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A suitable statistical model has been explored for the investors as well as the researchers to resolve the future 

estimation of share volume by using daily stock volume data from Dhaka Stock Exchange (DSE). The daily volume 

data from the June 1, 2004 to April 19, 2010 were retrieved from DSE website as a secondary data source. The 

Maximum Likelihood—Autoregressive Conditional Heteroskedasticity (ARCH) (Marquardt) method has been 

applied to construct the models for the stock volume data of DSE by using statistical package software E-Views of 

verson-5. First of all, an “Auto Regressive Integrated Moving Average (ARIMA) model” was fitted and observed 

that heteroscedastic volatilities were still present there. To eliminate this dilemma, ARCH class of volatility models 

has been used and finally the ARIMA with EGARCH model has been explored. Findings of this study have 

recognized that ARIMA with EGARCH model implies low mean square error, low mean absolute error, low bias 

proportion, and low variance proportion for share volume data with comparing to other models. Hence, the 

modelling concept established in this study would be a decisive study for the investors as well as the researchers.  

Keywords: ARIMA, Generalized ARCH (GARCH) family models, stock volume projection strategy  

Introduction 

Stock volume is a measure of market liquidity based on the number of shares that are traded over a given 

period. Volume data are recorded for individual stocks, their related options chains, and for indices as a whole. 

After price, volume is one of the most commonly quoted data points related to the stock market, reflecting the 

overall activity in a stock or market; the business of the market itself; and the buying and selling of shares 

(Chang, Cheng, & Pinegar, 1999). As such, volume is an important indicator for traders in analyzing market 

activity and planning strategy. Stock volume measures the changes in share prices that are generally associated 

with the changes in the market condition. The investors may regard it as a standard to determine the stock 

market condition in relation to earnings or dividend per share. Again the market condition of each company 

somehow depends on the economic condition of the country. Thus, stock volume gives an interpretation of how 

much stable the economic situation of a country. This study works with the daily share volume data of Dhaka 
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Stock Exchange (DSE) for searching suitable models. It may be one of the significant studies contributing to 

the unusual rise and fall in securities prices due to artificial manipulation of securities prices by a number of 

securities dealers and issuers in the absence of timely provision of reliable financial information in the market 

(Cootner, 1967). Firstly, the volume data have been explored and analyzed using visual inspection. Time series 

plot (in level, in first difference, in log transformation, in smoothing transformation, and combined of these) has 

been used to explore the data. The time series plot shows that the share volume of DSE has rightly upward 

trend over time but non-seasonality present in the series. The plot also indicates that volume series is 

heteroskedastic. But the log transformed time series plot violates the original trend and cannot remove the 

irregular variation of the data series. The differenced transformed series shows that the mean constant but the 

variance is not constant. The resistant smoothing method, 4253H-twice transformation (Velleman, 1980) series 

plot shows that there is a slightly upward trend over time and the irregular variations reduce from the data. 

Therefore, resistant smoothing transformed volume data series has been used in the whole analysis. To show 

the stationary condition of the series, the Dickey Fuller (DF) and Augmented Dickey Fuller (ADF) tests are 

used (Dickey & Fuller, 1979). The tests show the following results: The correlogram of the volume data series 

shows that the series is non-stationary. After non-seasonal differencing, the correlogram indicates that the series 

is stationary. DF and ADF tests indicate that the volume data series is non-stationary. After non-seasonal 

differencing of the series, both DF and ADF test suggest that the series is stationary. The ultimate goal of this 

econometric analysis is to find a suitable model that forecasts the share volume of DSE. Observing auto 

correlation function (ACF) and partial auto correlation function (PACF) (Box & Jenkins, 1976), an “Auto 

Regressive Integrated Moving Average (ARIMA) model” is fitted and observed that there are present 

heteroskewdastic events. To select the best class of volatility model, different autoregressive conditional 

heteroskedasticity (ARCH) class models (Brooks, Faff, McKenzie, & Michell, 2000) are applied for 

comparative selection using Akike information criteria (AIC), Baysian information criterion (BIC) (Anderson 

& Burnham, 2002), and R-squared value. Finally, it is observed that the EGARCH models are quietly 

reasonable. Therefore, different types of ARIMA with EGARCH models have been used. 

