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Abstract: First passage time in Markov chains is defined as the first time that a chain passes a specified state or lumped states. This 
state or lumped states may indicate first passage time of an interesting, rare and amazing event. In this study, obtaining distribution of 
the first passage time relating to lumped states which are constructed by gathering the states through lumping method for a 
irreducible Markov chain whose state space is finite was deliberated. Thanks to lumping method the chain’s Markov property has 
been preserved. Another benefit of lumping method in the way of practice is reduction of the state space thanks to gathering states 
together. As the obtained first passage distributions are continuous, it may be used in many fields such as reliability and risk analysis 
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1. Introduction 

The first-passage concept used in many areas from 

controlled reactions in physical and chemical 

processes to chromatographic, stochastic processes 

play an important role. Therefore, you need to know 

the first passage characteristics to understand the 

movements of real systems. Once this connection is 

established, it is quite simple to obtain the dynamical 

properties of the system in terms of well-known 

first-passage. The problems associated with these 

systems can be found in [1-5]. 

The first passage time variable can have different 

meanings in different areas. For classical gambler’s 

ruin type models this variable can represent the 

duration of the game, for physics this variable is the 

time period for a particle in a system reaching some 

state, for reliability engineering studies the 

expectation of this variable corresponds to the mean 

time for the first failure and its survivor function is 

regarded as the reliability of a system under study. 
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Passage times have been investigated since early 

days of probability theory and its applications. The 

best known example is the first passage/entrance time 

to a set, which embraces waiting times, absorption 

problems, extinction phonomena, busy periods and 

other applications. 

Although passage times are in fact examples of 

stopping times, they enjoy important position in 

theoretical and practical applications. Therefore, it is 

possible to encounter the first passage time 

applications in many areas of science and engineering. 

Kammer [6] used the first passage time process for 

the credit risks of firms and proposed to define the 

threshold level as a function of the firm’s liabilities. 

Li and Shaked [7] cited a stochastic process as the 

damage level of a certain device at t time and defined 

the first passage time as a time of exceeding the 

failure rate of a device subjected to shocks and 

wear .They studied the features of first passage times 

which had increasing failure rate and increasing 

failure rate average.  

Mandel [8] analyzed the phases of sclerosis by 

using properties of Markov chain and by using 
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transition matrix, he estimated the mean first passage 

time to various phases of the disease for he treated and 

untreated. Thus, opportunity of describing and 

predicting the course of the disease came up. 

On the other hand, the lumping of Markov 

processes is one such very useful technique. When the 

number of states increases, Markov problems grows 

rapidly. So large scale Markov models are intractably 

hard to solve. Under certain conditions the state space 

of a discrete parameter finite Markov chain may be 

partitioned into subsets, each of which may be treated 

as a single state of a smaller chain that retains the 

Markov property. 

Lumped states which are constructed by gathering 

the states through lumping method for a irreducible 

Markov provide a macroscopic view of original states  

The stochastic processes literature is abuntant with 

several papers, and a book by Kemeny and Snell, 

which exploit lumpability of the discrete-time Markov 

processes or chain.  

Ridder [9], for simulate a rare event problem, the 

correspondence between the cross-entropy method 

and the zero-variance approximation showed. In a rare 

event problem , large state space has been partitioned 

into three sets: “good states”, “failed or bad states”, 

“internal states” when he is constructing Markov 

model. Ridder [9] interested in first passage time 

probability that Markov chain will pass the failure set 

before the good set when the chain starts in internal 

state 

Tian and Kannan [10] extend this notion of 

lumpability to continuous time finite state space 

Markov chains and characterize lumpability in terms 

of the infinitesimal generator. Under suitable 

conditions they show to recover some of the basic 

quantities such as mean first return time, mean 

absorbing time of the original Markov process from 

the jump chain of the lumped Markov process.  

