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Abstract: The air-void size distribution and number of air voids are crucial characteristics of air-entrainment. The standard spacing 
factor L is based on the Powers model, in which considerable simplifications are assumed. A better solution is provided by the Philleo 
factor, which determines the percentage content of protected paste located at a distance S from the edge of the nearest air void. 
Developing the concept put forward by Philleo, a method of determining the volume of protected paste on the basis of images generated 
from the numerical model of concrete grain structure including layout of aggregate-paste-air, is proposed. It is the ratio of the volume of 
the paste protected by air voids to the total paste volume. The PPV (protected paste volume) index accounts not only for sizes and 
number of air voids, but also for the role of aggregate particles in the placement of these pores, which is often disregarded in analyses. 
The PPV results obtained from image analysis were compared with standard spacing factor L and with the parameter developed by 
Philleo. The analyses conducted by the authors shows that accounting for aggregate grains in calculations substantially affects the 
assessment of the quality of the air-pore structure.  
 
Key words: Distribution of air pore sizes, distribution of aggregate grain sizes, protected paste area, numerical model of the porosity of 
the concrete.  
 

1. Introduction 

Air-entrainment, a basic method of protecting 

concrete against the destructive action of frost, water 

and de-icing salts, has been known for over 70 years. 

According to requirements laid down in PN-EN 206-1 

standard [1], at least 4% of air should be introduced to 

the concrete mix, but it does not specify any guidelines 

regarding what the structure of the air voids should be. 

Unfortunately, not only the volume of air-entrained, 

but also the parameters of the pore structure, such as 

the spacing factor L, the content of micropores A300, the 

total air content A and the specific surface of air-void 

system α, decide about obtaining frost resistance. The 

first document in Poland, which specifies the 

requirements for these parameters, is “Technical 

Requirements for Concrete Pavements” [2]. According 

to this document, the frost-resistant concrete has a 

spacing factor L smaller than 200 μm and the content of 
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micropores greater than 1.5%. Air-entrainment 

technology involves introducing a surfactant into the 

concrete mix. When the components are mixed, the 

air-entraining agent makes it possible to form and 

evenly disperse small air bubbles in the concrete. The 

system of small air voids protects concrete from 

damage caused by an increase in the volume of 

freezing water. Appropriate spacing of air voids in 

hardened cement paste significantly reduces the 

distance to be travelled by water that is not frozen yet, 

from a random point inside the hardened cement paste 

to the nearest air void [3]. To ensure freeze-thaw 

resistance, it is essential to provide a time-stable 

system of small air bubbles, which are located close 

enough to one another, at the lowest possible total air 

content. In modern concrete technology, simultaneous 

usage of cement, additives and admixtures often cause 

problems related to obtaining the time-stable pore 

system. The effects of air-entrainment may differ due 

to the action of many factors, including the mix 

consistency and temperature, mixing time, transport 
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The pore diameters are generated in accordance with 

the assumed distribution of pore sizes (Fig. 6). Next, 

surrounds, 0.200 mm in thickness, are produced around 

air bubbles (Fig. 5d, white). Then, air and aggregate in 

accordance with Fig. 5c are subtracted from Fig. 5d 

leaving, in Fig. 5e, the area of protected paste (white) 

and the paste area, which remains unprotected (dark 

grey).  

The final outcome, namely Fig. 5f, makes it possible 

to compute the percentage ratio PPV of the protected 

paste area (white) to the total paste area (white + light 

grey). The generated image of concrete structure also 

makes it possible to determine the standard parameters 

of air-pore structure [7] and the parameter in 

accordance with Philleo method. The randomness in 

generating the sizes of air bubbles and aggregate 

particles, and also their random distribution in the paste 

results in the fact that the data entered into the program 

do not differ much from the output data.  
 

 
Fig. 6  Types of air-void distributions used in the 
investigations [20].  
 

 
Fig. 7  Aggregate grading curve together with boundary 
curves used in investigations. 

