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Abstract: The basic inference function of mathematical statistics, the score function, is a vector function. The author has introduced the 
scalar score, a scalar inference function, which reflects main features of a continuous probability distribution and which is simple. Its 
simplicity makes it possible to introduce new relevant numerical characteristics of continuous distributions. The t-mean and score 
variance are descriptions of distributions without the drawbacks of the mean and variance, which may not exist even in cases of regular 
distributions. Their sample counterparts appear to be alternative descriptions of the observed data. The scalar score itself appears to be 
a new mathematical tool, which could be used in solving traditional statistical problems for models far from the normal one, skewed 
and heavy-tailed. 
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1. Introduction  

In statistical estimation problems, estimates are 
obtained as the solutions to equations of the form 

(data; ) 0θΨ =  
where 1( )mθ θ θ= ,...,  is a vector of parameters of 
interest and Ψ  is an inference function, the meaning 
of which is to adapt the data to the assumed model. 

A parametric model is a parametric family of 
distributions Fθ  with probability densities ( )f x θ; . 
The commonly used inference function is the score 
function, the vector 1

( )
mθ θΨ = Ψ ,..., Ψ  of 

derivatives of log ( )f x θ;  with respect to the 
components of θ . The data 1 nx x,...,  are considered 
as realizations of random variables 1 nX X,..., , 
independent and identically distributed according to 

0
Fθ , a member of the assumed model Fθ . The 
solution of the system of equations 

1
( ) 0 1

k

n

i
i

x k mθ θ
=

Ψ ; = , = ,..., ,∑  

is the maximum likelihood estimate ˆMLθ  of 0θ . 
Since ˆMLθ  has lowest possible variance, density 

ˆ( )MLf x θ;  is  considered as the best result of  the 
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estimation process [1]. 
Apart from the fact that ˆMLθ  is influenced by 

observations far from the bulk of the data (outliers: this 
problem is solved by robust statistics), this result has 
some other, usually not accented drawbacks: 

(1) Parameters of different models are, as a rule, of 
different nature (location, scale, shape, frailty). A 
comparison of the precision (variance) of estimates in 
differently parametrized models is a difficult task; 

(2) Instead of ˆ( )MLf x θ; , a few numbers 
characterizing the data would be often more useful in 
further analysis. A desirable description of the data 
seems to be something like “center” and “radius”, 
perhaps skewness of the data. The commonly used 
numerical characteristic of distributions are the mean 

( )m E X xf x d x= = ∫ , variance 2
2 ( )m E X m= −  

and higher central moments ( )k
km E X EX= − ; it 

seems that ˆ ˆ( )MLm m θ=  and ˆ( )ˆ k k MLmm θ=  should 

be the values we search for. However, such an 
approach is not used in statistical practice. Moments 
are often queer expressions containing special 
functions, and moments of heavy-tailed distributions 
(distributions whose probability densities are 
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approaching zero too slowly) do not exist (the 
corresponding integrals are infinite); 

(3) More complex statistical problems, such as 
estimation of the degree of similarity of random variables 
X  and Y , are usually solved by using “pure” data 

without adapting them to the assumed model. 
A well-known example is the measure of association 

of two random variables, the Pearson correlation 
coefficient: 

1
1

( ) ( )( )n
i X i Yn i

X Y x m y mρ
=

, = − −∑  

which is not able to make clear which part of the 
dependence stems from the real dependence and which 
part stems from the properties of marginal distributions 
of X  and Y . 

The cause is that the score function is a vector 
function, suitable for estimation of parameters, but too 
complicated to afford useful proposals of sensible 
numeric characteristics of distributions and too 
complicated to be used in more complex problems. 

In this paper, we describe a scalar inference function 
proposed by the author [2-5]. It reflects basic features 
of the model distribution, being simultaneously a 
simple scalar function. We outline new possibilities of 
description of probability distributions and data taken 
from them, and suggest possible use of the function for 
solution of traditional statistical problems, which 
appears to be particularly useful if the underlying 
distribution is skewed and/or heavy-tailed. 

