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Abstract: Austenitic stainless steels, when exposed to welding conditions or aging for length of service, it’s observed the formation 
of numerous deleterious phases, such as several kinds of carbides type MC, M6C, M7C3, M23C6, and intermetallic secondary phases 
(sigma, chi, laves), which cause the process of intergranular corrosion. The aim of this work was verifying the formation of the types 
of carbides and/or intermetallic phases existing in the stainless AISI 304 at 800 ºC, varying the timing of heat treatment between 30, 
360 and 1,440 min. The optical microscopy analysis revealed the predominant formation of the carbide type M23C6. The results of 
DL-EPR (double loop electrochemical potentiokinetic reactivation) tests showed a gradual increase in the precipitation of this carbide 
with the increase of treatment time. The potentiodynamic polarization showed that the precipitation of this carbide reduce the 
formation of the Cr2O3 passive layer, suggesting that the precipitate carbide to be predominantly of the Cr23C6 type. 
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1. Introduction  

Austenitic stainless steels are the most common 

among stainless steels and are characterized by an 

excellent corrosion resistance, high strenght and good 

weldability. The austenitic structure is stabilizing at 

room temperature, due to nickel and manganese 

addition [1, 2]. However, it is not only the austenitic 

matrix that determine the property of these materials, 

since numerous phases, such as δ-ferrites, carbides, 

intermetallic phases, borides, sulfides, nitrides and 

martensites induced through deformation may be 

present in the microstructure of those steels. 

Regarding corrosion, mainly intergranular corrosion, 

it is a kind localized in metallic materials which 

present crystalline defects (gaps, discordances and 

grain boundaries) and chemical heterogeneities 

(precipitates, inclusions and microsegregations). 

Depending on the potential of the crystallyne defects 

and/or the present chemical heterogeneities, stainless 

steel might be attacked primarily through grain 
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boundaries [3, 4]. Among the current types of 

corrosion, intergranular corrosion is, beyond doubt, 

the most dangerous and deteriorative of all, since it is 

visible only in microscopic form, promoting the 

spread of cracks, compromising structures and devices. 

Through various tasks, austenitic stainless steel might 

endure intergranular corrosion or sensitization when 

exposed to temperatures above 500 ºC, with 

precipitation of MC, M6C, M7C3, M23C6 (M = Cr, Mo, 

Fe) carbides and sigma, chi and Laves phases on grain 

boundaries [5-7]. With the formation of those carbides 

and intermetallic phases, which present high 

chromium and molybdenum percentages in their 

composition, steel becomes yet more vulnerable to 

corrosion when amidst SO2, NOX, e, and Cl- ions, 

because the Cr2O3 passive layer formation on 

austenitic and duplex stainless steel ends up being 

compromised, since the chromium concentration 

present in these steels is reduced [8]. 

2. Experimental Sections 

2.1 Preparation of Samples 

The samples were obtained by Villares Metals S/A, 
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hot rolled. The samples were cut on 15 × 20 × 2 mm3. 

proportion, then submitted to solubilization heat 

treatment at 1,100 ºC for 1 h, followed by quenching 

in water, in order to remove all residual tension from 

the rolling process, as well as the elimination of an 

pre-existing deleterious phase in the steel. After the 

solubilization heat treatment, the samples were heat 

treated at 800 ºC for 30, 360 and 1,440 min, to induce 

the precipitation of different amounts of carbides on 

AISI 304 steel grain boundaries. Chemical 

composition of AISI 304 is shown in Table 1. 

The samples were then submitted to metallographic 

characterization through sanding using sandpapers 

between 320 to 1,200 mesh, followed by polish in 

Al2O3 solution, with particle sizes between 1.0 and 0.3 

µm, ending the preparation of samples by washing 

them in distilled water and ethanol, drying in hot air. 

After preparation, the samples were electrochemically 

attacked in a 10 wt% aerated solution of oxalic acid, 

this being an agent which selectively attacks M23C6 

and MC precipitated types. Following the 

electrochemical attack, samples were washed in 

distilled water, dried in hot air and observed through a 

Motic102M optical microscope. 