In this study, higher the number of state is in a 

Markov chain with finite state space, the more difficult 

a transaction is, and hence it is an important problem 

that should be worked to define the way how to 

approach through a continuous distribution for the 

discrete first passage time distribution based on the 

lumping method that allows reducing the number of 

state, and facilitates calculation in the modelling.  

This study emphasizes the solution of this problem. 

As the obtained first passage distributions are 

continuous, it may be used in many fields such as 

reliability and risk analysis. 

2. Methods 

In this section, we will summarize the methodology 

used for calculating first passage times for Markov 

chain. 

2.1 Markov Chain 

In this process, the outcome of a given experiment 

can affect the outcome of the next experiment. In 

other words, Markov chains are the stochastic 

processes whose futures are conditionally independent 

of their pasts provided that their present values are 

known. 

Let  : 0,1, 2,...nX n   be a stochastic process that 

has a finite or countable infinite state space S . When 

nX i  we say that ‘the process is in state i at time n. 

The probability that the process is in state j in the next 

time provided that its present state is i, is denoted by 

ijP . 

For the Markov chains, the transition probabilities 

are arranged in a matrix form and the resulting matrix 

is called the transition matrix of the chain. The 

elements of a transition matrix hold the following 

conditions: 

a) for any two states i,j S , 0ijP  ; and  

b) for all i S , 1ij
j

P  . 

It is often desirable to also make probability 

statements about the number of transitions made by 

the process in going from state i to state j for the first 

time. This length of time is called the first passage 

time in going from state i to state j . 
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To illustrate these definitions, reconsider the inventory 

example where tX  is the number of cameras on 

hand at the end of week t, where we start with 0X . 

Suppose that it turns out that 

0 1 2 3 4 53,  X 2,  X 1,  X 0,  X 3,  X 1X        

In this case, the first passage time in going from 

state 3 to state 1 is 2 weeks, the first passage time in 

going from state 3 to state 0 is 3 weeks, and the 

recurrence time for state 3 is 4 weeks [11]. 

In general, the first passage times are random 

variables. The probability distributions associated 

with them depend upon the transition probabilities of 

the process. In particular, let 
( )n

ijf  denote the 

probability that the first passage time from state i to j 

is equal to n. For 1n  , this first passage time is n if 

the first transition is from state i to some state k 

( k j ) and then the first passage time from state k to 

state j is n - 1. Therefore, these probabilities satisfy the 

following recursive relationships [12] . 

(1) (1)
ij ij ijf p p  , 

(2) (1)
ij ik kj

k j

f p f


 , 

( ) ( 1)n n
ij ik kj

k j

f p f 



  

In analyzing and using Markov chain, first passage 

times are fundamental to understanding the long-run 

behavior of a Markov chain [13]. Among the Markov 

chain characteristics, the first passage times play an 

important role. For any two states, the first passage 

time probability in n steps is defined as follows and 

this probability is related to the ever reaching 

probability. 

Definition 2.1.1: For any two states i and j, the first 

passage time probability from i to j in n steps, 

( )n
ijf  is defined as 

( )
( 1)

; 1

; 2,3,...

ij
n

nij
ik kj

k j

p n
f p f n




  



 

2.2 Lumpability Theory 

Obtained by lumping the first passage time 

distribution to set the states (lumped) of a Markov 

chain, lumpability theory of Markov chain is required. 

Therefore, lumpability properties of Markov chains 

are described in this section 

The theory of lumpability provides us with a 

powerful tool dealing with preserving the Markov 

property. Simply speaking, under certain conditions, if 

the aggregated chain still has the Markov property, we 

say that the original chain is lumpable.  

In sense of preserving the Markov property, the 

simplest lumping will be lumping all the states to one 

single lump, that way, we will be able to have 

preserved the Markov property perfectly. But for 

single state chains, we can not observe any transition 

so we can not study the chain.  

We provide a simple natural guidance on how to 

lump. 
Consider a discrete parameter finite state irreducible 

Markov Chain  ,....2,1:  tXX t  with finite 

state space  nS ,....,2,1 , set of all possible initial 

probability row vectors  









  

n

i iin
n ni

121 ,......,1,0,1),,.....,,(. 

