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Abstract: First passage time in Markov chains is defined as the first time that a chain passes a specified state or lumped states. This
state or lumped states may indicate first passage time of an interesting, rare and amazing event. In this study, obtaining distribution of

the first passage time relating to lumped states which are constructed by gathering the states through lumping method for a
irreducible Markov chain whose state space is finite was deliberated. Thanks to lumping method the chain’s Markov property has
been preserved. Another benefit of lumping method in the way of practice is reduction of the state space thanks to gathering states
together. As the obtained first passage distributions are continuous, it may be used in many fields such as reliability and risk analysis

Key words: Markov chain, distribution of first passage time, lumped states.

1. Introduction

The first-passage concept used in many areas from

controlled reactions in physical and chemical
processes to chromatographic, stochastic processes
play an important role. Therefore, you need to know
the first passage characteristics to understand the
movements of real systems. Once this connection is
established, it is quite simple to obtain the dynamical
properties of the system in terms of well-known
first-passage. The problems associated with these
systems can be found in [1-5].

The first passage time variable can have different
meanings in different areas. For classical gambler’s
ruin type models this variable can represent the
duration of the game, for physics this variable is the
time period for a particle in a system reaching some
state, for reliability engineering studies the
expectation of this variable corresponds to the mean
time for the first failure and its survivor function is

regarded as the reliability of a system under study.
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Passage times have been investigated since early
days of probability theory and its applications. The
best known example is the first passage/entrance time
to a set, which embraces waiting times, absorption
problems, extinction phonomena, busy periods and
other applications.

Although passage times are in fact examples of
stopping times, they enjoy important position in
theoretical and practical applications. Therefore, it is
possible to encounter the first passage time
applications in many areas of science and engineering.

Kammer [6] used the first passage time process for
the credit risks of firms and proposed to define the
threshold level as a function of the firm’s liabilities.

Li and Shaked [7] cited a stochastic process as the
damage level of a certain device at t time and defined
the first passage time as a time of exceeding the
failure rate of a device subjected to shocks and
wear .They studied the features of first passage times
which had increasing failure rate and increasing
failure rate average.

Mandel [8] analyzed the phases of sclerosis by
using properties of Markov chain and by using
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transition matrix, he estimated the mean first passage
time to various phases of the disease for he treated and
untreated. Thus, opportunity of describing and
predicting the course of the disease came up.

On the other hand, the lumping of Markov
processes is one such very useful technique. When the
number of states increases, Markov problems grows
rapidly. So large scale Markov models are intractably
hard to solve. Under certain conditions the state space
of a discrete parameter finite Markov chain may be
partitioned into subsets, each of which may be treated
as a single state of a smaller chain that retains the
Markov property.

Lumped states which are constructed by gathering
the states through lumping method for a irreducible
Markov provide a macroscopic view of original states

The stochastic processes literature is abuntant with
several papers, and a book by Kemeny and Snell,
which exploit lumpability of the discrete-time Markov
processes or chain.

Ridder [9], for simulate a rare event problem, the
correspondence between the cross-entropy method
and the zero-variance approximation showed. In a rare
event problem , large state space has been partitioned
into three sets: “good states”, “failed or bad states”,
“internal states” when he is constructing Markov
model. Ridder [9] interested in first passage time
probability that Markov chain will pass the failure set
before the good set when the chain starts in internal
state

Tian and Kannan [10] extend this notion of
lumpability to continuous time finite state space
Markov chains and characterize lumpability in terms
of the Under
conditions they show to recover some of the basic

infinitesimal ~ generator. suitable
quantities such as mean first return time, mean
absorbing time of the original Markov process from
the jump chain of the lumped Markov process.

In this study, higher the number of state is in a
Markov chain with finite state space, the more difficult

a transaction is, and hence it is an important problem

that should be worked to define the way how to
approach through a continuous distribution for the
discrete first passage time distribution based on the
lumping method that allows reducing the number of
state, and facilitates calculation in the modelling.

This study emphasizes the solution of this problem.
As the obtained first passage distributions are
continuous, it may be used in many fields such as

reliability and risk analysis.
2. Methods

In this section, we will summarize the methodology
used for calculating first passage times for Markov

chain.
2.1 Markov Chain

In this process, the outcome of a given experiment
can affect the outcome of the next experiment. In
other words, Markov chains are the stochastic
processes whose futures are conditionally independent
of their pasts provided that their present values are
known.

