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Abstract: Formulating the original composition of weathered tephra can be a challenging task. A previous study by Wadia (1998 and 
2007) demonstrated the enrichment of silica according to the hypothesis that the percentage of aluminum oxide remains constant within 
the unweathered parent material and its weathered counterpart (Faure, 1991), which indicated the average enrichment of silica to be 
6.5%. This study demonstrates the enrichment of microcrystalline-cryptocrystalline quartz in the Reid’s Mistake Formation of the 
Newcastle Coal measures of Sydney Basin, Australia, incorporating petrographic analyses and MBC (mass balance calculations) using 
trace element zircon as the immobile element. For MBC, zircon is more favorable, as it is a trace element that tends to be immobile 
during the process of chemical weathering. The composition of the unweathered reference samples was collected from the Tertiary 
volcanic complexes of Northeastern New South Wales and Southeastern Queensland. ICP-AES (inductively coupled plasma-atomic 
emission spectroscopy) was used to determine the chemical composition of the weathered samples. The quantitative enrichment of 
silica was provided by performing MBC using zircon as the immobile trace element. The petrographic analyses results indicated that 
the tephra was subjected to chemical weathering in a meteoric regime, as represented by minerals observed in the weathered tephra. The 
silica enrichment by MBC involving zircon resulted in 40.11%, which is indicative of chemical weathering, and was additionally 
supported by the presence of chert lenses in the volcanic horizon, indicating the enrichment of silica as a result of chemical weathering.  
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1. Introduction  

Chert is a microcrystalline or cryptocrystalline 
sedimentary rock consisting mostly of interlocking 
crystals of quartz and is precipitated from an aqueous 
solution [1]. The quartz crystals are typically less than 
about 30 μm in diameter [2]. Although cherts are 
comprised of pure silica, crystalline impurities totaling 
less than 5% consisting of calcite, hematite, clay 
minerals, and organic matter are found. Cherts may 
form in many geochemical environments through 
different mechanisms; the most common ones include 
bedded marine chert, chert in carbonates, chert in 
hypersaline environments, pedogenic chert, and chert 
in volcanic sequences.  
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Chert-like rocks in volcanic sequences have also 
formed as a result of devitrification of silica-rich glass. 
Devitrification is a process where glass, which is 
metastable is converted to crystalline material. Baker 
[3] has reported the devitrification of rhyolitic glass 
into a chert-like rock within a volcanic sequence. Many 
continental volcanic sequences also contain chert 
lenses [4]. Such sequences are typically weathered, and 
chert lenses are intercalated with clay layers [4]. Their 
association suggests that these cherts could not have 
formed by hydrothermal alteration or devitrification, 
but by chemical weathering. A recent study by Tosca et 
al. [5] indicate two stages of clay formation, crystal 
growth and nucleation, which will contribute to the 
basis which will permits, Li, Mg, and Si isotope 
fractionalization in the process of clay precipitation. 
Also chemical weathering of silicates provides 
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important feedback regarding Earth’s climate [6]. 
Nevertheless, large scale uncertainties with reference 
to distinction of silicate weathering flux from total flux, 
as well as sensitivity to tectonic, lithological, and 
climate controls remain and the geomorphological 
environment in which chemical weathering takes place 
[7, 8].  

The mobility of the elements during the process of 
chemical weathering among certain rock forming 
minerals, in the order of increasing the rate of leaching 
from the environment is as following: (1) Ca2+, Mg2+, 
Na+ (easily lost with leaching conditions), (2) K+ 

(easily lost under leaching conditions but the rate may 
be slowed down as a result of fixation in the clay 
mineral illite structure), (3) Fe2+ (rate of loss is reliant 
on the redox potential as well as degree of leaching), (4) 
Si4+ (is slowly lost with regards to leaching conditions) 
(5) Ti4+ (may indicate limited mobility if it released 
from the original parent material in the form of 
Ti(OH)4, immobile in the form of TiO2), (6) Fe3+ 
(under oxidizing conditions it is immobile), (7) Al3+ 
immobile under the pH ranging between 4.5-9.5 [9].  

Formation of chert in continental volcanic sequences 
is poorly understood. Most cherts in this environment 
appear to be a product of chemical weathering. This 
research address the hypothesis that chert in 
continental volcanic sequences could be a product of 
chemical weathering using petrographic analyses and 
MBC (mass balance calculations) using trace element 
zircon. 