Let  )(),......,2(),1( mCCC  be a nontrivial 

mutually exclusive and exhaustive partition of S, i.e. 

 m

i
SiCnm

1
)(,


 and )()( jCiC  for 

any ji  . The corresponding state space is 

 mS ,,.........2,1 .We define the aggregated chain 

 ,....2,1:
~~  tXX t  with state space S of the 

original chain X and the partiton  as follows [14]. 

෨ܺ௧ ൌ ݅ if and only if ܺ௧ Ԗ ܥሺ݅ሻ, for t=0,1,..   (2.1)  

Definition 2.2.1: If ෨ܺ is Markovian for any initial 

probability vector α and the transition probabilities do 

not depend on the choise of α, then we say X is 
strongly lumpable with respect to   

If ෨ܺ  is Markovian for at least one initial 

probability vector but not all of them, then we say X is 
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weakly lumpable with respect to   
The fundamental conditions defining strong 

lumpability are given by Kemeny and Snell [15] in 

Theorems 2.2.1 and 2.2.2. 

Theorem 2.2.1: A necessary and sufficient 

condition for a Markov chain to be strongly lumpable 

with recpect to a partition 

 )(),......,2(),1( mCCC is that for every pair 

of sets )( iC and )( jC , the probabilities 

෨ܲ௜௝ ൌ ∑ ௞ܲ௥௥א஼ሺ௝ሻ , mji ,......,2,1,    (2.2) 

for all ݇ א  .ሺ݅ሻܥ

A well-known characterization of strong 

lumpability is also given by Kemeny and Snell . 

Theorem 2.2.2: X is strongly lumpable to X
~

 if 

and only if there exist matrices U and V such that  

VUPV=PV              (2.3) 

Where V is an n x m matrix whose jth column is a 

vector with ones in the components corresponding to 

states in C(j) and zeros otherwise, and U is an m xn 

matrix whose ith row is a probability vector with 

nonzero components for states in C(i) and 0 for 

remaining states. 

V is usually called the collector ( or aggregator). Its 

n-dimensional column vectors are orthogonal; 

U is usually called a distributor and can be thought 

as ்ܸ  with rows normalized to probability vectors 
(one way to define U is TT VVVU 1)(  ) or can 

be obtained from the steady state probabilities and V. 

The transition probability matrix P෨  of ෠ܺ  is 

P෨ ൌ UPV. It is easy to see that UV=I. And the k-step 

transiton matrix of the lumped chain can be obtained 

as follows: 

kkkk PVUPUPVP
~

)()
~

(     (2.4) 

Theorem 2.2.3: If P෨  is the transition probability 

matrix of the aggregated homogeneous Markov chain 

෨ܺ ൌ ቀߙ, ܲ,  ቁ then P෨  is the same for every ߙ 

leading to a Markov chain the unique transition 

probability matrix of ෨ܺ is  ෩ܲ  =ܷఈܸܲ  

A useful sufficient condition to weak lumpability is 

also given by Kemeny and Snell next. 

Theorem 2.2.4:  ܷఈܸܷܲఈ ൌ ܷఈܲ  is a sufficient 

condition for X to be weakly lumpable.  

3. Numerical Example and Results 

In this chapter, the first passage time distribution 

was determined by means of the lumping method 

based on Discrete First Passage Time algorithm and 

simulation of the Markov chain. It was understood 

upon the study carried out after application of the 

lumping method that the first passage time distributions 

varied depending on the form of lumping. 