Let {Xn n= 0,1,2,...} be a stochastic process that
has a finite or countable infinite state space.S. When
X, =1 we say that ‘the process is in state 7 at time 7.
The probability that the process is in state j in the next

time provided that its present state is 7, is denoted by
P

i -

For the Markov chains, the transition probabilities
are arranged in a matrix form and the resulting matrix
is called the transition matrix of the chain. The
elements of a transition matrix hold the following
conditions:

a) for any two states i,jeS, £,20;and
b)forall ieS, ZPﬁ:l.
"

It is often desirable to also make probability
statements about the number of transitions made by
the process in going from state i to state j for the first
time. This length of time is called the first passage
time in going from state i to state j .
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To illustrate these definitions, reconsider the inventory

example where X, is the number of cameras on
hand at the end of week ¢, where we start with X, .
Suppose that it turns out that

X,=3,X,=2X,=1,X,=0, X, =3, X, =1

In this case, the first passage time in going from
state 3 to state 1 is 2 weeks, the first passage time in
going from state 3 to state 0 is 3 weeks, and the
recurrence time for state 3 is 4 weeks [11].

In general, the first passage times are random
variables. The probability distributions associated
with them depend upon the transition probabilities of
the process. In particular, let .fg/(n) denote the
probability that the first passage time from state i to j
is equal to n. For n > 1, this first passage time is 7 if
the first transition is from state i to some state &
(k # j) and then the first passage time from state k to
state j is n - 1. Therefore, these probabilities satisfy the

following recursive relationships [12] .

(1) M

_pz/ _plj’
(2) M
Zplk k/ >
k#j
(") (n-1)
Zplk
k#j

In analyzing and using Markov chain, first passage
times are fundamental to understanding the long-run
behavior of a Markov chain [13]. Among the Markov
chain characteristics, the first passage times play an
important role. For any two states, the first passage
time probability in n steps is defined as follows and
this probability is related to the ever reaching
probability.

Definition 2.1.1: For any two states i and j, the first
passage time probability from i to j in n steps,

(n)

;  1s defined as

pysn=1

(n) (n— 1)
Zplk g sn=2,3,..
k#j

2.2 Lumpability Theory

Obtained by Iumping the first passage time
distribution to set the states (lumped) of a Markov
chain, lumpability theory of Markov chain is required.
Therefore, lumpability properties of Markov chains
are described in this section

The theory of lumpability provides us with a
powerful tool dealing with preserving the Markov
property. Simply speaking, under certain conditions, if
the aggregated chain still has the Markov property, we
say that the original chain is lumpable.

In sense of preserving the Markov property, the
simplest lumping will be lumping all the states to one
single lump, that way, we will be able to have
preserved the Markov property perfectly. But for
single state chains, we can not observe any transition
so we can not study the chain.

We provide a simple natural guidance on how to
lump.

Consider a discrete parameter finite state irreducible
Markov Chain X = {X , :t=1,2,....} with finite
state space S = {1,2,...., n}, set of all possible initial

probability row vectors
A= { aeR"
Let ¢ = {C(l),C 2),......,C (m)} be a nontrivial
mutually exclusive and exhaustive partition of S, i.e.

m<n,|J" C(i)=5 and CIHNC(j)=¢ for

any i#j .

The corresponding state space is

S = {1,2, ......... ,m}.We define the aggregated chain
X = {)?[ it = 1,2,....} with state space S of the
original chain X and the partiton ¢ as follows [14].

X, =i ifand only if X, € C(i), fort=0,1,..  (2.1)

Definition 2.2.1: If X is Markovian for any initial
probability vector o and the transition probabilities do
not depend on the choise of a, then we say X is
strongly lumpable with respectto ¢

If X
probability vector but not all of them, then we say X is

is Markovian for at least one initial
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weakly lumpable with respect to £

The fundamental conditions defining strong
lumpability are given by Kemeny and Snell [15] in
Theorems 2.2.1 and 2.2.2.

Theorem 2.2.1:

condition for a Markov chain to be strongly lumpable

A necessary and sufficient
with recpect to a partition
¢ ={C(1),C(2),....., C(m)}is that for every pair
ofsets C (i) and C ( j) ,the probabilities

ﬁij = ZTEC(}') Pkr’ l,] = 1,2, ...... ,m (22)
forall k € C(i).