To better understand the formation of chert in 
volcanic sequences, a case study of the chert lenses 
from the Reid’s Mistake Formation at Swansea Head of 
the Newcastle Coal Measures, Sydney Basin, Australia 
is undertaken. The Reid’s Mistake Formation has been 
chosen as it was characterized by the presence of tuff 
beds and chert lenses intercalated with paper-thin clay 
layers [4]. The formation is chemically weathered, 
which is indicated by the presence of clay layers. The 
silicified samples from the Reid’s Mistake Formation 
will be examined for evidence of chemical weathering. 

This will be carried out by studying the petrology and 
chemistry of the samples. The petrology of the samples 
will be studied by performing traditional thin-section 
microscopy.  

The chemical analyses of the samples will be 
conducted to study the chemical compositions of the 
samples. These will be carried out through the 
ICP-AES (inductively coupled plasma-atomic 
emission spectroscopic analyses). The chemical data 
will be used to demonstrate if there has been silica 
enrichment in the weathered pyroclastic samples in 
comparison to their parent material by performing 
MBC using trace element zircon.  

2. Study Area  

The Sydney Basin occupies the southernmost region 
of the 2,000 km long Sydney-Gunnedah-Bowen 
foredeep [10, 11]. The Mount Coricudgy Anticline 
separates the Gunnedah Basin in the north from the 
Sydney Basin in the south. Within New South Wales, 
the Sydney Basin occupies the area between the New 
England Fold Belt to the northeast and the Lachlan 
Fold Belt to the west (Fig. 1) [12].  

Structurally, the New England Fold Belt consists of 
a series of accretionary terranes formed along the 
eastern margin of a westward subducting convergent 
plate formed during the Late Cambrian to Permian [11, 
13]. Rocks in the New England Fold (Fig. 2) consist of 
moderately metamorphosed volcaniclastics, basic to 
acidic volcanic rocks, limestone, siltstone, and marine 
bedded chert. The Lachlan Fold Belt consists of arenite, 
argillite, granite, limestone, and chert that range in age 
from the Cambrian to the Carboniferous [10]. 

Newcastle Coal Measures are of Late Permian age 
[14]. Besides other carbonaceous material and coal, the 
sediments in the Newcastle Coal Measures are 
composed of the following rock types: conglomerate, 
sandstone, shale, tuff, shaley sandstone, and sandy 
shale. The conglomerates contain numerous types of 
pebbles, viz. chert, quartzite, quartz, igneous and 
metamorphic rocks, coal and sandstone fragments. The 
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Fig. 1  A generalized map of the Sydney-Gunnedah Basin showing important geographic locations, including the study area, 
Swansea Head. The dotted line, a major structural element separates the Sydney Basin from the Gunnedah Basin (after 
Bembrick et al., 1973). 
 

sandstones are almost entirely lithic in character. The 
matrix is argillaceous, however cementation by silica 
and carbonate is found to occur. The Newcastle Coal 
Measures are characterized by innumerable thin to 
thick bedded tuffaceous rocks. These tuffaceous rocks 
are found to consist of quartz, biotite, plagioclase, 
orthoclase, volcanic rock fragments, and glass in 
varying proportions. The tuff layers are typically 
normal graded from coarse crystal tuff at the bottom 
through vitric tuff to fine ashstone within a thickness of 
only a few centimeters [15]. A rhyolitic to a rhyodacitic 
source is suggested for the tuffs of the Newcastle Coal 
Measures [15]. This coal bearing unit is divided into 

the Lambton, Cardiff, Boolaroo, and Moon Island 
Beach Subgroups [14]. 

The Boolaroo Subgroup of the Newcastle Coal 
Measures is characterized by irregular seams of tuffs 
and coal seams [14]. The samples used in this study are 
from the Reid’s Mistake Formation at Swansea Head, 
which is a part of the Boolaroo Subgroup and occurs in 
between the Lower and the Upper Pilot Coal seams [4]. 
The Lower Pilot Coal seam is approximately two 
meters in thickness and consists primarily of 
carbonaceous shale and silty mudstones with thin 
seams of vitrinite and splint coal. The Upper Pilot Coal 
seam is marked by fine grained chert at the base, which  
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Fig. 2  A generalized geological map of the Sydney Basin (after Herbert, 1980). 
 

is about a meter in thickness and consists of 
interbedded coal and claystone bands [4]. The seams 
are distinctive from other parts of the sequence of the 
Boolaroo Subgroup by the presence of a 7 meter thick 
tuff bed known as the Reid’s Mistake Formation [14].  