2. Scalar Score 

As a scalar score of random variable X  with 
distribution G  and differentiable density g  positive 
on the whole real line R  was identified, using lesson 
drawn from Hampel et. al. [6], function describing the 
relative change of the density: 

( )( )
( )G

g xS x
g x
′

= −                (1) 

The reason is that if G  as a symbol is a location 
distribution (that is, if it is in the form ( )G x μ−  
where Rμ ∈  is the location parameter, indicating 
position of the maximum of density), function: 

( ) ( )GS x xμμ μ− = Ψ −  
equals the score function for μ . The solution of  
equation: 

( ; ) 0GS x θ =              (2) 
where ( )GS x θ;  is a parametric form of Eq. (1), is the 
coordinate of the maximum of density (mode) even if 
G  is not a location distribution. 

However, Eq. (1) is not a suitable description of 
distributions with densities positive only on a part 
X R≠  of the real line (that is, with support X R≠ ), 
since the maximum of the density can lie at the edge of 
the support and equation ( ) 0GS x =  may have no 
solution. Based on the old idea of Johnson [7], we 
suggested to view any random variable X  with 
distribution F  supported by X R≠  as a 
transformed random variable 1( )X Yη −= , where 

( )Y Xη=  has a “prototype” distribution G  with 
support R . By using a mapping X Rη : → , an 
interesting function of distribution ( ) ( ( ))F x G xη=  
was identified the transformed scalar score of the 
prototype: 

( ) ( ( ))GT x S xη=           (3) 

Eq. (3) can be expressed by means of the 
density f of F  as: 

1 1( ) ( )
( ) ( )

dT x f x
f x dx xη

⎛ ⎞
= − ⎜ ⎟′⎝ ⎠

    (4) 

Eq. (4) expresses the relative change of a “basic 
component of the density”, which appeared to be the 
density divided by the Jacobian of the mapping used. 

For comparison of properties of functions (4) of 
different distributions it is necessary to use consistently 
one concrete mapping for a given support. We used that 
one providing simple forms of Eq. (3) for a large 
amount of commonly used distributions. According to 
Johnson [7], we put 

log( ) if X ( )
( )

log if X (0 1)
1

x a a
x x

x
η

− = ,∞⎧
⎪= ⎨

= ,⎪ −⎩

      (5) 

(a generalization to common intervals is obvious). The 
result, Eq. (4) with η  given by Eq. (5), is called the 
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transformation-based score or shortly the t-score. 
Scalar scores of some “prototypes” and t-scores of the 
corresponding transformed distributions on (0 ),∞  
are given in Fig. 1 and Fig. 2. 

A location-type distribution ( )G y μ−  is mapped 
into (0 ),∞  as distribution: 

( ) ( ( ) ( ))F x G xτ η η τ; = −           (6) 
The parameter 1( )τ η μ−=  is the transformed 

location  parameter [8],  the  “image” on X  of  the 
location of the prototype. It can be taken as a “center” 
of ( )F x τ; , as it is, according to Eq. (6) and Eq. (2), 
 

 
Scalar scores 

 
Fig. 1  Prototype distributions. a. densities and b. scalar 
scores of distributions with support R . 
 

 

 
Fig. 2  Transformed distributions. c. densities and d. 
t-scores of corresponding transformed distributions with 
support (0 ),∞ . 

the  solution of equation ( ) 0T x τ; = , where 

( )T x τ;  is the corresponding t-score. It was proved [2] 
for this particular class of distributions that it holds 
true: 

( ) ( ) ( )T x xτη τ τ τ′ ; = Ψ ;           (7) 

We thus obtained a function which equals the score 
function for parameter expressing the position of 
distribution F  on the x-axis. The score function τΨ  
is decomposed into a product of two terms: an individual 
member characterizing the distribution (obtained by 
differentiating with respect to the variable) and the value 
of the Jacobian of the transformation at τ . 