A well-known  characterization of strong
lumpability is also given by Kemeny and Snell .
Theorem 2.2.2: X is strongly lumpable to X if

and only if there exist matrices U and V such that
VUPV=PV (2.3)

Where V is an n X m matrix whose jth column is a
vector with ones in the components corresponding to
states in C(j) and zeros otherwise, and U is an m xn
matrix whose ith row is a probability vector with
nonzero components for states in C(i) and 0 for
remaining states.

V is usually called the collector ( or aggregator). Its
n-dimensional column vectors are orthogonal;

U is usually called a distributor and can be thought
as VT with rows normalized to probability vectors
(one way to define Uis U = (V"7 ) 'V ") or can
be obtained from the steady state probabilities and V.

The transition probability matrix P of X is
P = UPV. It is easy to see that UV=I. And the k-step
transiton matrix of the lumped chain can be obtained
as follows:

(PY: =PV Y =uP*y =P (24

Theorem 2.2.3: If P is the transition probability
matrix of the aggregated homogeneous Markov chain

X = (a,P, 4 ) then P is the same for every a

leading to a Markov chain the unique transition
probability matrix of Xis P =U,PV

A useful sufficient condition to weak lumpability is
also given by Kemeny and Snell next.

Theorem 2.2.4: U,PVU, = U,P is a sufficient
condition for X to be weakly lumpable.

3. Numerical Example and Results

In this chapter, the first passage time distribution
was determined by means of the lumping method
based on Discrete First Passage Time algorithm and
simulation of the Markov chain. It was understood
upon the study carried out after application of the
lumping method that the first passage time distributions
varied depending on the form of lumping.

Discrete First Passage Time Distribution Algorithm

Step 1: Simulate Markov chain

Step 2: Choose starting state in state space

Step 3: Choose entering state in state space

Step 4: Find starting state and entering state orders
in chain

Step 5: Calculate lengths between starting state and
entering state if entering state order is greater than
starting state order

Step 6: Calculate frequency of these lengths

The software “Easy Fit” was used to evaluate the
first passage time distribution fitting. Based on the
trial numbers of first passage time distribution, the
best fitting distributions were obtained according to
the results of Kolmogorov-Smirnov test on 65
distributions through the Easy Fit software. Table 2 -5
show the said distributions. In Table 3- 5 repersents
Pyom: p-value for Kolmogorov Smirnov test, and Tk,
statistical value for Kolmogorov-Smirnov test.

We considered Markov chain with four-state to
simplify calculation and save space.

Transition matrix has been used in all the of
simulation studies made in this section
0.40 0.22 0.18 0.20
0.16 0.50 0.20 0.14 (3.1
0.28 0.32 030 0.10
033 0.17 035 0.15

the distribution of first passage time was tried to be
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Table 1 Lumped states transition matrix according to the form of lumping.

Cases The Form Lumping

Lumped states transition matrix

1 {1,45,{2},13}

2 2,35, {1},14}

3 3.45,{1},12}

4 {1,23,{3}5,14)

5 {2,45,{1},13}

6 {1,35,{2},14)

7 {1,2,3},{4}

8 {1,2,4},{3}

9 {1,3,4},{2}

10 {2,3.4},{1}

11 {1,2},{3.,4}

12 {1,3}.,{2,4}

13 {1,4},{2,3}

_ 0540 0.195 0.265]
P =10.300 0.500 0.200
10.380 0.320 0.3004
[0.660 0.220 0.120]
0.400 0.400 0.200
10.520 0.330 0.150.
[0.400 0.220 0.380]
0.160 0.500 0.340
10.305 0.245 0.450.
[0.640 0.190 0.170]
0.600 0.300 0.100
10.500 0.350 0.150.
[0.480 0.245 0.275]
0.420 0.400 0.180
10.420 0.280 0.3001
[0.580 0.270 0.150]
0.360 0.500 0.140
10.680 0.170 0.150.

P = 0.852 0.148
0.850 0.150

™
Il

™
Il

™
Il

a1t
I

el
I

5 _[0.755 0.245
0.700 0.300
5 _[0762 0238
0.500 0.500
5 _[0.743 0257
0.600 0.400

p= 0.640 0.360
~ 10.550 0.450

P = 0.580 0.420
0.520 0.480

P = 0.540 0.460
0.340 0.660

determined by generating 10.000, 100.000, 1.000.000
observations; respectively, with simulation from
Markov chain in (3.1)

Lumped states transition matrices are used below to
determine these distributions.