The Reid’s Mistake Formation at Swansea Head 
comprises mostly a sequence of highly silicified 
weathered volcanic tuffs with sporadic occurrence of 
chert lenses and nodules [4]. Only at a few places in 
this sequence, paper-thin clay layers less than a 
millimeter in thickness are found to occur intercalated 
with thin chert bands (< 1 mm). Within the formation, 
this sequence is succeeded by about two meters of 
argillaceous and cherty sandstone. Overlying the 
argillaceous cherty sandstone is about 35 centimeters 
of carbonaceous shale, coal stringers, and 55 

centimeters of distinct fine grained chert, which also 
comprises the floor of the Upper Pilot Coal Seam [4]. 

3. Methods 

Thin-section petrography, bulk rock chemical 
analyses, and MBC using trace element zircon were 
conducted.  

3.1 Petrographic Analyses 

The thin-sections were prepared at the Thin-Section 
Laboratory, Department of Geography, Geology, and 
Anthropology, Indiana State University. The samples 
were cut perpendicular to the bedding plane using oil 
lubricated rock saws. Some samples were impregnated 
with epoxy, since they were friable. After cutting, the 
samples were mounted on a 1 millimeter thick glass 
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slide and polished to a thickness of 0.03 millimeter. 
The thin-sections were studied under an Olympus 
BHSP 2 photo-petrographic microscope. The 
photomicrographic system consisted of an Olympus 
PM-10AD exposure control unit, which was used to 
take the photomicrographs. A black and white film, 
with a film speed of 100, was used to take the 
photomicrographs. The photomicrographs were 
processed at the Photographic Laboratory, Indiana 
State University. Seven thin-sections from seven 
samples were studied under a petrographic microscope 
to obtain detailed information regarding the 
mineralogical composition and textural relationships 
between minerals. In the textural study, the focus was 
on the dissolution/replacement of phenocryst minerals, 
glass shards, and precipitation of fine-grained 
microcrystalline-cryptocrystalline quartz. 

3.2 Rock Chemistry 

The whole rock chemical analyses were performed 
in order to obtain the weight percentages of major 
oxides and to determine the loss and gain of elements 
in weathered samples with respect to the original 
composition of the parent.  

Since the entire pyroclastic deposit was weathered, 
the original composition of the parent rock could not be 
obtained. Owing to this limitation, a hypothetical 
reference rock was selected for comparison with the 
weathered pyroclastic samples. The composition of the 
tephra of Reid’s Mistake Formation was suggested to 
range from rhyolite to a rhyodacite [15]. Since the 
parent rocks of the weathered samples were not 
available for comparison, an average of eight 
unweathered samples was selected as the reference 
rock. The reference rock consisted of eight rhyolite 
samples, two of which were from Springbrook and six 
from Binna Burra of Tertiary central volcanic 
complexes in southeast Queensland and northeast New 
South Wales [16]. Though the samples ranged in 
composition from rhyolitic to rhyodacitic, the 
composition of the reference rock selected was 

rhyolitic, in order to demonstrate the minimum 
enrichment in SiO2. The whole rock chemistry of all 
samples was carried out through ICP-AES. The 
samples for analyses were crushed using a diamonite 
mortar and pestle, and passed through a 100 mesh sieve. 
The Diamonite mortar and pestle was used in order to 
avoid any contamination. The samples were shipped to 
Acme Analytical Laboratory in Vancouver, Canada for 
ICP-AES. The error for the entire analysis was correct 
to +/− 2%. The in-house standard (SO15) used by 
Acme Analytical Laboratory consisted of a rock that 
was basic in composition as compared to the specimens 
under consideration. According to the assayers of the 
Acme Analytical Laboratory, the accuracy and 
precision of the analyses was not affected by the 
standard used [17]. 

3.3 Mass Balance Calculations 

Chemical weathering rates are traditionally inferred 
in two ways from the field data gathers. The first 
method involves the catchment mass balance, where 
weathering rates are calculated by subtracting the 
chemical fluxes in atmospheric deposition in 
streamflow. The second method is the mass balance 
approach, where weathering rates are calculated via 
depletion of mobile elements with respect to immobile 
ones [18]. The second method is used in this study. 

