located 

within 12 digit watershed boundaries, excluding cells 

over open water, were extracted using the ArcGIS 

Extract by Mask tool. For each raster, the weighted 

mean %IS per 12 digit watershed [10] was calculated 

using the ArcGIS Zonal Statistics as Table tool. 

Twelve digit watershed %IS was already calculated 

for the TU data. All %IS data were joined to the 

corresponding year’s tax data by 12 digit watershed.  

2.2 Model Development 

Global regression models describe the relationship 

between a dependent and independent variable(s) 

across the entire spatial extent of the data [44], which 

in this case is the State of Maryland. Ordinary least 

squares regression (OLS) was used to develop a 

global model to describe the relationship between total 

structure foundation square feet (ft2) and %IS at the 12 

digit watershed scale. Global regression models from 

OLS were expressed in the form  

0 1 ii x iy                  (1) 

Where, yi is the predicted %IS for 12 digit 

watershed i, β1 is the slope, xi is the observed tax data 

(ft2/h) for 12 digit watershed i, β0 is the y-intercept 

and εi is model error [44, 45]. 

When tax and %IS data are randomly distributed 

among 12 digit watersheds, the under-predictions and 

over-predictions (εi) from each model will be 

randomly distributed among the 12 digit watersheds. 

Non-random spatial distributions (spatial 

autocorrelation) violate two regression assumptions: 

(1) observations are independent of each other and (2) 

residuals are normally distributed with a mean of zero 

[46]. All OLS model residuals were tested for spatial 

autocorrelation with an inverse distance weighted 

Morans I statistic: 
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Where, I is the Morans I statistic, n is the total 

number of 12 digit watersheds, wij is a weighting 

measure of spatial proximity between 12 digit 

watersheds i and j, zi and zj are the residual deviations 

of 12 digit watersheds i and j from the mean residual 

value and So is the aggregation of spatial weights [27]. 

The Morans I statistic determined if homogeneous 

clusters of over-predictions or under-predictions 

existed among the 12 digit watersheds. 

If OLS regression models were significant and 

spatially autocorrelated then, geographically weighted 

regression (GWR) models were developed with the 

same dependent and independent variables. 

Geographically weighted regression is necessary to 

adjust the global OLS regression model for each 12 

digit watershed [44-47]. A GWR is a variant of the 

linear OLS regression model, but without the 

assumption of randomly distributed error. It differs in 

that spatial bias in the data distribution is incorporated 

[47] into the regression model:  

   0
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

    (3) 
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by only using a specified number of neighboring 

features. In GWR, yi is the %IS (ui,vi) observation 

coordinates for 12 digit watershed (u,v), wij is the 

number of observations for each 12 digit watershed (i 

= 1,…,n) and its explanatory tax data (j = 1,…,k), β0 

and βj are parameters for each 12 digit watershed and 

εi is model error for each 12 digit watershed i [44]. 

The result is a unique linear model for each 12 digit 

watershed. GWR uses a spatial kernel to determine 

which neighboring features to use when calculating 

the local regression equation [44, 45]. Spatial density 

of 12 digit watersheds varied, so, a variable kernel 

was used to determine which 12 digit watersheds were 

used for GWR models. Corrected Akaike Information 

Criterion (AICc) was used as the spatial kernel’s 

bandwidth [45]. Model residuals were tested for 

spatial autocorrelation with the Morans I statistic 

previously described. 

AICc and standard error were used to evaluate 

model performance among all OLS and GWR models 

[45]. The AICc kernel was used, instead of a cross 

validation kernel, because it allowed direct 

comparison of models having different sample sizes, 

different explanatory variables and different 

complexity. Fotheringham, Brunsdon, and Charlton 

[44] defined AICc as: 

 

   
 

ˆ2 log

log 2
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       (4) 

Where, n is the total number of 12 digit 

watersheds,̂  is the residuals’ standard error and tr(S) 

is the trace of the hat matrix for observed tax data and 

predicted %IS [46]. Models were considered different 

when the AICc differed by a value of four or more 

[46]. Preferred models are those having the lowest 

AICc value. 

3. Results and Discussion 

A total of 1,120 12 digit watersheds were used for 

the NLCD, RESAC and TU models, but only 901 of 

those watersheds were used for the C-CAP models 

(Fig. 1). The watersheds varied in size from 0.0066 

hectares to 24,038 hectares. Watersheds that exceeded 

6,070 ha typically had large expanses of open water.  