The simulation results regarding the first passage
time distribution by lumping are given in the
following table.

From Table 2, In determining the first passage time
distribution, the form of lumping is considered to be
quite effective. In other words, the first passage time
distribution is also changing in accordance with the

form of lumping.

According to the number of trial by lumping the
first passage time distribution simulation results are
given in the Table 3, Table 4, Table 5.

Table 6, Table 7, Table 8 has been prepared to
understand how the probability of the first passage
time distributions based on a certain value when
lumping in Markov chain has changed. From these
tables, the first passage time probabilities are usually
understood to be close to each other. These tables give
information about the substitution of distributions

when lumping in Markov.
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Table 2 The first passage time distribution obtained by lumping.
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ol el e el
f L4}.12).03) ) 4} Weibul

2 2,311, {4} m 12,3} Kumaraswamy
3 (3410112} m 3.4) Johnson 58
T E3ELE | @ TN

5 {2.4,{11.13} m 12,4) Kumaraswarny
E {1312}, {4} ) 1,3} Weibull

7 1,2,31,14] 4] 11,2,3) Bumar)

8 1,2.4}.{3} i 2.4 | PowerFunchon
5 13,42 1) 1,3.4] Cognormal@r)
10 {2.3.41.{10 m [2,3.4] | PawerFuncton
" 1,21.43.4) 3.4 .2} Gamma

12 1.2}.{3.4} 1.2} 13.4] Weibdl

13 1,3 12,4 12.4) 1,3 Cognomal 2P}
14 1,3 42,4 1.3} 12,4} Kumaraswamy
12 4. 123 12,3) 1,4) Weibull

15 1.4}.{2.3} (L4} 123} Cognomalzr)
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Table 3 First passage time distributions when one lumping is made.

321

mber of Lumping Form snd Lumpad States Luriping Formn and Lumped States
Trial L2 30 {9 L3 420 {4 ) L 20 43) Mu ??EI' of [23. . 4 [{24 L3 [3E4.0
ris

e I AN I i} —={23} {i—={24} | {i={34
Powar Function | Waibull Waibull Gen Gamma (2F) | Weibull JonmsontE
B__=0,54334 | P__=0,40830 P__=054654 F . =040382 B__=034877 | B _=083051
r_=023851 (T __=0,2437T1 T _=017877 T..=021141 T..=0211427 | I, =01124%
Camma CGumbal Max Cen. Gamma Wedbnll Inv Gapssn | Chi-Squarsd
P__=030008 | F__=D03047 P__=0,50881 B =038837 F_.=028302 | F__=0,75803
T, =020153 | T __=02465 T__=0,18524 T..=123027 T..=012871 | T, =012142

10.000 Inv. Gauzzian Log-Logistic Johnzom 5B 10.000 LogzLogstic Lomomma] [3F) |Bafz
P__=02821 |P__=038071 |P__=04026] B, =03437¢ E__=026371 | B =0.75281
T =010871 | T _=0147i3 T _=018784 T..=l13014 T..=013441 | T_,_=011114
Gumbsl Max Hormal Gamma Tnv. GanssEn LozLozstc Burr
P__=02785 |P__=036638 |P__=037704 B =033764 E__=025734 | B__ =073683
r_ =029772 (T __=025146 T__=0,20303 T..=022041 T..=023382 | T, =01232%8
PowarFunction | Weibull Waibull Fumaraswamy Enmerzswamy | Johnson E:E
B _-03033 | B, _=013898 [P -0337i8 F._ =044808 | P, =081587 |F__ 070073
T _=026676 | T _=024748 T =0.1B8106 T..=018417 T..=016315 |1 _=011187
Camma Cumbel Max Tohnzon 5E Wetbnll TWebull (3F) etz
B -024403 | B -0234805 | P -0.32008 B =013 | EB_-0400% (R 0852
T =028226 | T _=024832 (T__=0,18478 T,.=02303 T..=018179 | T, =0,11807