Review Literature of Modeling  

The ARIMA provides features for the Box-Jenkins approach (Box & Jenkins, 1976) to the analysis of 

ARIMA models of univariate volume data series according to time. To adjust the unusual events of stock 

volume, ARIMA-intervention is used (Box & Tiao, 1975) with ARCH class volatility models (Abhyankar, 

1995). Volatility models may be of two types as symmetric and asymmetric models (Bekaert & Wu, 2000). The 

main difference between the two classes is that symmetric models, including ARCH and generalized ARCH 

(GARCH), do not capture leverage effects in the time-series, as opposed to the asymmetric models. 

Asymmetric models include exponential GARCH (EGARCH) proposed by Nelson (1991), for details on 

asymmetric models see the work by Franses and Van Dijk (2000). Hillmer and Tiao (1982) used ARIMA 

technique for the seasonal adjustment as well as to introduce the decomposition the time series data into its 

mechanism, like trend, seasonal, and noise whereas such series will follow the assumption of the Gaussian 

ARIMA model. Engle (1982) proposed a model called ARCH model with the variation of conditional variance. 

In ARCH model, the restricted variance depends on the previous squared error terms of different lags, even at 

higher lag, one can grasp the maximum of the restricted variance, but a higher order indicates that the model 

comprises of several parameters which makes the estimation work lengthy, difficult, and different to intercept. 
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Later, Bollerslev (1986) proposed the GARCH model to conquer the higher order ARCH problem. The 

conditional variance depends on the previous squared errors and restricted variances of the GARCH model. The 

extension of ARCH through GARCH is like the extension of the AR to ARMA model, since the introduction of 

ARCH and GARCH models has been extensively used in this literature. Magnus and Fosu (2006) modeled and 

forecasted volatility by taking an individual index and using the models or specifications like GARCH (1, 1), 

EGARCH (1, 1), and TGARCH (1, 1). Rafique and Kashif-ur-Rehman (2011) studied the volatility clustering, 

excess kurtosis, and heavy tails of the time series using ARCH, GARCH, and Nelson’s EGARCH processes 

(1991). It was found that GARCH (1, 1) has done the best to fully capture the persistence in volatility. The 

leverage effect was successfully overcome by EGARCH (1, 1) specification in KSE-100 index. Rodriguez and 

Ruiz (2009) studied the theoretical characteristics of a few and most trendy GARCH specifications having the 

component of leverage effect of positivity, stationarity, and finite fourth order moment. Floros (2008) used 

GARCH model and its subsequent variants for modeling and explaining volatility and financial market risk 

from daily observations from Egypt (CMA General Index) and Israel (TASE-100 index). Due to prices 

uncertainty during the time period under considerations, Egyptian CMA Index is the most volatile series. Tang, 

Chiu, and Leixu (2003) proposed the mixture of ARMA-GARCH model for volatile stock prices series and 

investigated its application in stock price prediction. In this paper, the finite mixture of ARIMA-GARCH 

(EGARCH) model has been formulated on stock volume series of DSE and investigated the forecasting 

performance of this model. 

Empirical Methodology 

ARIMA Model 

Box and Jenkins (1976) theorized the ARIMA model. It has been formulized in the following way. 

Differencing is often needed to make a time series stationary, supposing Yt be a time series variable and 

considering the model: 

Yt – Yt1 = C + t 

where, t is a white noise disturbance term. Then, Yt is said to be generated by a integrated process of order one 

and is denoted as I(1). 

In a compact way, the model can be written as: 

t t
Y C     

where, 1 B    

Similarly, an integrated process of order p is denoted by I(d) and written as:   

d

t t
Y C     

The theoretical ACF of an integrated process decays slowly (Barlett, 1946). From the above discussion, it 

is clear that an ARIMA process is nothing but the combination of the three processes: auto regression (AR) 

process, moving average (MA) process, and integrated process. The general ARIMA process of order p, d, and 

q is denoted by ARIMA (p, d, and q) and can be written in a compact way as follows: 

( ) ( )  
d

t t
B Y C B                                     (1) 
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(1 )
d d

d    (The d order differencing operator) 

2 3

1 2 3
( ) (1 )

p

p
B B B B B              (The p order AR operator) 

2 3

1 2 3
( ) (1 )

p

p
B B B B B              (The q order MA operator)  

where t = random shocks, C is the constant, and Yt is any time series. 