Maryland tax data are spatially explicit at the land 

parcel level making it a direct measure of land 

development. The majority of tax records were 

spatially enabled with x, y coordinates, which allowed 

each record to be assigned to a single 12 digit 

watershed. Wu et al. [25] found that attributes related 

to a building’s area (maximum area, standard 

deviation of building’s area and the total building-area 

percentage) were among the most important factors 

for classifying land use. Not all Maryland land parcels 

had a primary structure (building), but for those that 

did, between 54% and 90% among the 24 counties 

were spatially enabled (Table 1). Not all of these 

records included the year the structure was built or its 

foundation area. None of the tax records included 

secondary structures such as: a detached garage, 

swimming pool, covered porch or paved surfaces [25]. 

The TU 2000 data had 23 records where %IS/h 

exceeded 40% when there was < 5,000 ft2/h of 

building footprint (4.6% IS). The lack of metadata 

precludes an understanding of how these outliers were 

generated and so they were retained in the analysis. 

Impervious surfaces are heterogeneously distributed 

in Maryland. The highest concentration of %IS occurs 

along the I-95 corridor between Baltimore City and 

Washington D.C. (Fig. 2a). Smaller urban centers are 

also visible. A large portion of Maryland has less than 

5%IS. However, the dispersion and extent of 

impervious surfaces varies among the methods used to 

interpret the remotely sensed data (Fig. 2a). 

Tax data was significantly correlated with %IS 

regardless of regression method (OLS global statewide 

versus GWR local 12 digit watershed) and resolution 

(Anderson level I classification versus Anderson level 

II classification). Increasing in ft2/h were significantly 

related to increases in observed %IS (Table 3). OLS 

models accounted for significant amounts of index 
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Fig. 2  Observed (a) and predicted (b) percent impervious surface distributions, GWR was used to generate the predictions.  
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Table 3  OLS equations for %IS versus foundation ft2/h and Morans I spatial autocorrelation results for standardized 
residuals. Joint F-statistic indicates overall model significance and Jarque-Bera Statistic indicates if model residuals deviate 
from a normal distribution.  

 Ordinary least squares regression Morans I 

IS dataset N y slope R2 AICc 
Joint 
F-statistic 

Jarque-bera 
statistic 

Moran’s 
index 

Expected 
index 

z-score 

C-CAP 
1992 

864 3.05  0.00239 0.585 5,530 1,217* 44,951* 0.330 -0.00116 26.8* 

C-CAP 
1996 

864 2.93 0.00239 0.595 5,526 1,271* 46,136* 0.322 -0.00116 26.2* 

C-CAP 
2001 

864 1.56 0.00310 0.802 4,940 3,496* 30,686* 0.265 -0.00116 21.5* 

C-CAP 
2005 

864 1.92 0.00245 0.813 4,920 3,742* 9,772* 0.330 -0.00116 26.5* 

NLCD 
1992 

1,094 3.13 0.00232 0.530 6,949 1,233* 45,574* 0.336 -0.000915 30.4* 

NLCD 
2001 

1,091 0.30 0.00255 0.760 5,894 3,455* 76,939* 0.253 -0.000917 23.0* 

NLCD 
2006 

1,095 1.06 0.00204 0.809 5,802 4,634* 24,905* 0.281 -0.000914 25.4* 

RESAC 
1990 

1,092 1.32 0.00213 0.560 6,566 1,385* 167,561* 0.280 -0.000917 25.7* 

RESAC 
2000 

1,092 1.04 0.00286 0.755 6,131 3,360* 143,532* 0.264 -0.000917 24.2* 

TU 2000 1,074 3.81 0.00529 0.683 7,749 2,307* 63,474* 0.260 -0.000932 23.4* 

* Significant results (p < 0.00001). 
 

variability: R2 = 0.530 to 0.813 (Table 3). Model 

performance improved as %IS datasets became more 

recent. The C-CAP 2005 model performed best: R2 = 

0.813 and AICc = 4,920 (Table 3), but C-CAP does 

not provide coverage for all of Maryland. Using data 

for all of Maryland, the NLCD 2006 model was 

preferred: R2 = 0.809 and AICc = 5,802 (Table 3). 

Predicted %IS slopes among the ten models had 

similar trajectories and %IS estimation errors. Each 

model suffered from %IS under prediction when the 

total structure footprint area was < 10,000 ft2/h and 

over prediction > 30,000 ft2/h of footprint (Fig. 3a). 

Jarque-Bera statistics, Morans I statistics (Table 3) 

and residual plots (Fig. 3b) confirmed that 

over-predictions and under predictions did not have 

normal spatial distributions even though the OLS 

models were significant. Spatial plots of the residuals 

show pronounced, homogenous clusters in urbanized 

areas and major transportation corridors (Fig. 4a). 

Watersheds having residuals > 2 are concentrated 

around Baltimore city, Washington D.C. and the I-95 

corridor. Negative residuals < -2 are less common and 

typically north of Washington, D.C. 