100. 00D Gumbsal hMax Homal Gen, Gamma 100.000 Cumbel Rlax TWeibunll Eurr
B _=0230485 | P =0,2121 P _=031814 B =013107 B =-031171 | R, =-038148
r . =020415 | T _=0213413 r _=0,10125 T, =072356 T, =02125 T, =012338
I Gamzziam Johnzon 5B Gamma Tohnson =8 Gumbe] Mz Webnll
P_-01901 | P -020842 |P_ -0.20057 B_ =064 |P_-02305 (P -0558
T .=020500 | T _=0215537 T . =020773 T, . =024184 T, =022032 T, =0,12602
Gamma Weibull Weaibull Enmamaswamy Fumeraswamy |Johnson 3B
P_=blisl [ E=-016383 | F_ -0.14153 P__ =034 | P_=040811 [P _-0353271
r _=027883 | T__=034134 r _=018213 T, =019242 T _=017852 [T, _=011258
Cumbal Max Kumaraswamy Johnzom 5B Wedbull TWedbull Barr
B_-013041 | P -013476 |P__ -0.14082 B =018 | B _=0212775 | B, =0447T7
r,.=028000 | T _=0214438 Tes . T..=022601 oo =021007 | F,.=0.1223

100D 00D =0, 18235 LD (ropmne e TSumhel N T =eall

I Gamzziam Gumbal hlax Gem. Famma P 1]'1 s 3 1]'1 ) P - D413
F__-0123 B _=0l4E4 [P -020485 = T80 e - o= B
T =020313 | T =024622 |T__=0,18827 hf:' —:"B”- hf:' —:33- &" =“3-1-;i5'
ol e = thnsonik dhnsonikE -Zquar
P_ 01221 | P_-01203 |P_-0Q1316 i el el
Tx\... =.:.:Jg.3g.1 Tx\... =.:.:J:_:Jg.5 Tx\...-. =.:.:J.:.-J Tn_ =023952 Tn_ =011783 Th_ =0,1280




322

Distribution of First Passage Times for Lumped States in Markov Chains

Table 4 First passage time distributions when two lumpings are made.

Lumping Form and Lumped States

Number
T [03.64 [03.04 [13. 04 [03. 04 [(4.53 [08.23
G- (L6 (203 (0324 (2304 (g3
Inv. Ganssian Weaibull Burr (4F) Weibull Gen. Gamma Weaibull
B, . =029937 | B =0.39011 B, . =037689 B . =04459 B, . =0.53937 P, =03712
L. =029197 T __=019379 I =0, 26073 L. =0, 22169 T =0 17758 T =0.24102
Gumbel hax Johnson 5B Gumbel Blax Johnson SB Weibull Gumbel hax
B . =029683 | B _=034737 B .=03406 E ,.=038353 B, =0.51017 E, . =035648
I,,..=029265 | T, =020092 I =0L27054 I =0,23082 T, =0.1803 T, =0,24507
10.000 (Garmma Gen. Gamma Inv. Ganssian Loglogistic Johnson 5B Mormal
R, =018274 | B, =0.29615 B . =030841 B, =0.35693 B, =046352 F,.=033193
I,..=02953 | T, =021026 T =0.27682 I, =0,23645 T,.. =0.18682 T,,..=0,25034
Waibull Gumbeal Max Waibull Gumbal Max Inw. Ganssian Johnson SB
P, . =02X785 B, . =0.24064 B, =030226 B, . =035505 B, =0.40292 B, =031939
L. =028 | T =022177 T =0 27837 T =0, 23683 T =0, 19653 7. =02513
Power Function | Weibull Lognormal 3F) | Weibull Weaibull Lognormal3F)
F,, =032083 | B, =0364%0 B . =064380 B, =0.30807 B, =0.36336 E,, =0.35807
T =026057 | Ty, =0,189035 I =0,19369 I =02132 T =0L17785 T =0,21524
(Grarnma Johnson 5B Gen Gamma(4F) | Gumbal hMax Johnson 5B Waibnll
B, =022913| B _=032695 B.,.=029962 | B _=023911 (PR, =03396 B, . =023928
I,..=028664 | T =0193535 T =0.25768 I =02X7167 T...=0.18164 7. =0,23542
100000 | Gumbsal Max Gen Gamma Gumbeal Blax Johnson SB (Gen. Gamma Gumbeal hax
B, =022345| B =029781 (PR, =026332 | B, =023248 | B =030017 R, =02309
T,..=028834( T =020052 T =0.26657 .. =021922 T, =0.18811 T =0,23736
Inv.Gaussian Gumbsl W= Waibull Inv Gaussian (ramma Gamma
B ,.=021455 B =023384 | P =022014 | B =020161 (R =02233 E_ . =020088
I..=029107 | T, =021328 T, =0.27389 L. =0.23680 T =0.20271 T =0,25011
Gamma Weibull Lognormsl (3F) | KEumsaraswamy Waibull Lognormsl3F)
P _=01078% | F, =027880 | F _=040568 | B _ =04347 | F _=030641 B, =1030503
T =028256 | T, =0.1B484 I...=0.20684 L. =017892 I =0 1THYT T =0.21378
Gumbeal Max Johnson SB Gen Gamma{4F) | Waibull Johnson 5B Waibull
B, =036l | B =102303% B .=016814 (B =026628 | B, =027809% | B, =020956
1.000.000 | r 028454 | T, _=019383 |T,_=025983 |T,_ =021122 |T, . =0,1816 |7, =023483
Inv.Gaussian Gen. Gamma Gumbeal Blax Gumbeal Max Gen Gamms Gumbeal hiax
B .=0080 B _=021172 | P, =015502 B ,.=0208% (P =026031 | P, =020086
I..=028873 | T =0.19771 I...=026414 I =0,22515 T =0.18323 T =0.23708
Waibull Eumaraswamy (Gamma Johnson SB (amma Gamma
B . =004 (P =020159 (F_=013661 B, =0.13966 B, =013253 FB. . =015677
T =0.28109 | T =019901 T =0,27072 T..=022879 T =0,.20072 T =0.24983
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Table 5 First passage time distributions when one lump has three states.