When difference is not necessary to achieve stationarity, d = 0 and the model reduced to ARMA. 

ARCH-Model  

Over the past two decades, massive effort has been devoted to modeling and forecasting the movement of 

stock returns and other financial time series. Seminal work in this area of research can be recognized to Engle 

(1982) who introduced the standard ARCH model. Engle’s process (1982) proposed to model time-varying 

conditional volatility using past innovations to estimate the variance using maximum likelihood estimation 

(MLE) (Bollerslev & Wooldridge, 1992) of the series as follows: 

2 2

0
1

q

t i t i
i

    

                                    (2) 

where, εt denotes a discrete-time stochastic taking the form of εt = zσt and zt ~ iid (0, 1); σt is the conditional 

standard deviation of return at time t.  

GARCH-Model 

Further extension introduced by Bollerslev (1986) is known as the GARCH model which suggests that the 

time-varying volatility process is a function of both past disturbances and past volatility. The GARCH model is 

an infinite order ARCH model generated by: 

2 2 2

0
1 1

q q

t j t i j t j
i i

      
 
                                (3) 

where, α0, α, and β are non-negative constants. For the GARCH process to be defined, it is required that α > 0. 

EGARCH-Model 

The EGARCH or exponential GARCH model was proposed by Nelson (1991). The specification for the 

conditional variance is: 

2 2 1 1

1

1 1

log log t t

t t

t t

 
     

 
 



 

                            (4) 

It should be noted that the left-hand side is of the conditional variance. This implies that the leverage 

effect is exponential, rather than quadratic, and that forecasts of the conditional variance are guaranteed to be 

nonnegative. The presence of leverage effects can be tested by the hypothesis that  > 0. The impact is 

asymmetric, if   0. There are two differences between the E-Views specification of the EGARCH model and 

the original Nelson model (1991). First, Nelson (1991) assumed that the  follows a generalized error 

distribution, while E-Views assumes normally distributed errors. Second, Nelson’s specification (1991) for the 

log conditional variances differs slightly from the specification above: 

2 2 1 1

1

1 1

2
log log t t

t t

t t

 
     

  
 



 

                           (5) 
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Estimating this model under the assumption of normal errors will yield identical estimates to those 

reported by E-Views except for the intercept term , which differ by 2 /  .  

2 2

1
1 1

2
log log

p q
t j t j

t i t j j
i j

t j t j

 
     

  

 


 

 

     
 
  
 

                (6) 

The leverages effect term denoted as  in the output, is negative and statistically different from zero, 

indicating the existence of the leverage effect in future bonds returns during the sample period.  

Intervention Approaches 

Generally, ARIMA process has been used to forecast a time series variable. But time series variable may 

sometimes be affected by some external events, for example, a labor strike may be found to coincide with a 

detected temporary decline in a product of a production firm; the production of rice may unexpectedly shift 

downwards as a cause of flood; the management of a company may take a policy for increasing the sales of 

their product. If these types of external events affect the series significantly, ARIMA process may not always 

be able to provide appropriate model to forecast the variable under study. Binary (0, 1) deterministic inputs can 

be used to represent such external events (Box & Tiao, 1975). The use of deterministic inputs in dynamic 

regression (DR) model to represent identified events is known as interventions. In time series analysis, 

interventions may be used to account for unexplained outliers, but the interests center on determining the 

uneven events that often occurred in time series variable. For a single intervention variable, authors use the 

rational form DR model as the framework to evaluate an intervention model.  

The rational form DR model is given by 

( )

( )

b

t t t

w B B
Y C I E

B
                                   (7) 

where, Yt is the time series variable under study; It is a binary deterministic variable; Et is disturbance term 

described by an ARIMA process; and C is additive constant. 