For our model, it was necessary to determine the size 

distribution of air bubbles. Investigations into the pore 

structure in air-entrained concretes have been 

conducted, for many years, at the Optical Microscopy 

Laboratory of the Construction Technology and 

Organization Department at the Kielce University of 

Technology. The analysis of the determination of the 

parameters of air voids distribution was performed 

using the Table Curve 2D software1 . Air-entrained 

concretes having diversified parameters of porosity 

structure were investigated. On the basis of analysis of 

the results of investigations on a few series of concretes, 

it was found that log-normal distribution is the most 

suitable tool to describe chord size distribution in the 

concrete. The analysis confirms that the larger is the 

number of measured chords, the better is the 

distribution fit and more precise is the estimation of 

porosity characteristics. In such cases, using 

log-normal distribution in computations produces 

similar results. For concretes having low air content or 

large pores, a considerable difference is found between 

results of computations on the raw data and those 

obtained from the distribution, which produces 

incongruent results. In such case, it would be advisable 

to increase a number of tested samples [20]. 

3. Results Obtained from Numerical Model 
and Their Analysis  

The article presents a comparative analysis of 

air-void structure parameters obtained from the images 

generated from the numerical model of concrete grain 

structure including aggregate-paste-air system. These 

characteristics were obtained by using three methods: 

the standard one, Philleo’s and the authors’, for three 

concrete models with different variants of the air 

entrainment structure (Fig. 6). All variants have the 

same aggregate grading curve presented in Fig. 7 and 

the content of air about 2%, 4%, 6% and 8%.  

The test results obtained from a single-image are 

presented in Table 1.  

                                                           
1Table Curve 2D, SYSTAT. 
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Table 1  Comparison of results obtained from the numerical model. 

Parameter 

Concrete model 
With Distribution 1 With Distribution 2 With Distribution 3 

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 

Input 
data 

Cement paste (%) 29.08 27.84 26.98 25.78 29.08 27.83 26.98 25.78 29.02 27.79 26.95 25.73

Air (%) 2.01 4.01 6.01 8.01 2.01 4.02 6.01 8.01 2.05 4.06 6.04 8.05 

Aggregate (%) 68.91 68.15 67.01 66.21 68.91 68.15 67.01 66.21 68.93 68.15 67.01 66.22

Output 
data 

Standard 
parameters 

N 363 529 602 677 179 328 467 620 143 280 391 529 

A (%) 1.78 3.00 3.66 4.59 1.72 3.74 5.27 6.99 2.15 4.08 5.52 7.27 

A300 (%) 0.99 1.72 2.21 2.53 0.58 1.16 1.40 2.06 0.25 0.44 0.53 0.74 

α (mm-1) 35.86 30.97 28.88 25.90 18.25 15.40 15.55 15.55 11.67 12.05 12.42 12.77

L (mm) 0.220 0.198 0.191 0.189 0.438 0.361 0.301 0.237 0.621 0.443 0.369 0.277

PPV (%) 77.40 94.36 98.42 99.50 22.94 41.70 56.53 68.15 17.74 33.24 46.55 57.75

S (%) 97.5 99 100 100 80 96 100 100 92 98 100 100 
 

 
Fig. 8  The relationship between the standard spacing 
factor L and the content of micropores A300. 
 

 
Fig. 9  The relationship between the standard spacing 
factor L and the total air content A.  
 

Air content introduced into the program differs from 

that calculated on the basis of the standard. Along with 

a decrease in the air content, it is easier to collocate it in 

the paste, and then during a linear analysis, more of air 

voids intersect with the measurement line. Increased 

amount of voids causes their clustering in the paste and 

then a lot of them are located between the measurement 

lines. Differences between the input and output A are 

the largest for the highest content of air. 

These data show that not the total air content but 

especially its structure has a huge impact on 

determined parameters. Generally, it is believed that 

the basic parameter that relates the quality of 

air-entrained concrete to its freeze-thaw resistance is 

spacing factor L. Concretes with L smaller than   

0.200 mm are considered to be frost resistant. As it is 

apparent from Fig. 8, the increase of A300 micropores 

(smaller than 300 μm) causes that the spacing factor L 

is reduced. Using the distribution of air voids with a 

larger percentage share of small pores (1st type of 

air-void distributions from Fig. 6), it is easy to achieve 

the standard spacing factor L at 0.200 mm.  

Along with the decline in the share of the smallest 

voids in the total air content (2nd and 3rd types of 

air-void distributions from Fig. 6, respectively), the 

task becomes more difficult. The total air content must 

be increased to achieve the standard spacing factor  

(Fig. 9). 