2.2 DL-EPR (Double Loop Electrochemical 

Potentiokinetic Reactivation) 

The DL-EPR test was realized to determine the 

DOS (degree of sensitization) of the samples. A 

configuration of three electrodes was used, where the 

samples used as work electrode, a platinum electrode 

as counter electrode and SCE (saturated calomel 

electrode) as reference electrode in an electrochemical 

cell containing oxalic acid solution at 10 wt%, as 

indicated by Čihal et al. [9] and the ASTM G108 

Standard [10]. For the double loop electrochemical 

potenciokinetic reactivation test, an IVIUM portable 

potentiostat, previously polarized in open circuit 

potential (Eocp) for pre-treatment in 300 s, at scanrate 

of 1.5 mV·s-1 at temperature of 30.0 °C ± 0.1. The 

samples were polarized from Eocp potential to the  

Table 1  Chemical composition of AISI 304 (wt%). 

C Mn Si Cr Ni Mo N Fe 

0.04 1.35 0.41 18.05 8.83 0.03 --- bal. 
 

Eocp + 800 mVECS potential at anodic direction, 

followed by a reverse polarization until Eocp potential, 

as sugested by ISO 12732 Standard [11]. 

2.3 Potentiodynamic Polarization in NaCl 3.5 wt% 

The potentiodynamic polarization measurements 

were conducted according to the same configuration 

utilized on the electrochemical potentciokinetic 

reactivation tests in a NaCl 3.5 %m/V solution 

(simulated sea water), at room temperature, in order to 

obtain the cathodic/anodic behavior, formation of 

passive Cr2O3 layer and pitting potential. Before the 

realization of the polarization measures, the open 

circuit potential was measured for 3,600 s, in order to 

stabilize the potential of the samples. The scanrate 

utilized was 1,667 mV·s-1, according to the ASTM 

G61 Standard [12], until the +1.50 mV potential, in 

order to assess the formation and protection of the 

passive layer, as well as the determination of the 

pitting potential of the samples. 

3. Results and Discussion 

3.1 Microstructural Analysis 

Figs. 1-4 show the microstructures of AISI 304 as 

received and heat treated at 800 °C for 30, 360 and 

1,440 min, respectively. 

The microstructures show a predominant austenite 

phase, and in Figs. 2-4, a formation of M23C6 type 

carbides in grain boundaries. Fig. 2 shows a   

slightly formation of M23C6 dual precipitation type, 

according to the ASTM A262 Standard [13]. Figs. 3 

and 4 show a higher formation of M23C6 type carbides 

in grain boundaries, with dual and ditch type 

precipitates. These results confirm that the heat 

treatments in AISI 304 promote a high depletion of 

chromium in these alloys, as noted by several authors 

[14-17]. 
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Fig. 1  Micro
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to intergranular corrosion, when subjected to heat 

treatment. Fig. 1 shows that the realization of 

solubilization heat treatment for elimination of 

possible deleterious phases precipitated on grain 

boundaries and residual tension from the rolling 

process was efficient, showing a Ir/Ia ratio value close 

to 0.0054, characterizing that the steel is no sensitized, 

and so no showing the formation of M23C6 type 

carbides on grain boundaries, which promotes 

intergranular corrosion. Fig. 9 shows the evolution of 

Ir/Ia ratio in function of the treatment conditions, 

showing the sensitization level of the samples. 

Based on Fig. 5 result, it is observed that the sample 

treated at 800 ºC for 1,440 min presents the highest 

sensitization level, not only for the relation, but   

also because of the formation of the ditch type 

precipitates which, according to ASTM A262 

Standard [13], it is a precipitate that creates deep holes 

around the grain boundaries, accentuating the 

intergranular corrosion. On Della Rovere et al. [15], it 

was found that in a AISI 304 steel, heat treated in a 

range of 650-750 °C, suffers strong intergranular 

corrosion, presenting ditch type precipitate along its 

microstructure. 

3.3 Potentiodynamic Polarization in NaCl 3.5 wt% 

Fig. 10 shows the behavior of the passive Cr2O3 

layer formation from the AISI 304 steel samples as 

received and heat treated for 30, 360 and 1,440 min, 

while Fig. 11 shows the behavior of the samples, in 

the same conditions, regarding the behavior of the 

pitting corrosion formation. 