A generalization for arbitrary continuous 
distribution is the following [3]: As a measure of 
central tendency of distribution ( )F x θ;  we suggest 
the zero of its t-score: 

( ) ( ) 0x T xθ θ∗ : ; =  
called the transformation-based mean or shortly the 
t-mean (actually, the transformed mode of the 
prototype). Eq. (7) was generalized by using the t-mean 
instead of τ . The result: 

( ) ( ) ( )S x x T xθ η θ∗′; = ;          (8) 
is called the scalar score (actually the “score function 
for t-mean”). We suggest ( )S x θ;  as a scalar 
inference function of distribution F , either the t-mean 
is a parameter of the distribution or not. For particular 
classes of distributions with location and transformed 
location parameter it is identical with the score function 
for this parameter. In other cases it is a new function. 

3. Description of Distributions 

Besides the cumulative distribution function ( )F x  
and probability density ( )f x , probability distribution 
F  can be described by the scalar score 

( ) ( ) ( )S x x T xη ∗′= . Since Eq. (7) is proportional to 
the influence function of the maximum likelihood 
estimator of τ , the value ( )S x  can be analogically 
understood as a relative influence of Xx ∈  on an 
estimate of the t-mean. 

If the probability density of prototype distribution 
goes to ±∞  slowly as xe−  (the distribution is 
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heavy-tailed), GS  is bounded. Due to Eq. (3), scalar 
scores of heavy-tailed distributions with arbitrary 
support are bounded. This property implies the 
existence of score moments: 

X
( ) ( ) ( )k k

kM ES X S x f x dx= = ∫        (9) 

which can be used as numeric characteristics of 
distributions. 1 0M =  (scalar score is centered 
around the t-mean). The t-mean exists and is unique for 
distributions with unimodal prototypes (in other cases, 
some additional convention is necessary). 

The value 2
2M ES=  of distributions with 

location and transformed location is, respectively, the 
Fisher information for the location and transformed 
location parameter. Accordingly, 2ES  is the Fisher 
information for the t-mean. The usual regularity 
conditions secure that it is finite. The reciprocal value: 

2 21/ ESω =                 (10) 
appears to be a natural measure of the variability 
(dispersion) of the distribution even in cases in which 
the usual variance does not exist [3]. We call it a score 
variance. For distributions with support (0 ),∞ , Eq. (10) 
turns into 2 2 2( )x ETω ∗= / . T-means and score 
variances of some distributions are given in Table 1. 

Let us remark that 3 2
3 2M Mγ /= /  characterizes 

skewness; a real skewness for distributions with 
support R  and skewness with respect to the basic 
form for distributions supported by (0 ),∞ (which is 

itself skewed). 4M characterizes flatness. The analog 

of Pearson’s measure of kurtosis forms a logical 
structure right opposite to the ordinary kurtosis. 

Function 2 ( )S x  attains its minimum at x∗ , which 
is the least informative point of the distribution [10], 
and 2ES  describes information. 2 ( )S x  can thus be 
thought of an information function, expressing relative 
information contained in observation x . 

Let us consider a distance between 1 2 Xx x, ∈  
given by: 

1 2 2 1( ) ( ) ( )d x x S x S x, =| − |       (11) 

Parametric forms of Eq. (11) are in fact considered 
when using maximum likelihood estimators in cases of 
distributions with location and transformed location 
parameter. It is apparent that the meaning of Eq. (11) is 
the distance of relative influences of 1x  and 2x . For 
standard normal and standard exponential distributions 

1 2 2 1( )d x x x x, =| − |  is Euclidean. However, for 
skewed and/or heavy-tailed distributions, distance (11) 
is nonlinear. As an analogy, the temperature scale is 
linear. However, the distance between -272°C and 
-272.3°C, say, can be expressed in millions dollar and 
should be large, whereas the distance between 
1,000,000°C and 1,200,000°C is not interesting and 
could be small. A nonlinear temperature scale would be 
for some practical purposes more suitable. A proposed 
distance between 1 2 X ( 273 15 )ox x C, ∈ = − . ,∞  
could be measured by (11)  with S  being  a “ scalar 
score function of  distribution of  temperature”, derived 
by means  of Eq. (4) and Eq. (8)  with f  describing 
“a rate of incidence of temperature data in man’s life”. 
It could resemble, perhaps, the scalar score of the 
inverted gamma distribution in Fig. 3. 