GWR produced 864 local models for C-CAP data, 

1,095 for NLCD data, 1,092 for RESAC data and 

1,074 for TU data. All GWR models significantly 

improved upon the OLS models’ representation of the 

relationship between tax data (ft2/h) and remotely 

sensed %IS data. Overall, GWR models accounted for 

a greater amount of error than did OLS models: R2 = 

0.917 to 0.965 and reduced the spatial autocorrelation 

of residuals for all models (Table 4). The AICc and 

Morans I results did not clearly indicate an optimal 

model. The C-CAP 2005 model had the highest R2 

(0.965), the lowest AICc (4,003) and a spatially 

random distribution of residuals (Table 4), but C-CAP 

data does not include all of Maryland. For both NLCD 

and RESAC models, more recent data accounted for 

greater amounts of model error, reduced AICc values, 

but a greater degree of spatially auto-correlated 

residuals (Table 4). The TU model had the highest 

AICc value, but it had a high R2 of 0.934 and a 

spatially random residual distribution (Table 4). The 

GWR %IS predictions closely mirrored observed %IS 
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Fig. 3  (a) Predicted percent impervious surface as foundation area increased from each OLS model; (b) distribution of 
predicted impervious surface standardized residuals for the ten OLS models. 
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Fig. 4  (a) Spatial distribution of model standardized residuals for OLS predictions and (b) GWR predictions.  
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Table 4  GWR results for %IS versus foundation ft2/h, Morans I spatial autocorrelation test results for the standardized 
residuals are included, asterisk indicates statistically significant results at p ≤ 0.05.  

IS dataset 
Geographically weighted regression Morans I 

N R2 AICc Moran’s index Expected index z-score p-value 

C-CAP 1992 19 0.939 4,412 0.0281 -0.00116 2.37 0.018* 

C-CAP 1996 19 0.939 4,428 0.0254 -0.000116 2.14 0.032* 

C-CAP 2001 23 0.941 4,315 -0.0209 -0.00116 -1.61 0.11 

C-CAP 2005 19 0.965 4,003 -0.00329 -0.00116 -0.171 0.86 

NLCD 1992 19 0.934 5,458 0.0113 -0.000915 1.10 0.27 

NLCD 2001 27 0.917 5,161 -0.0227 -0.000917 -2.00 0.045* 

NLCD 2006 19 0.958 4,812 -0.0278 -0.000914 -2.42 0.015* 

RESAC 1990 19 0.920 5,372 0.0139 -0.000917 1.35 0.18 

RESAC 2000 13 0.963 5,194 -0.0273 -0.000917 -2.40 0.016* 

TU 2000 16 0.934 6,881 -0.0176 -0.000932 -1.52 0.13 
 

values (Fig. 5a) while, also reducing the Moran’s I 

statistic (Table 4), removing spatial autocorrelation 

(Fig. 4b) and randomizing the distribution of residuals 

(Fig. 5b). GWR models performed poorly in portions 

of western Maryland, the upper eastern and lower 

western shores of Chesapeake Bay (Fig. 6a). Model 

performance for the Washington D.C. and Baltimore 

areas varied. Models not having spatially random 

residuals did have Morans I p-values that were 

considerably closer to 0.05 than did the OLS models 

(Tables 3 and 4) which was substantiated by the 

heterogeneous spatial distribution of positive and 

negative residuals (Fig. 4a). Percent IS standard errors 

among the GWR local models were relatively low 

except for TU: C-CAP 2005 was 0.132 to 2.01, NLDC 

2006 was 0.112 to 1.81, RESAC 2000 was 0.0567 to 

1.90 and TU 2000 was 0.228 to 4.67 (Fig. 6b). 

As previously mentioned, MdProperty View tax 

data do not include paved surfaces such as roads, 

parking lots, driveways and other types of vehicle 

habitat which comprise vast amounts of IS. Chester, 

Horvath and Madanat [48] estimated parking density 

to range from 6.3-58 m2 per 100 m2 of road. This 

translates to 25-470 parking spaces per one kilometer 

of road. Furthermore, parking availability in 

metropolitan areas may be up to seven times the 

number of cars [5]. Goetz et al. [43] estimated that 

36% of the IS in Maryland is due to roads, but 

state-wide %IS increased to 60% when all vehicle 

habitats were included. 