The Finite Mixture of ARIMA-EGARCH Model  

The finite mixture of ARMA-GARCH model is similar to the mixture of AR-GARCH model proposed by 

Tang et al. (2003). Each component of the mixture can be denoted as a normal ARIMA series:  

1 1

I J

t
i t i s t s t t

i j

Y C Y Z   
 
                                  (8) 

2 2 2

1 1

Q p

t q t q p t p
q p

K A G   
 
                                  (9) 

where, k > 0, Aq ≥ 0, Gp ≥ 0, and σt
2 are the conditional variance; Zt is the standardized independent and 

identically distributed random variable drawn from some specified probability distribution; Zt follows N (0, 1) 

or student t-distribution with mean zero and variance unity and the degree of freedom parameter v. Generalized 

expectation maximization (GEM) algorithm is used to learn the mixture model, authors can estimate tail 

quantities by assuming either the normal distribution or the t-distribution multiplying estimates of σt with the 
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standard quartiles of each distribution, and finally adding the conditional mean. Similarly for EGARCH model 

(6) can be expressed as: 

2 2 1 1

1

1 1

log log t t

t t

t t

 
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 
 



 

                            (10) 

It should be noted that the left-hand side is of the conditional variance. This implies that the leverage 

effect is exponential, rather than quadratic, and that forecasts of the conditional variance are guaranteed to be 

nonnegative. The presence of leverage effects can be tested by the hypothesis that  > 0. The impact is 

asymmetric, if   0.  

Model Selection Criteria 

Mainly mean squared error (MSE) and mean absolute error (MAE) have been used for model selection in 

this analysis. The mathematical formula of MSE and MAE are as follows: 

 
2

1

1
ˆMSE

n

t t
t

Y Y
n 
   

1

1
ˆMAE

n

t t
t

Y Y
n 
   

There are some other statistics for model selection. They are AIC and BIC. Authors choose models that 

give smallest value of these criteria. AIC (Sakamoto, Ishiguro, & Kitagawa, 1986) is one of the most important 

criteria for checking the adequacy as well as the lag order of a model. AIC is defined as: 

2 2
AIC log

î k

N N


 

 
 
 

 

where 2
î  is the sum of squared residuals. 

In principle, one could select a lag structure by increasing the number of lags up to the point where the 

AIC reaches a minimum value. The BIC is another penalized maximum likelihood criteria and was originally 

proposed by Schwarz in 1978. BIC was derived in a Bayesian context and approximates a variant of Laplace’s 

method (Lindley, 1980). The BIC criterion is: 

 2̂ log( )
BIC log

n N

N
   

Where, n is the dimensionality of the model; 
2 2

1 2 1 2
(1 ) (1 )

p q

p t q t
L L L y c L L L                       

is the estimated of the variance; and N is the sample size. 

Projecting Algorithm Technique 

This is a very difficult question to choose the best algorithm. Since, real data do not follow any model.  

Some general advices are as follows. Firstly, to identify what measure of forecast error is most appropriate 

for the particular situation at hand (Pankratz, 1991). 
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(1) MSE, MAE, AIC, BIC, etc. have been used for appropriate model selection;  

(2) Assuming enough historical data is available, and then there proceed as follows: The variety of 

algorithms and projecting techniques have been used to predict the next k observations for the training set and 

comparing the projection to the actual realized values (the test set). Using this projecting technique that gives 

the smallest value of MSE for the test set on the original data set (training set) is to obtain the desired out 

sample forecasts or projected values. 

To assess the performance of the finite mixture of ARIMA-EGARCH models, the following measures of 

statistic fit are compared:  

(1) MSE; 

(2) MAE;  

(3) Bias Proportion (BP); 

(4) Variance Proportion (VP).  

Empirical Results and Discussion 

At first, the volume data of DSE have been explored and analyzed using visual inspection. Time series 

plot (in level, in first difference, in log transformation, in smoothing transformation, and combined of these) has 

been used to explore the necessary information of stock volume series (Ding, Granger, & Engle, 1993). Plots 

have shown the following results: The time series plot (Granger & Andersen, 1978) shows that the share 

volume of DSE has rightly upward trend over time but non-seasonality present in the series; there are 

heteroskedastic events present in the series (Christofi & Pericli, 1999). But the log transformed time series plot 

violates the original trend and cannot remove the irregular variation of the data series. The differenced 

transformed series shows that the mean constant but the variance is not constant. The resistant smoothing 

method, 4253H-twice transformation series plot shows that there is slightly upward trend over time and the 

irregular variations reduce from the data (Figure 1). Therefore, smoothing transformed volume data series has 

been used in the whole analysis. 
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Figure 1. Combined time series plot between daily volume data and smoothing transformed volume data of DSE. 
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To show the stationary condition of the series, the DF and ADF tests are used there. DF and ADF tests 

suggest that the non-differenced volume data series is insignificant and differenced transformed volume data 

series is highly significant at 5% and 10% level of significance. Therefore, the volume data series is 

non-stationary and after non-seasonal differencing of the series, both DF and ADF tests suggest that the series 

is stationary (Table 1). 
 