 

Table 1  T-mean and score variance of some distributions. 

Distribution ( )f x  ( )T x  *x  
2ω  

Weibull ( )
( )

ccx xc e τ
τ τ

− /  (( / ) 1)cc x τ −  τ  2 2/ cτ  

gamma 1
( )

xx e
α α γγ
α

− −
Γ

 xγ α−  α γ/  2α γ/  

lognormal 
21 log ( / )2

2

cxc
x

e
τ

π

−
 log( / )cc x τ  τ  2 2cτ /  

Pareto ( 1)ccx− +  ( 1) /c c x− + ( 1) /c c+ 3( 2) /c c+
Lomax 1/ (1 )x αα ++  ( 1) / ( 1)x xα − + 1/α  3( 2) /α α+  

inv. gamma ( 1) /
( )

xx e
α α γγ
α

− + −
Γ

 / xα γ−  /γ α  2 3/γ α  

Weibull and lognormal are distributions with transformed location parameter. Pareto, Lomax and inverted gamma are heavy-tailed 
distributions, having for certain range of parameters neither mean nor variance. 
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Fig. 3  Numerical characteristics of distributions. a. 
densities and b. scalar scores of inverted gamma 
distributions with parameters chosen in such a way that 
t-means are * 1 1 5 2x = , . ,  and score variance 2 1ω .=  All 
the plotted distributions have neither mean nor variance. It 
is apparent that t-mean characterizes a position of 
distributions on the x − axis and that all three distributions 
have a similar character of variability. Scalar scores of 
inverted gamma distributions are not sensitive to large 
values, but exhibit large sensitivity to observations near 
zero. 
 

 

 
Fig. 4  Functions describing distributions. Density, scalar 
score, information function and weight function of a. 
Weibull distribution ( 2)c =  and  b. inverted gamma 
distribution. 

Writing Eq. (11) in the form: 

2

1
1 2( ) ( )

x

x
d x x dS x, = ∫  

we obtain another significant function of distribution 
F ,  function ( ) ( )w x dS x dx= / , which could be, 
perhaps, explained as the weight function, giving to 
any Xx ∈  a relative weight of the observation in the 
assumed model. Basic functions describing two 
standard probability distributions are plotted in Fig. 4. 

4. Data Characteristics 

Given data 1 nx x,...,  and model family Fθ , new 
sample characteristics of central tendency (“center”) 
and dispersion (square of “radius”) can be obtained as 
functions of estimated parameters: they are the sample 
t-mean ˆ( )ˆML MLxx θ

∗∗ =  and the sample score 
variance 22 ˆ( )ˆ ML MLωω θ= . They can be alternatively 
used for a description of data samples, particularly of 
samples from skewed and/or heavy-tailed distributions, 
for which the usual characteristics cannot be used  
(Fig. 5 and Fig. 6). By using them, it is easy to compare 
results of estimation in different models [4]. 

Besides the maximum likelihood estimates, one can 
use the score moment estimates ˆSMθ  as the solution 
of equations: 

1

1 ( ) 0 1
n

k k
i

i
S x E S k m

n θθ
=

; − = , = , ...,∑ (12) 

derived from Eq. (9) using the substitution principle. 
 