While remote sensing data include all types of land 

surfaces, these data suffer from a lack of spatial 

resolution which limits their use to regional analyses 

and planning [41] and they are inappropriate for 

local-scale analyses and planning [14, 33]. Some %IS 

estimates are subject to considerable error, such as 

low-density  and  exurban  development  and  are 

problematic  [49]. The  majority  of  algorithms 

developed to identify IS have been focused on urban 

lands. Many of those modeling techniques are 

unsuitable for rural lands [6, 8, 11, 25]. Bird et al. [23] 

compared direct measure of %IS to NLCD %IS 

estimates and demonstrated that the NLCD typically 

underestimated %IS for watersheds having 5% to 

10%IS, which are aquatic ecosystem response 

thresholds [16]. Smith et al. [13] determined that 

NLCD level II thematic image classification accuracy 

was significantly affected by land cover heterogeneity 

and land cover patch size.  Classification  accuracy  

varied  from 15%-25% for a ten pixel area to 

52%-62% for a 10,000 pixel area. These are 

significant amounts of error considering that an 

appropriate resolution for local land planning is 4 m or 

less [33]. It is worth noting that McMahon [10] 

demonstrated having less %IS  estimation  error  

when  using  the  more generalized NLCD level I 
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Fig. 5  (a) GWR predictions of percent impervious surface as foundation area increased and (b) the distribution of predicted 
impervious surface standardized residuals.  
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Fig. 6  (a) Spatial distribution of model performance (R2) and (b) standard error for each GWR model.  
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land cover classification than when using the more 

detailed level II land cover classification. This 

suggests that the TU 2000 dataset having fewer 

categories and a steeper %IS response curve to ft2/h 

may be a more realistic model. 

There is a lack of effective IS modeling techniques 

and tools for rural land management. Consequently, 

the number of aquatic communities in watersheds at or 

exceeding ecological %IS reference points are likely 

underestimated. Annually indexing %IS estimates 

would facilitate use of established %IS reference 

points (5% and 10%) [16] to forecast ecosystem 

impairment under various land management scenarios. 

Watersheds having < 10% IS can be quickly identified 

as priority areas for conservation and protection [16]. 

For example, proposed development build-out 

scenarios (ft2/h) can be quickly converted to a range 

of %IS estimates to predict the likelihood and extent 

of ecological impact. The simplicity of using tax data 

to estimate %IS would enable resources managers to 

evaluate potential ecological responses and engage 

with other stakeholders during the planning process, 

prior to ecosystem impact. Without a simple tool 

using current data, such as a tax map index, effective 

proactive and adaptive resource management will be 

difficult at best. 

4. Conclusions 

This analysis demonstrated that a strong positive 

relationship exists between the tax data metric (ft2/h) 

and %IS estimates from remote sensing datasets. OLS 

regression produced significant global statewide tax 

index models. However, significant spatial clustering 

(spatial autocorrelation) was present among all models. 

Use of these models for local decision making within 

areas of spatial autocorrelation would not be advised. 

GWR is recommended to remove the spatial 

autocorrelation and associated error from the tax index. 

Used in concert, the various models presented here 

can provide a range of %IS outcomes based on 

various local land development scenarios. 

Tax models index %IS as ft2/h (or acre): a common 

measure of land development thereby facilitating 

effective communication among resource managers, 

land use planners, administrators, public officials and 

citizens. Effective communication highlights the need 

for a simple, easy to use index of land development. 

Unlike Reilly et al. [11], no data transformation was 

used in this analysis. Percent IS datasets are not 

updated annually causing a lag in detection of %IS 

trends to local planning and land development time 

frames. Tax data are standardized, annually updated, 

readily accessible and contain parcel and structure 

attributes which track both the addition and removal 

of IS on a parcel. It is important to emphasize that the 

tax based index does not generate an exact measure 

of %IS since paved surfaces are not included. A 

tax-based index allows rapid projection of future 

impacts for various development and build out 

scenarios. MdProperty View tax records date back to 

the 1700s. The opportunity exists to reconstruct time 

series of changing land conditions, development 

patterns and ecosystem responses.  

An advantage of tax data is that parcel development 

records are independent of demographics. Use of 

demographic data to calculate %IS is not advised. 

Demographic metrics, such as job projections [11] and 

census data [23] have been proposed as %IS 

estimators. Demographic metrics are problematic 

because they fluctuate spatially unlike the spatial 

permanency of IS. Once structures and infrastructure 

are built they typically persist regardless of occupancy 

or use. A parallel scenario exists for areas having 

numerous vacation and seasonal residences or areas 

with commercial, industrial and mining activity [5]. 

Job availability is problematic because the watershed 

in which a job is located is not a predictor of the 

watershed in which a person will take up residence. 

Furthermore, demographic data does not capture 

parcel enhancement or redevelopment—the addition 

or removal of IS. Demographic metrics increase the 

risk of error propagation through the %IS calculation 
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[5]. Error propagation from census projections 

roughly doubles from the 10-year to 20-year forecasts. 

Exum et al. [5] recommend that census data was used 

for retrospective analyses rather than making 

projections. 
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