Table 1 

DF and ADF Test of Volume Data Series (Yt) and Differenced Transformed Volume Data Series (ΔYt) 

Data Test 
Test statistic 
(Prob.) 

Asymptotic critical values at 5% 
Asymptotic critical values at 
10% 

Yt 
DF 

0.936619 
(0.891) 

-2.863242 -2.567724 
ADF 

0.210989 
(0.863) 

ΔYt 
DF 

-7.087286 
(0.000) 

ADF 
-11.28614 
(0.000) 

 

The ultimate goal of this study is to find a suitable model to project the future trend of share volume of 

DSE. Observing ACF and PACF, an ARIMA (1, 1, 1) model is fitted (Figure 2) and it is observed that there are 

still present heteroskewdastic events.  
 

 
Figure 2. Actual, fitted, and residual plot obtained from ARIMA (1, 1, 1) model.  

 

The residual of fitted an ARIMA (1, 1, 1) model was stationary, but the residuals in some points are 

varying abnormally, suggesting that unusual belongings or heteroskedastic or intervention shocks are present 

there. The coefficients ARIMA (1, 1, 1) model is not consistent. The R-squared value of ARIMA (1, 1, 1) 

model is 0.856416, which means that about 85% of the variation of daily share volume data are explained by 

the model. So, ARIMA (1, 1, 1) model may not be a suitable fitted model. The estimation result of ARIMA (1, 

1, 1) model is shown in Table 2.  
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To select the best class of volatility model, different ARCH class models (Chand, Kamal, & Ali, 2012) are 

used for comparative selection using AIC, BIC, and R-squared value (Table 3). Finally, it is observed that the 

EGARCH models are quietly reasonable.  
 

Table 2 

Summary Statistics of Model ARIMA (1, 1, 1) 

Variable Coefficient Std. error T-statistic 
P-value. 
*(less than 0.05) 

AR (1) 1.618158 0.024426 66.24823 0.0000 

MA (1) 0.317581 0.024590 12.91528 0.0000 

Note. * All the coefficients are highly significant at 5% level of significance. 
 

Table 3 

Comparative Selecting Table for the Best Fitted ARCH Class Volatility Models 

Models 
Coefficients 

(Prob.) 
AIC BIC 

R-squared 
value 

ARCH (1) 
95,080.6 
*(0.000) 

0.43687 
* (0.0000) 

   13.6650 13.6894 0.88656 

ARCH (2) 
63,771.59 
* (0.000) 

0.30548 
* (0.0003) 

0.25427 
* (0.000) 

  13.3554 13.3833 0.88356 

ARCH (3) 
244,168.1 
* (0.000) 

-0.01311 
* (0.7798) 

0.18326 
(0.0509) 

-0.08487 
* (0.0180) 

 14.4081 14.4396 0.88625 

GARCH (1, 1) 
226,956.8 
* (0.000) 

0.024008 
* (0.000) 

-0.99992 
* (0.000) 

  13.35010 13.37804 0.873216 

GARCH (2, 1) 
225,004.0 
* (0.000) 

0.001916 
(0.1912) 

-0.94563 
* (0.000) 

-0.94870 
* (0.000) 

 13.59199 13.62343 0.887988 

GARCH (2, 2) 
232,132.0 
* (0.000) 

-0.00045 
(0.6592) 

0.000795 
(0.2595) 

-0.99718 
* (0.000) 

-0.9972 
* (0.000) 

13.21024 13.24517 0.887984 

TARCH (1, 1, 0) 
229,420.0 
* (0.000) 

0.011252 
(0.8712) 

0.123283 
(0.2944) 

  14.36146 14.38940 0.887140 

TARCH (1, 1, 1) 
226,831.6 
* (0.000) 