Discrete First Passage Time Distribution Algorithm  

Step 1: Simulate Markov chain 

Step 2: Choose starting state in state space  

Step 3: Choose entering state in state space 

Step 4: Find starting state and entering state orders 

in chain 

Step 5: Calculate lengths between starting state and 

entering state if entering state order is greater than 

starting state order  

Step 6: Calculate frequency of these lengths 

The software “Easy Fit” was used to evaluate the 

first passage time distribution fitting. Based on the 

trial numbers of first passage time distribution, the 

best fitting distributions were obtained according to 

the results of Kolmogorov-Smirnov test on 65 

distributions through the Easy Fit software. Table 2 -5 

show the said distributions. In Table 3- 5 repersents 

PKolm: p-value for Kolmogorov Smirnov test, and TKolm: 

statistical value for Kolmogorov-Smirnov test. 

We considered Markov chain with four-state to 

simplify calculation and save space. 

Transition matrix has been used in all the of 

simulation studies made in this section 

0.40 0.22 0.18 0.20

0.16 0.50 0.20 0.14

0.28 0.32 0.30 0.10

0.33 0.17 0.35 0.15

P

 
 
 
 
 
 

        (3.1) 

the distribution of first passage time was tried to be 
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Table 1  Lumped states transition matrix according to the form of lumping. 

Cases The Form Lumping Lumped states transition matrix 

1 {1,4},{2},{3} ෨ܲ ൌ ൥
0.540 0.195 0.265
0.300 0.500 0.200
0.380 0.320 0.300

൩ 

2 {2,3},{1},{4} ෨ܲ ൌ ൥
0.660 0.220 0.120
0.400 0.400 0.200
0.520 0.330 0.150

൩ 

3 {3,4},{1},{2} ෨ܲ ൌ ൥
0.400 0.220 0.380
0.160 0.500 0.340
0.305 0.245 0.450

൩ 

4 {1,2},{3},{4} ෨ܲ ൌ ൥
0.640 0.190 0.170
0.600 0.300 0.100
0.500 0.350 0.150

൩ 

5 {2,4},{1},{3} ෨ܲ ൌ ൥
0.480 0.245 0.275
0.420 0.400 0.180
0.420 0.280 0.300

൩ 

6 {1,3},{2},{4} ෨ܲ ൌ ൥
0.580 0.270 0.150
0.360 0.500 0.140
0.680 0.170 0.150

൩ 

7 {1,2,3},{4} ෨ܲ ൌ ቂ0.852 0.148
0.850 0.150

ቃ 

8 {1,2,4},{3} ෨ܲ ൌ ቂ0.755 0.245
0.700 0.300

ቃ 

9 {1,3,4},{2} ෨ܲ ൌ ቂ0.762 0.238
0.500 0.500

ቃ 

10 {2,3,4},{1} ෨ܲ ൌ ቂ0.743 0.257
0.600 0.400

ቃ 

11 {1,2},{3,4} ෨ܲ ൌ ቂ0.640 0.360
0.550 0.450

ቃ 

12 {1,3},{2,4} ෨ܲ ൌ ቂ0.580 0.420
0.520 0.480

ቃ 

13 {1,4},{2,3} ෨ܲ ൌ ቂ0.540 0.460
0.340 0.660

ቃ 

 

determined by generating 10.000, 100.000, 1.000.000 

observations; respectively, with simulation from 

Markov chain in (3.1) 

Lumped states transition matrices are used below to 

determine these distributions.  

The simulation results regarding the first passage 

time distribution by lumping are given in the 

following table. 

From Table 2, In determining the first passage time 

distribution, the form of lumping is considered to be 

quite effective. In other words, the first passage time 

distribution is also changing in accordance with the 

form of lumping. 

According to the number of trial by lumping the 

first passage time distribution simulation results are 

given in the Table 3, Table 4, Table 5. 