Lurnping Form and Lumped States
Mumber

of Trial [{L23. {4 |24, 3 | {L3i4. {2 | {234, {1
#—L13 {24 [{—ildd | {-{234}

Power Fanction | Logoonmal 3“ Logoonmal (37 Porrer Fanction
P = 100000 P =05958 F..=051361 F.. =0i114%

alm

T, e = 005606 T, =0, 12505 e T, o =0,18712

Logocrmal (38 | Power Fonction | Grmembe] Max ramma

P .= 100000 F . =055443 P .=035111 R, =01553

T, = D0BBET T = 01419 T = 015730 T, o =030595
1000 mm =5 T edtal]

Py .= 100000 P . =0,T0353 Fppn = 034437 3

T = 007311 T = Q46T T = 026811 T, . =031731

Bearsoe b [3F) Lagsm Rl Lo Cramwsan

P .= 100000 P . =01M5T P . =034045 F, . =01753%

T = Q11452 T = 0363 Ty = 026203 T, o =931561

Power Fanction | Logoonmal (3P | Groembe] Max Powrer Fancion

P = 100000 P, =09395% P =0 16259 F... =0.50163
T = 007904 T, =0.13361 I =085 e
Ben Komnar=amy T adbeadl Brarr (49

P =0,95990 P = 091337 P = 01413 P =043377
T =0 11328 T =0, 16532 T = QI6ITE T o =0 2443T
10aaaq | ~eEsormaliZsy | fowmer Pamencm | Novmal ramma

P = 095543 P =09195 P =0I156 P =0 10651
T =013141 T = 017023 T = 026644 T, . =005
Pearson § (4F) Beia Famema T Gamssian
P = 095900 P =0,30742 P =0,I1453 P =0]1783%
T, = 013600 T, . =080 T, .. =075 T, . =031673

B 4T Power Fooction Logncnmal3F) Powes Fooction
P = 0, 59550 Pl =0, 71013 P =9, 18311 P =0I7173
T = 013566 Ty = O 1R657 I = 011338 T, =O264T

Logoormal (30 | Jokeeca 55 Czaites] Bax FaeEma

P =0,95011 P =018 P =017471 P =013734
1000000 | r. =004504 T = 035167 T = QI0TE T o SO ITME
Kazdeszh Lagsm Rl Lo Gxarmsnoan
P =0 K214 P = 005568 P =01474% P =0011705
r, =047 |r_=o03sss | r =0 | r =031

1
Loy (ramcean Loy ramecan T =3t rmmbe] Kax
P, =0 05306 P, =00851 P = 01436 F. = 01152

=04 [ n=ozete | =ozssr | on =0318T9
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Table 6 Compare first passage probabilities when one lump has two states.