It is concluded that the distribution of air voids have 

a crucial impact on the pore structure parameters 

determined with all the three methods. With the 

increase of the air content, the problems with its 

location in paste increase. The deployment of voids is 

also affected by the presence of aggregate that is shown 
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in Fig. 10. In the cement paste (dark grey), there are 

regions of greater or lesser concentration of the 

aggregate (black). Where there are a lot of aggregate 

particles, it is difficult to put in air voids (light grey). 

Additionally, the increase in the air content causes the 

air bubbles group together in the cement paste. From 

this point of view, the model reflects well enough the 

actual structure of air-entrained concrete. Examination 

of the aggregate-paste-air system gives better quality 

compared to other methods, where only the paste-air 

system is taken into account.  

Essential differences are observed by comparing the 

relationship between the PPV and L (Fig. 11), and 

between the PPV and S* (Fig. 12).  

The worse the air-pore structure (smaller proportion 

of fine pores), the greater the difference between PPV 

and S* is. The difference between L, PPV and S* is the 

smallest for the variant of the concrete model with the 

best distribution of air voids (1st type of air-void 

distributions from Fig. 6). Even with the smallest air 

content, the standard spacing factor L is 0.220 mm, the 

percentage of protected paste by Philleo’s method (S*) 

is 97.5%, while PPV is the smallest (77.40%). The 

biggest difference between PPV, L and S* is for the 

variant of the model with the distribution of air voids 

with the smallest percentage share of micropores (2nd 

and 3rd types of air-void distributions from Fig. 6, 

respectively). With the smallest content of air, the 

difference is the greatest, because the standard spacing 

factor is 0.621 mm, S* equals 92%, and the PPV 

indicates that only less than 18% of the paste is 

protected by the air voids. For variants of models with 

the lowest content of the air, the obtained results for 

PPV, S*, and L are the most divergent. With the 

increase of A300, micropores content and the total air 

content, the convergence increases. In each case, the 

ratio PPV is lower than S*, and at the standard spacing 

factor L, which is considered critical for obtaining frost 

resistance (L ≤ 0.200 mm), does not reach 100% at all. 

This means that not all the cement paste volume is 

protected by air voids. 

The discrepancies in the results for the analyzed 

three methods indicate that the approach based on the 

impact of aggregate and pore distribution is more 

accurate in comparison with other approaches. We 

believe that a better description of the pore structure 

parameters will allow more precise linking them to the 

frost resistance of concrete.  
 

 
Fig. 10  The complicated structure of the air voids generated from the numerical model.   
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Fig. 11  The relationship between PPV ratio and the 
standard spacing factor L.  
 

 
Fig. 12  The relationship between PPV ratio and the Philleo 
factor S*.  

4. Conclusions 

The standard approach, based on the Powers model, 

raises a number of doubts and concerns with respect to 

both methods of determining the pore structure 

parameters, and also of the congruence of thus obtained 

results with freeze-thaw resistance measurements.  

In this paper, a method of determining the volume of 

protected paste on the basis of images generated from 

the numerical model of concrete grain structure 

including aggregate-paste-air system is proposed. It is a 

development of the concept put forward by Philleo. 

The model enables us to generate images that 

differentiate four basic concrete phases. The data 

entered into the program include the percentage 

content of aggregate, air and paste, the aggregate 

grading curve, air pore diameter distribution and the 

thickness of the surrounding S. The model is simple, 

but its development and improvement, taking into 

account more complex shapes of the aggregate, will 

have a more accurate reflection of the actual structure 

of the concrete. 

The investigations presented in the study show that 

taking into account the aggregate-paste-air system 

produces results that are substantially different from 

those obtained for the paste-air system. On the basis of 

presented analyses, it can be concluded that, generally, 

the value of PPV index clearly deviates from the values 

of the parameter proposed by Philleo. We believe that 

the 2D analysis of the porosity structure in 

air-entrained concretes proposed in the study will make 

it possible to describe more accurately the 

dependencies holding in the system and to obtain a 

better correlation between the parameters and 

freeze-thaw resistance results. These issues are to be 

verified in the future. 

Application of this methodology to assess the quality 

of the actual structure of the concrete requires solving 

problems related to the differentiation of individual 

phases in real section samples by coloring and 

contrasting them, so that it will be possible to 

determine the PPV index in real concrete section. For 

this purpose, the study will be continued. 
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