Table 6, Table 7, Table 8 has been prepared to 

understand how the probability of the first passage 

time distributions based on a certain value when 

lumping in Markov chain has changed. From these 

tables, the first passage time probabilities are usually 

understood to be close to each other. These tables give 

information about the substitution of distributions 

when lumping in Markov. 
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Table 2  The first passage time distribution obtained by lumping. 
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Table 3  First passage time distributions when one lumping is made. 
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Table 4  First passage time distributions when two lumpings are made. 
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Fig. 1  First passage time distribution graphs according to ሼ૛, ૝ሽ, ሼ૚ሽ, ሼ૜ሽ lumped states 
 

 

Fig. 2  First passage time distribution graphs according to ሼ૚, ૛ሽ, ሼ૜ሽ, ሼ૝ሽ lumped states. 
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Table 5  First passage time distributions when one lump has three states. 
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Table 6  Compare first passage probabilities when one lump has two states. 
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Table 7  Compare first passage probabilities when each lump has two states. 
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Table 8  Compare first passage probabilities when one lump has three states 
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4. Conclusions 

Though the Markov chains involve a wide variety 

of applications, there is a limited number of studies to 

investigate the first passage time characteristics. 

Indeed, the first passage times constitute an important 

part of the Markov analysis.  

As the first passage times have discrete for a state 

space finite irreducible Markov chain, this study 

involves a continuous distribution approach to discrete 

distribution. The Markov chain was simulated to 

demonstrate the first passage time distribution 

depending on the number of trials.  

In this study is described the lumping method based 

on gathering the states with the aim of reducing the 

state space of the Markov chain in order to examine 

the complex systems in an easier manner. The first 

passage time distribution of a Markov chain into the 

lumped states was determined by means of lumping.  

Table 3-5 show the distributions that allow the best 

fit on the basis of the results of Kolmogorov-Smirnov 

test among 65 distributions through the East Fit 

software, depending on the number of trials of the first 

passage time distribution. 

It was tried to determine the first passage time 

distribution by means of the lumping into the 

irreducible Markov chain with four states discussed in 

the implementation chapter. Representing the first 

passage time distribution fitting, the p-value was 

minimum 0.08522, where the first passage of the 

Markov chain from 3 states ሼ1,2,4ሽ into the lumped 

states resulted in the Inv. Gaussian distribution.  

Representing the first passage time distribution 

fitting, the p-value was maximum 1.000, where the 

first passage of the Markov chain from 4 states 

ሼ1,2,3ሽ into the lumped states resulted in the Power 

Function distribution. It is observed in Table 2 that 16 

possible first time distributions existed in an 

irreducible Markov chain with four states, where a 

better fitting was ensured in several distributions, 

including 4 Weibull, 3 Kumaraswamy, 3 Lognormal 

(3P), 2 Gamma, 2 Power Function, 1 Johnson SB, and 

1 Burr (4P) ones.  

When lumping was used, the first passage time 

distribution varied depending on the lumping form as 

shown in Table 2. Furthermore, the first passage time 

distribution graphs were given. The probability 

distribution graphs for the lumped states shown in Fig. 

1 and Fig.2 demonstrate that the first passage time 

distribution is of the positive skew or reverse j shaped. 

Table 6 – 8 show the comparison of the probabilities 

based on a certain value upon application of the 

lumping method. It is understood through these tables 

that the first passage probabilities are usually close to 

each other. 

It is possible for the future studies to adapt the first 

passage times in association with the lumping method 

into the Markov Decision processes. It would make it 

possible to use the lumping method to develop more 

flexible strategies by unifying the desired/adverse 

states.  

To increase the fitting of data into the distributions, 

the generalized cases of the distributions are taken into 

account. It is very interesting to observe in studies 

carried out in the recent years by Alzaatreh et al. [16] 

that the transformations are used to generate new 

continuous distributions and new discrete distributions 

from the continuous distributions.  

Alzaatreh et al.obtained new continuous and discrete 

distributions in the form of T-X distribution family. 

Being the T-X distribution family generated in an 

effort to generalize the distributions, the Beta-Gamma, 

Beta-Exponential,Exponential-Geometrical distributions 

could be examined for their fitting of the first passage 

time distributions, whereby the new distributions would 

likely have a better fitting than the existing distributions. 
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