Ifip:—;‘ Pbshility 1.000.000 Trisl

Lumpsd States | Distribution BXe<l) | FX<5 | FleXed | PE>8
Gamma 0,65473 | 008287 0,20513 0,00561
B Gumbal Max 0,64386 | 0.0E440 0,30852 0,00518
Inv. Gasizn 068750 | 0,97854 0,26123 0,00920

Waibull 061786 | 0,80173 0,33381 0,00141
Waibull 0,5135% | 084481 0,35133 0,023
a3, o qu | femermwemy 071628 [ 0.865ES 0,11738 0,11134
Gumbal Max 052278 | 093774 0,34753 0,02831

Tohnzon SE 050734 | 0,83283 0,28438 0,03872
Waibull 040067 | 082817 032777 0,10518
Tohnzon SE 044183 | 084178 032000 0,10634
4.2 3} [ G Gamma 0,38513 | 0,B280% 0.34250 0,10598
Gamma 043436 | 082707 0,30466 0,11343

Kumarsswamy 55155 0, 75287 0,15601 0,21221

. Waibull 0,50173 | 083760 0,36040 0,02583
RS oty 0,50256 | 0.83084 0,35616 0,03316
Tohnzon SE 0,56705 | 0,82801 0,30506 0,04115
Eumsmswamy | 0,56004 | 0,75565 0,15262 0,21058

PP Waibull 0,48174 | 08217 0,35818 0,0353
Gumbal Max 0,47000 | 081530 035677 0,04275
Tohnzon SE 054189 | 0,01585 031323 0,04067
Tohnzon SE 0,28438 | 0,67361 0,28023 0,25020
Bum 027002 | 0.68887 032304 0,12546

4t I {2 Waibull 027545 | 0,64035 0,26242 0,27615
CHi-Squarsd 0,26424 | 0,71270 0,32875 0,10015
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Table 7 Compare first passage probabilities when each lump has two states.

Distribution of First Passage Times for Lumped States in Markov Chains

LumpingFomm | o o o iline 1.000.000 Trial
MLLﬂpx D1'u’1h'Lt1 y 'R L ;R = ] r 5 'E &
States 3 on | BX <) | AE<S | P{2<X<d | BX>6
Gamma 064320 | 0077RR 0,20719 0,00793
nn, e
e Gumbsl Max 062844 | 0,0BO25 0,31620 0,008606
Firzt Lump
Invv. Gassian 067703 | 0073R7 0,26412 0,01187
Waibull 0,61287 | 008720 0,33767 0,00273
Waibull 041840 | 0,B8036 0,34412 0,07851
2 [ & [ T VERLE] 0 nEITA
L. 54} Johnzon 5B 046060 | 088070 0,32531 0,08376
SecondLump | Gen.Gemma 041120 | 0,B5421 0,35744 0,07743
Eumarzswamy 055008 | 074702 0,14673 0,21972
Lognomal{3P) | 0,72358 | 0,7B605 0,04034 0,20397
) Gen. Gamma4P | 0O,77B57 | 003175 0,12811 0,05181
L3}, {14}
First Lump Gumbal hax 0,59201 007126 033362 001108
Gamma 061280 | 0048720 0,30013 0,01291
Eumarzswemy 056004 | 0,75565 0,15262 0,21059
Waibu 048305 | 002 0,3573 0,03552
L3}, {24} ‘aibull 0,483 002194 0,35731 0,03
Second Lump | Gumbsl Max 048004 | 001620 0,35707 0,04216
Johnzon 5B 054671 | 0,91533 0,30874 0,050035
Waibull 0,3083 0,83573 0,33603 0,00784
4. 23} Johnzon 5B 044158 | 0, 24803 0,32707 0,08073
Firzt Lump Can, Camma 038110 | O,B3873 0,34008 0,00438
Camma 0,43332 | 0,B3538 0,31314 0,105635
Lognomal{3F) 066752 | 0,75068 0,06686 0,23705
{1'4}'{13} i T £ T 50T ol
. Waibull 0, 52261 0, 25006 0,35872 0,01908
Second Lump
Gumbs] Max 0,52533 | 004404 0,35386 0,02542
Gamma 0,55534 | 003015 0,32183 0,02945
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Table 8 Compare first passage probabilities when one lump has three states