Mass balance calculations were performed in order 
to find out the gain or loss of the major oxides and the 
LOI (loss on ignition) relative to a reference rock 
which serves as a hypothetical parent material to the 
samples analyses. The calculations were based on the 
method described by Faure [19]. The losses and gains 
of oxides and LOI rested on the assumption that the 
amount of one major oxide had remained constant 
throughout, although its concentration could have 
changed a little [19]. Following Faure [19], instead of 
Al2O3, Zr was selected to be the element that remained 
constant, which is a standard procedure in 
low-temperature geochemical calculations. The 
amounts of various oxides and Zr remaining in the 
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unbiased (n-1) method. It is important to establish a 
comparison between the average composition from 
which the reference rock was obtained and the average 
of the samples gathered from chemical analyses of the 
samples. Marginally higher SiO2, Fe2O3, MgO, and 
LOI content relative to the reference rock have been 
observed. On the other hand, CaO, Na2O, and K2O 
show lower values compared to the reference rock 
(Tables 2 and 3). 

4.3 Mass Balance Calculations 

Mass balance between the pyroclastic samples and 
the reference rock was calculated in order to establish 

the effects of chemical weathering. Chemical 
weathering, in a weathering profile will result in 
depletion of mobile elements and the enrichment of 
immobile ones. These calculations were performed by 
taking an average of all the oxides and Zr for the 
specimens instead of calculating them individually. 
The basis for doing so was that according to the 
assumption, the amount of Zr must remain constant. 
However, the weight percentage of Zr in the weathered 
specimens ranged from 83.00 to 179.00 parts per 
million (ppm). The average weight percentage of Zr for 
the weathered specimens is 129.44 ppm, which is close 
to that of the reference rock (157.63 ppm). The average 

 
Table 1  The chemical composition of weathered pyroclastic samples.  

Oxides SB27 SB28 SB29 SB31 SB34 SB35 SB36 AVG STD SO15 Ref.
SiO2 73.23 67.95 78.83 74.43 81.56 82.21 76.98 76.46 5.03 48.88 74.63
TiO2 0.14 0.16 0.07 0.08 0.08 0.10 0.40 0.15 0.12 1.74 0.11
Al2O3 13.29 15.85 10.06 10.45 9.03 9.84 11.58 11.44 2.39 12.63 11.90
Fe2O3 1.60 1.47 0.53 2.65 0.29 0.31 0.27 1.02 0.92 7.23 0.75
MnO 0.02 0.01 0.01 0.03 < 0.01 < 0.01 < 0.01 0.01 0.01 1.30 0.02
MgO 0.85 1.00 0.07 0.25 0.07 0.14 0.21 0.37 0.39 7.37 0.06
CaO 0.19 0.22 0.27 0.15 0.20 0.26 0.05 0.19 0.07 5.60 0.46
Na2O 0.73 0.66 4.94 4.58 4.14 3.74 0.64 2.78 2.00 2.46 3.26
K2O 2.43 3.07 1.05 0.63 1.30 1.99 7.46 2.56 2.32 1.85 5.09
P2O5 0.04 0.05 0.03 0.04 0.05 0.01 0.04 0.04 0.01 2.90 0.02
LOI 7.90 8.90 4.50 6.10 3.60 1.70 2.50 5.03 2.71 5.90 2.99
       Total ~ 100.00    
AVG and STD are the average and standard deviation of samples. The sample SO15 is the Acme Analytical Laboratories in-house 
standard. 
 