0.040521 
* (0.000) 

-0.03941 
* (0.000) 

-0.99999 
* (0.000) 

 12.53511 12.53511 0.884161 

* EGARCH (1, 1, 1) 
-0.22143 
* (0.000) 

0.389713 
* (0.000) 

0.067552 
* (0.000) 

0.994519 
* (0.000) 

 10.58747 10.61891 0.883349 

* EGARCH (2, 1, 1) 
0.284980 
* (0.000) 

0.581958 
* (0.000) 

0.070497 
* (0.0003) 

0.439019 
* (0.000) 

0.546847 
* (0.000) 

10.56697 
 

10.60190 
 

0.885952 
 

Notes. The (*) marked indicated Prob. value represents that the estimated coefficient models are significant and the rest of them 
are insignificant at 5% level of significance.  
 

There is also found that EGARCH (1, 1, 1) and EGARCH (2, 1, 1) models have the lower value of AIC 

and BIC value (model choosing criteria) and the higher value of R-squared value (coefficient of determination) 

what is expected. Therefore, ARIMA with exponential GARCH models have been used for volume data series 

of DSE. Therefore, three ARIMA with EGARCH models are constructed, but one of them (an intervention 

module) is applied. The results of diagnostic checking, model comparison, model selection, and projecting 

performance of these models are summarized as follows: The estimated values, standard errors, Z-statistic, and 

p-values of model 1, model 2, and model 3 are reported in tables (Table 4, Table 5, and Table 6). The p-values 

showed that the entire coefficient is highly significant. The residual standard error of the shock term series is 

unknown; sample standard error is used to estimate it. The residual standard error for model 1 is 207.9113, 

model 2 is 288.6837, and model 3 is 200.1666. The R-squared value for model 1 is 0.876470, model 2 is 

0.754143, and model 3 is 0.885952 respectively. 
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The below three models have an interesting interpretation. For every model, the absolute values of the 

parameters are less than unity, which ensures the stationarity condition of the models (Ding & Granger, 1996). 

The R-squared value for model 1 is 0.876470 meaning that 87% of the variation in the daily volume data is 

explained by model 1; the R-squared value for model 2 is 0.754143 meaning that 75% of the variation in the 

daily volume data is explained by model 2, and the R-squared value for model 3 is 0.885952 meaning that 88% 

of the variation in the daily volume data is explained by model 3. Therefore, the R-squared value obtained from 

model 3 is greater than from model 1 and model 2. Therefore, model 3 should be the better fitted model. The 

observed R-squared values for the model 1, model 2, and model 3 are 0.875658, 0.752688, and 0.885275. The 

adjusted R-squared values suggest that the sample regression line fit the data well. Actual, fitted and residual 

plots obtained from model 1, model 2, and model 3 have been shown in figures (Figure 3, Figure 4, and Figure 

5). It is observed that the model 1 and model 2 do not so well fit; model 3 is fine fitted, but at the end, there is a 

little fluctuation. Therefore, there may conclude that the model 3 may be the appropriate fitted model. 
 

Table 4 

Summary of Model 1 

ARIMA (1, 1, 4) Coefficient Std. error Z-statistic Prob. 

C -0.626521 0.362007 -1.730690 0.0835 

AR (1) 0.825675 0.001087 759.6219 0.0000 * 

MA (1) 0.870679 0.000541 1,608.938 0.0000 * 

MA (2) -0.364910 0.000254 -1,436.819 0.0000 * 

MA (3) -0.612601 0.001354 -452.2973 0.0000 * 

MA (4) -0.385257 0.000982 -392.5003 0.0000 * 

EGARCH (2, 1, 1)  

ω -0.273765 0.011534 -23.73468 0.0000 * 

α 0.401401 0.018661 21.50991 0.0000 * 

γ 0.225513 0.015978 14.11419 0.0000 * 

β1 0.328542 0.038799 8.467850 0.0000 * 

β2 0.671079 0.038818 17.28804 0.0000 * 

Note. All the (*) marked coefficients are significant at 5% level of significance. 
 

Table 5 

Summary of Model 2 

ARIMA-intervention  Coefficient Std. error Z-statistic Prob. 