Lumping .
£ 1.000.000 Trial
iﬂm = Probability i
e Distribution PiXely | R¥e3dn | Aldcxa®m | mxs1
T.07815 | 0,00511 030604 0,01043
Burr (4D)
U.00088 | 0,00008 0,00382 5.3603ES
Lognommal {(3P)
L3}, 4} _ __ _
072100 | 0,00402 0,02563 010278
Raylsigh ' ' : '
_ 070747 | 000604 0,04043 0,05433
Invy. Gapzziam
PowerFunction | 0,87002 | 0,02314 T,05160 0,10335
Tohmion SE 0.60502 | 0,04824 0.04120 015074
n24}. 55}
Dazem T.E7360 | 0,00507 T.07141 0,03086
Tov. Gaussian T.e3727 | 00567 002777 018543
Lognommal (3P) | 0,64626 | 0,71783 0,00260 0,31710
Gumbsl Max 041205 | 079702 0,01269 0,43044
L34}, 2}
Normal 036084 | 0,76006 0,00802 0,50070
Waibull 0,40440 | 0,70102 0,01328 0,44005
PowerFunction | 0,83260 | 0,80475 0,05003 0,13680
Gamma 051012 | 0,80043 0.01846 030712
23,4140 _ _ _ _ __
Inw. Gapszian 054715 0, 8084 10,0231 0, 27625
Gumbal Max 050173 | 080436 0,01750 031314
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4. Conclusions

Though the Markov chains involve a wide variety
of applications, there is a limited number of studies to
investigate the first passage time characteristics.
Indeed, the first passage times constitute an important
part of the Markov analysis.

As the first passage times have discrete for a state
space finite irreducible Markov chain, this study
involves a continuous distribution approach to discrete
distribution. The Markov chain was simulated to
demonstrate the first passage time distribution
depending on the number of trials.

In this study is described the lumping method based
on gathering the states with the aim of reducing the
state space of the Markov chain in order to examine
the complex systems in an easier manner. The first
passage time distribution of a Markov chain into the
lumped states was determined by means of lumping.

Table 3-5 show the distributions that allow the best
fit on the basis of the results of Kolmogorov-Smirnov
test among 65 distributions through the East Fit
software, depending on the number of trials of the first
passage time distribution.

It was tried to determine the first passage time
distribution by means of the lumping into the
irreducible Markov chain with four states discussed in
the implementation chapter. Representing the first
passage time distribution fitting, the p-value was
minimum 0.08522, where the first passage of the
Markov chain from 3 states {1,2,4} into the lumped
states resulted in the Inv. Gaussian distribution.

Representing the first passage time distribution
fitting, the p-value was maximum 1.000, where the
first passage of the Markov chain from 4 states
{1,2,3} into the lumped states resulted in the Power
Function distribution. It is observed in Table 2 that 16
possible first time distributions existed in an
irreducible Markov chain with four states, where a
better fitting was ensured in several distributions,
including 4 Weibull, 3 Kumaraswamy, 3 Lognormal

(3P), 2 Gamma, 2 Power Function, 1 Johnson SB, and
1 Burr (4P) ones.

When lumping was used, the first passage time
distribution varied depending on the lumping form as
shown in Table 2. Furthermore, the first passage time
distribution graphs were given. The probability
distribution graphs for the lumped states shown in Fig.
1 and Fig.2 demonstrate that the first passage time
distribution is of the positive skew or reverse j shaped.

Table 6 — 8 show the comparison of the probabilities
based on a certain value upon application of the
lumping method. It is understood through these tables
that the first passage probabilities are usually close to
each other.

It is possible for the future studies to adapt the first
passage times in association with the lumping method
into the Markov Decision processes. It would make it
possible to use the lumping method to develop more
flexible strategies by unifying the desired/adverse
states.

To increase the fitting of data into the distributions,
the generalized cases of the distributions are taken into
account. It is very interesting to observe in studies
carried out in the recent years by Alzaatreh et al. [16]
that the transformations are used to generate new
continuous distributions and new discrete distributions
from the continuous distributions.

Alzaatreh et al.obtained new continuous and discrete
distributions in the form of T-X distribution family.
Being the T-X distribution family generated in an
effort to generalize the distributions, the Beta-Gamma,
Beta-Exponential, Exponential-Geometrical distributions
could be examined for their fitting of the first passage
time distributions, whereby the new distributions would
likely have a better fitting than the existing distributions.
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