The increasing of the heat treatment time on AISI 

304 steel show the reduction of the corrosion potential 

(Ec) and the pitting potential (Ep), decreasing  the 

pitting corrosion resistance on the samples. On Fig. 6 

and also on Fig. 7, for the 0.00 V potential, the 

samples as received presents an excellent formation of 

the passive Cr2O3 layer, while on the samples that 

went through heat treatment for 30, 360 and 1,440 min, 

the current density presents a considerable increasement, 

within the analyzed potential range. These results 

suggest that long period heat treatments decrease the 

passive Cr2O3 layer formation capacity, since the 

chromium available for the passive layer formation 
 

 
Fig. 6  DL-EPR test of AISI 304, heat treated for 30 min. 
 

 
Fig. 7  DL-EPR test of AISI 304, heat treated for 360 min. 
 

 
Fig. 8  DL-EPR test of AISI 304, heat treated for 1,440 min. 
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Fig. 9  Ir/Ia values obtained from the heat treated AISI 
304 samples. 
 

 
Fig. 10  AISI 304 samples polarization curves as received 
and heat treated for 30, 360 and 1,440 min, respectively, 
showing the formation of Cr2O3 layer. 
 

 
Fig. 11  AISI 304 samples polarization curves as received 
and heat treated for 30, 360 and 1,440 min, respectively, 
showing pitting corrosion formation. 

precipitates in the form of Cr23C6, demonstrating that 

inappropriate heat treatment and/or aging time 

compromise the resistance to corrosion of this steel, 

mainly when the environment is rich in chlorides. This 

significative Ec reduction, as steel heat treatment time 

increases occurs, first of all, due to the formation of 

the M23C6 type carbide precipitates, which potentialize 

the corrosive attack on grain boundaries, as observed 

on the works of Ghosh et al. [7] and Deng et al. [18]. 

A preponderant factor which occurs on AISI 304 steel, 

when compared to AISI 316 steel, is the fact that AISI 

304 steel does not present any molybdenum in its 

composition, different from AISI 316 steel, which has 

about 3-5 wt% molybdenum in its composition. 

According to Souza [19], molybdenum is an alloying 

element that favors increasement of the austenitic 

stainless steel corrosion resistance in the presence of 

chlorides, what grounds the fact that precipitates are 

formed by Cr23C6, reducing, then, the passive Cr2O3 

layer formation and protection capacity against 

corrosion on the heat treated samples of this work. 

On Fig. 7, it can be noticed on the potential range 

close to +0.20 V that the sample as received has a 

slightly increasing of its current density. According to 

Deng et al. [18], these are current transients, during 

the formation of metastable character pitting, where 

these metastable pitting are nothing more than the 

beginning of pitting formation on defective regions of 

the surface, having its origin on the adsorption of the 

electrolyte on steel surface. 

The results of the heat treated AISI 304 steel 

samples also presented those fluctuations on current 

densities, suggesting that heat treatment influenced 

not only on the formation of M23C6 type carbides and 

of other secondary phases, but also influence on the 

reorganization of the crystal structure of the studied 

steel, suggesting that it is possible to occur increase of 

the Gibbs free energy on the grain/surface interface, 

favoring the adsorption of the electrolyte on the 

surface of steel with the increasing of temperature 

and/or the heat treatment time, as well as the 
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grain/grain interface, on two aspects: the first aspect 

due to the fact that the secondary phases precipitation 

generate a large number of discordances, according to 

Wasnik et al. [20], Sieurin [21], and Tavares et al. [22], 

fostering the pitting formation; the second aspect 

comes from the fact that the grain reorganization 

increase the thermal and electrical conductivity of the 

AISI 304 steel, leading to increased current density of 

the of the heat treated steel, in relation to their 

respective matrix, according to the related on Buscail 

et al. [23] and Arjmand [24] works. 

4. Conclusions 

With the realization of this work, it was possible to 

observe that heat treatments through long time periods 

promote high diffusion of the chromium along the 

AISI 304 structure, causing the intergranular corrosion 

on this steel. The DL-EPR test results confirm that 

long periods of heat treatment promote the Cr23C6 

formation, being noted in this result an increase on the 

sensitization level of the AISI 304 steel, through a 

growth of the Ir/Ia ratio. Lastly, the potentiodynamic 

polarization results have shown that the heat treated 

samples of the AISI 304 steel presented reduction in 

their respective corrosion potentials, as well as they 

have become more susceptible to pitting corrosion, 

due to the fact that a large quantity of chromium 

present in these steel precipitates in the form of Cr23C6 

on grain boundaries, reducing the capability of 

formation and protection of the passive Cr2O3layer. 
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