I1 -543.7147 100.4694 -5.411744 0.0000 

AR (1) 0.955598 0.005835 163.7597 0.0000 

MA (2) -0.385246 0.027325 -14.09889 0.0000 

MA (3) -0.270217 0.032678 -8.269200 0.0000 

MA (4) -0.320691 0.024840 -12.91015 0.0000 

EGARCH (2, 1, 1)  

ω -0.530910 0.026081 -20.35595 0.0000 

α 0.887930 0.025879 34.31145 0.0000 

γ 0.119843 0.022390 5.352584 0.0000 

β1 0.272405 0.021037 12.94883 0.0000 

β2 0.714189 0.020721 34.46721 0.0000 

Notes. All the coefficients are significant at 5% level of significance and here; I1 represents the intervention component in ARIMA 
process. 
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Table 6 

Summary of Model 3 

ARIMA (8, 1, 1) Coefficient Std. error Z-statistic Prob. 

AR (1) 0.708849 0.017663 40.13153 0.0000 

AR (4) -0.430449 0.024146 -17.82715 0.0000 

AR (5) 0.181059 0.028515 6.349677 0.0000 

AR (8) -0.019781 0.011498 -1.720390 0.0854 

MA (1) 0.997513 0.000965 1,033.623 0.0000 

EGARCH (2, 1, 1)  

ω -0.284980 0.017134 -16.63198 0.0000 

α 0.581958 0.024898 23.37326 0.0000 

γ 0.070497 0.019559 3.604394 0.0003 

β1 0.439019 0.047384 9.265160 0.0000 

β2 0.546847 0.046988 11.63799 0.0000 

Note. All the coefficients are significant at 5% level of significance except only the AR (8). 
 

 
Figure 3. Actual, fitted, and residual plot obtained from model 1.  

 

 
Figure 4. Actual, fitted, and residual plot obtained from model 2. 
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Figure 5. Actual, fitted, and residual plot obtained from model 3. 

 

The value of the Jarque Bera test statistic for the model 1 is 1,233.776 with significant probability 

(P-value = 0.000); model 2 is 453.1224 with significant probability (P-value = 0.000); and model 3 is 

1,153.019 with significant probability (P-value = 0.000). So, it may conclude that the residual obtained from 

these models may be normal. The forecasting evaluation, model selection criteria, and finally, the linear trend 

of forecasting performance of the proposed model have been checked. MSE, MAE, BP, and VP of model 3 are 

minimum than model 1 and model 2. Therefore, model 3 should be the most adequate model to project the 

volume data series of DSE (Table 7). 
 

Table 7 

Results of Forecasting Evaluation of Model 1, Model 2, and Model 3 

Forecast sample: December 15, 2009 to April 19, 2010 

Measures of statistic fit Model 1 Model 2 Model 3 

MSE 207.1641 287.5877 199.5095 

MAE 65.17870 128.6973 87.39071 

BP 0.078875 0.08945 0.000361 

VP 0.817367 0.897231 0.002790 
 

The AIC and BIC of model 3 are minimum (Table 8). Therefore, the model 3 has been selected. 

Table 8 

Results of AIC and BIC for the Model 1, Model 2, and Model 3 

Model AIC BIC 

Model 1 10.58943 10.62811 

Model 2 11.063116 11.09800 

Model 3 10.56697 10.60190 
 

Forecast values generated (test series) by model 3 are higher than the observed values (actual or training 

series), but observed values and projecting (Forecast) values are approximately identical and the forecast values 

have the linear upward trend (Figure 6). Since the forecast values are approximately identical to observed 

values, the out sample projecting performance of model 3 is quietly reasonable.  
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Figure 6. Out sample forecasts of last 90 observations from the selected model. 

Conclusions 

Daily share price of DSE Ltd. is very blazing concern in Bangladesh and it is necessary for policy 

implications. The result of this study may help Bangladesh Securities and Exchange Commission (BSEC) and 

the government of Bangladesh to take appropriate actions to ensure the stock market condition. Share volume 

deals with the changes in share prices that are usually associated with the changes in the market condition. The 

findings established that ARIMA with EGARCH model comprises low MSE, low MAE, low BP, and low VP 

for volume data and thus, the modeling concept established in this paper would be useful for the investors or 

researchers to determine the future trend of share volume and there by taking decision for investment. 
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