Table 2  The average composition of the reference rock.  
Oxides Q75 S74 PU11 13 Q71 LP32 LP18 PU35 AVG STD 
SiO2 73.83 73.85 74.52 73.86 74.10 75.64 74.46 76.77 74.63 1.05 
TiO2 0.15 0.36 0.07 0.07 0.06 0.06 0.07 0.07 0.11 0.10 
Al2O3 11.00 11.98 11.66 11.54 12.11 12.45 12.45 12.00 11.90 0.49 
Fe2O3 0.68 0.89 0.69 0.64 0.64 0.41 1.19 0.89 0.75 0.23 
MnO 0.01 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 
MgO 0.07 0.23 0.03 0.01 0.03 0.03 0.05 0.05 0.06 0.07 
CaO 0.56 0.40 0.57 0.54 0.60 0.31 0.29 0.41 0.46 0.12 
Na2O 2.69 3.57 3.55 3.63 2.80 3.28 2.82 3.70 3.26 0.42 
K2O 5.00 4.99 5.18 5.10 5.49 5.04 5.10 4.84 5.09 0.19 
P2O5 0.03 0.06 0.01 0.01 0.00 0.02 0.01 0.02 0.02 0.02 
LOI 5.66 2.18 3.39 3.54 3.68 1.75 2.76 0.92 2.99 1.44 
 Total ~ 100.00   
AVG is the average and STD is the standard deviation of the major oxide composition of the reference rock. Q75 and S74 are 
Springbrook rhyolites and PU11, 13, Q71, LP32, LP18 and PU35 are Binna Burra rhyolites from Tertiary volcanic complexes in 
southeast Queensland and northeast New South Wales (from Ewart and others, 1976). LOI is given as the sum of H2O (+) and H2O 
(−). 
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Table 3  Mass balance calculations using Zr as the immobile trace element.  
Oxides 
& Zr 

AVG-Ref (Oxides % 
mass), (Zr ppm) 

AVG-Ref 
(Norm) 

AVG-Sam (Oxides % 
mass), (Zr ppm) AVG-Sam (Norm) AMT-Rem G/L (gm) G/L (%) 

SiO2 74.63 29.05 76.46 33.36 40.70 11.65 40.11 
TiO2 0.11 0.04 0.15 0.07 0.08 0.04 86.49 
Al2O3 11.90 4.63 11.44 4.99 6.09 1.46 31.47 
Fe2O3 0.75 0.29 1.02 0.45 0.54 0.25 85.99 
MnO 0.02 0.01 0.01 0.00 0.01 0.00 -31.62 
MgO 0.06 0.02 0.37 0.16 0.20 0.17 743.36 
CaO 0.46 0.18 0.19 0.08 0.10 -0.08 -43.51 
Na2O 3.26 1.27 2.78 1.21 1.48 0.21 16.62 
K2O 5.09 1.98 2.56 1.12 1.36 -0.62 -31.22 
P2O5 0.02 0.01 0.04 0.02 0.02 0.01 173.52 
LOI 2.99 1.16 5.03 2.19 2.68 1.51 130.07 
Zr 157.63 61.35 129.14 56.35 68.74 7.39 12.04 
Total 256.92 100.00 229.19 100.00 
 

composition of the pyroclastic samples was also 
selected owing to the absence of the parent material as 
discussed earlier. The amount of oxide remaining was 
calculated by multiplying the percentage of each oxide 
by the weight loss factor (w) using the equation. A 
summary of these calculations is provided in Table 3 
[26]. 

w = (Zr)reference rock ÷ (Zr)weathered rock samples 

w = 157.63/129.14 = 1.22 

5. Discussion and Conclusion 

In order to establish the chemical maturity of these 
rocks, it is essential that the chemical compositions of 
the parent rocks are known. This study attempts to 
reconstruct the original composition of the parent 
material by using Zr as immobile trace element from 
the weathered pyroclastic deposits. The compositions 
of the parent material are then used to compare with the 
composition of the weathered pyroclastic samples. 
Based on the immobile trace elemental composition Zr, 
the compositions of the original pyroclastic rocks are 
obtained.  

On the basis of the data gathered, the following 
conclusions are made: 

The widespread occurrence of secondary minerals 
like microcrystalline-cryptocrystalline quartz along 
with clay minerals suggests that chemical weathering 
was responsible for the formation of silicified 

chert-like rocks in the Reid’s Mistake Formation. 
Textural evidence, such as the dissolution of primary 

minerals like volcanic quartz, feldspars, and glass 
shards also indicates chemical weathering. 

Chemical weathering is also indicated by the 
presence of clay minerals such as kaolinite and illite, 
which are common products of weathering, as 
evidenced from thin-section petrography. 

Using Zr as the immobile trace element indicates the 
enrichment of silica via the process of chemical 
weathering in a volcanic setting. 

For future studies, supplementing petrography with 
scanning electron microscopic studies could be 
implemented. This would be especially helpful in 
confirming the presence of clay minerals and in 
detecting the textural relationships of the primary and 
secondary minerals in greater detail and clarity. 
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