 
Fig. 5   Typical value of a sample. A sample (the one with a 
small largest value) of length 20n =  was generated from 
Pareto distribution with 0 95c = . , i.e., from a distribution 
without mean. The sample mean (3) can be determined but 
it is theoretically unjustified. The 20%  trimmed mean (2) 
is known to be very robust estimator, however, it does not 
take into account the properties of  distributions. The 
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sample t-mean (1) characterizes a typical value of the 
sample. 

 
 

 
Fig. 6  Standard deviations. σ  and score standard 
deviation ω  are shown as functions of the reciprocal value 
of parameter c  of Weibull and Pareto distributions. σ  of 
heavy-tailed Pareto distribution does not  exist if 2c ≤ .  
For large c , ω σ.  For c  small, description of 
variability of both distributions by the standard score 
deviation ω  is the only sensible method we know. 
 

The score moments are often expressed by elementary 
functions of parameters [11]. Since the scalar scores of 
heavy-tailed distributions are bounded, a large 
observation ix  has no decisive influence on estimates 
since it enters into estimation equations by means of 

( ; )iS x θ  only. 
In some cases, the first equation of (12) has a form: 

1
( ) 0ˆ

n

SM i
i

S x xx ∗∗

=

: ; =∑  

Then the sample score variance of samples from 
distributions with support (0 ),∞  is given by: 

2
2

1 2
1

( )ˆˆ
( )ˆ

SM
n

SMii

x
n T x x

ω
∗

− ∗
=

=
;∑

 

Examples are given in Table 2. In a general case, 
however, the sample characteristics are to be 
determined as ˆ( )ˆ xx θ∗∗ =  and 22 ˆ( )ˆ ω θω = , where 

θ̂  is either the maximum likelihood or the score 
moment estimate. The score moment estimates are 
generally not efficient (that is, they are asymptotically 

normal but  their  asymptotic  variances  are not the 
lowest possible, contrary to the maximum likelihood 
Table 2  Sample t-mean and sample score variance of 
distributions from Table 1. 

Distribution x̂∗ 2ω̂  

Exponential 1
ix n x−= ∑ 2x  

Gamma x  1 2( )in x x− ∑ −  

Lognormal 1
G in xx −= Π  1 2log Gin x x− ∑ /  

Pareto 1H in xx = / ∑ /  2(2 1)( 1)H Hx x− −
Lomax 

1
11

/ i
L

ii

x
xx

x ++
= ∑ ∑  2 (2 1)L Lx x +  

Inverted 
Gamma Hx  22 / (1 )H H in xx x∑ − /

The exponential distribution is Weibull distribution with c=1. 
The sample t-mean of distributions with linear scalar score is the 
arithmetic mean, Gx  is the geometric mean and Hx  
harmonic mean. The t-mean of the Lomax distribution (a simple 
member of the generalized logistic family, see [9]) is given by 
an original closed form. The sample score variance of 
one-parameter distributions is a function of the sample t-mean. 
The sample score variance of gamma distribution is the usual 
variance. For sample score variances of two-parameter 
lognormal and inverted gamma distributions we found 
closed-form formulas. In a general case, both x̂∗  and 2ω̂  can 
be determined as functions of estimated of parameters. 
 

estimates), but they are robust in cases of heavy-tailed 
models [12]. Confidence intervals for ˆ SMx∗  can be 
established using a modification of the Rao score test 
[1] or by the use of the distance 0( )ˆ SMd xx ∗ , , where 
d  is given by Eq. (11), see Ref. [5]. 

5. Other Applications 

The scalar score of a normal distribution is 
2( ) ( )S x xμ σ μ σ; , = − / , so that the t-mean is the 

mean and score variance is the variance. For observed 
data coming from non-normal distributions we 
obtained new data characteristics. The scalar score can 
be used as an inference function for solution of 
traditional statistical problems. We mention three of 
possible applications: 

(1) Linear regression with non-normal residuals. 
Let 0 1Y Xα α ε= + + , where ε  is random variable 
with distribution Fε . For estimation of coefficients 0α  
and 1α , a criterion of minimal Fischer information of 
residual errors has been used, i.e.: 
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2

1

1 ( ) min .
n

i
i

S
n

ε
=

=∑           (13) 

where S  is the scalar score of Fε  and 

0 1( )i i iy xε α α= − +  are the residual errors. For 
normally distributed residuals, Eq. (13) reduces to the 
least squares method. For skewed heavy-tailed Fε  we 
obtained results different from those provided by 
robust  regression by using the Huber’s (symmetric) 
inference function (Fig. 7). We conclude that if one 
can guess the type of parametric family of underlyimg 
distribution, the method based on Eq. (13) is the best one; 

(2) Distribution-dependent correlation coefficient. 
The score correlation coefficient of random variables 

X , Y  with distributions X YF F,  and scalar scores 

X YS S, , respectively, is 

2 2 1 2

( )( )
( )

X Y
s

X Y

E S SX Y
ES ES

ρ /

,
, =  

It holds that 1 1Sρ− ≤ ≤  and ( ) 0S X Yρ , =  for 
independent X  and Y . Simulation experiments have 
shown that sρ  can detect an association of random 
variables even if they have heavy-tailed distributions, 
similarly to the Spearman rank correlation coefficients 
[13] (Fig. 8); 

(3) Spectral properties of heavy-tailed processes. 
If the distribution of random process { }tX  is 
heavy-tailed, random variable tX  does not possess 
finite variance and { }tX  does not possess spectral 
density. Since the moments of random variable ( )tS X  
 

 
Fig. 7 Linear regression. Comparison of least-squares 
regression, robust regression and score regression lines for 
data 2 3 1 2y x ε= − . + . +  where ε  was generated as 
random variable with Lomax distribution. The score 
regression line is below the robust regression line since the 

scalar score takes into account the non-symmetry of the 
distribution (and, consequently, of the generated data). 

 
a 

 
b 

Fig. 8  Correlation coefficients. Couples ( )X Z,  were 
generated as independent random samples of length 75 
points from the Lomax distribution. The sample correlation 
coefficients between X  and (1 )Y X Zα α= + −  were 
estimated with α such that theoretical value of correlation is 
r = 0.2. a. average values of correlation coefficients Pearson 
(o), score (*) and Spearman (x) correlation coefficients, and 
b. their average standard deviations as functions of 
variability ω  of the distribution. It is apparent from the 
latter plot that the usual Pearson correlation coefficient loses 
for heavy-tailed distribution any meaning. The sample score 
correlation coefficients are in this particular case closed to 
the Spearman rank correlation coefficients and, although 
biased, they can detect an association of random variables 
with heavy-tailed distributions. 
 

are finite for any fixed t , one can study spectral 
densities of process { ( )}tS X . We have found that the 
score power spectrum of a process with small 
variability (small ω ) is similar to that of the original 
process, whereas for processes with large variability it 
seems to be a sensible estimate of the spectral content 
of { }tX  [14], as illustrated in Fig. 9. 

6. Conclusions 

We described the way to an introduction of a new 
inference function of mathematical statistics and show 
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some of its advantages, the main of them is that it enables 
to introduce relevant characteristics of data samples 

 

 

 
Fig. 9 Power spectra. Average power spectra of 
autoregressive signal 0 4 1 tX X Zt t= . +− , where Zt  is a 
white noise with Lomax distributions with three different 
ω . Dashed lines: spectra of log Xt  (the used way of 
estimating spectra of positive signals), full lines: spectra of 

( )S Xt , where S  is the scalar score of the Lomax 
distribution, dotted line: spectrum of X t with standard 
normal Zt . The estimated power spectra are similar for 
low ω . With increasing variability ω , the score spectra 
are still usable, whereas the log-spectra are largely distorted. 
 

taken from arbitrary continuous distribution. Similarly 
as in any parametric method, the results of processing 
real data are crucially dependent on the model adopted. 
The sample t-mean and sample score variance may 
now make it possible to compare the results of 
estimation in arbitrarily parametrized models. 
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