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Abstract: The interaction of the oblique stationary shock with the preceding Prandtl-Meyer expansion or compression wave is studied 

theoretically and numerically. Two analytical models are proposed for the flow description, which, though being approximate, gives us 

the solution of the problem with very high accuracy level. Owing to proposed analytical models, distinctive features of the flow in the 

interaction region, curvilinear shock inflection, the reflected expansion/compression wave type change, the degeneration of the resulted 

waves (for example, of the oblique shock into weak discontinuity), occurrence of the subsonic pockets downstream the interacting 

shock, are discovered and characterized analytically. 
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Nomenclature 

iJ   The strength of the i-th stationary shock of 

Prandtl-Meyer wave (i.e., the relation of the static pressures 

downstream and upstream it) 

ij   i-th stationary shock 

K   Geometrical curvature of the shock 

M   Mach number 

iN   i-th “basic non-uniformity of the flow” 

n   Natural coordinate (the direction normal to the 

streamline) 

p   Static pressure 

0p   Full (stagnation) pressure 

ir   i-th Prandtl-Meyer compression or expansion wave 

s   Natural coordinate (streamline direction) 

x , y  Horizontal and vertical directions 

   Mach angle 

i   Flow deflection angle on the i-th shock or 

Prandtl-Meyer wave 

   The ratio of gas specific heats 

   Flow symmetry factor 

   The function of specific heats ratio, 
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   Pressure function of the isentropic flow 

   Shock inclination angle (relative to streamlines 

upstream) 

   Flow angle relating to chosen horizontal direction 

i   i-th weak tangential (contact) discontinuity (the 

slipstream) 

   Prandtl-Meyer wave direction index 

   Slope angle of the straight characteristic line 

   Shock inclination angle (relative to chosen 

horizontal direction) 

   Wave type index ( 1  for the compression wave 

and 1  for the expansion one) 

   Prandtl-Meyer function 

iM , ip , etc. Flow parameters downstream the i-th shock or 

Prandtl-Meyer wave 

M


, iN


 Flow parameters downstream the curvilinear 

interacting shock 

1. Introduction 

The problems of interactions between 

Prandtl-Meyer waves and oblique stationary shocks 

can be treated as classical in the theory of 

discontinuities interactions in gas dynamics. Owing to 

the numerical methods, these problems can be solved 
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in each separate case. But, in spite of the long history of 
studies [1], full theoretical analysis of the solution has 
not been executed yet. A lack of exact analytical 
relations as well as the complexity of the flow (the 
interaction is not localized at a single point and even in 
any finite region) is the main obstacles in the way of 
theoretical study. 

With the problem to be solved now, an initially 
uniform gas stream with Mach number 0M  (Fig. 1) 
turns along the plane wall, and simple (non-centered, 
Figs. 1a and 1c) or centered (with the only common 
point of all straight acoustic characteristics, Figs. 1b 
and 1d) Prandtl-Meyer wave 1r  originates.  

The oblique stationary shock 2j  of the same 
direction is situated downstream the isentropic wave. 
The supersonic gas flow in the region 1 between the 
wave 1r  and the shock 2j  can be characterized by its 
Mach number, 1M  and flow angle, 1θ . Here, we admit 
that the flow angle 01 =θ  (i.e., the flow direction is 
horizontal in the chosen coordinate system). The 
distance between the point O  of the intersection of the 
last Prandtl-Meyer straight characteristic OB  with the 
streamlined surface (in particular, O  is the center of the 
rarefaction wave in Fig. 1b), and the corner point A  of 

shock generation, is the length scale 1=OA .  
Initially, the straight shock 2j  becomes curvilinear 

at its intersection with the last characteristic OB  of 
the wave 1r . The reflected weak discontinuity 1BB  
comes out at the point B , if the flow behind the shock 

2j  is supersonic. This discontinuity is a border 
between the uniform flow region 2 behind the shock, 
and the reflected perturbations in the region 3r .  

Due to contiguity theorem, the region 3r  is either a 
rarefaction or compression Prandtl-Meyer wave. 

Weak tangential (contact) discontinuity 1τ  (“weak” 
means the discontinuity of not flow parameters, but of 
their first spatial derivatives) originates from point B  
downstream the shock. The discontinuity 1τ  is the 
lower border of the substantially non-isentropic flow 
region 5 which can also be named the vortex layer, or 
the slipstream of finite width. Another weak tangential 
discontinuity 2τ  which originates from the point C  
of intersection between the shock and the first straight 
characteristic of the wave 1r  is the upper border of the 
vortex region 5. The weak discontinuity 1CC  also 
goes out from the point C  and encloses the reflected 
wave 3r  if the flow downstream the shock is really 
supersonic at the point C . 

 

 

Fig. 1  Interaction of the Prandtl-Meyer wave with the proceeding oblique shock: (a) the asymptotic degeneration of the shock 
inside the expansion fan; (b) the shock interaction with the centered wave; (c) the shock strengthening under the compression 
wave 1r  influence; (d) the case of the subsonic flow downstream the shock j2. 
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If the Prandtl-Meyer expansion wave is too strong, then 
the curvilinear shock degenerates into one more weak 
discontinuity inside the expansion fan (Fig. 1a). The 
discontinuity 2τ  does not exist there, and non-interacted 
part 4r  of the wave 1r  serves instead of the shock 4j  
which comes through the expansion fan otherwise. 

The oblique shock 4j  (Figs. 1b-1d) or the 
expansion wave 4r  (Fig. 1a) of the same direction as 
the wave 1r  and the shock 2j  (direction index 1=χ ) 
as well as the reflected isentropic wave 3r  of the 
opposite direction ( 1−=χ ) result due to the 
interaction considered. If the flow downstream the 
shock is subsonic, then the Prandtl-Meyer wave 3r  
does not exist, and the results of interaction sufficiently 
depend upon the perturbation induced downstream. We 
do not consider the latter type of interaction, except of 
several complementary remarks. 

We should emphasize that the wave 3r  is also partly 
a result of the refraction of the perturbations reflected 
from the shock in the region 2BCC  on the vortex flow 
layer. At this refraction, the perturbations reflected 
from the non-isentropic layer 5 are generated in their 
turn. These reflected perturbations distribute along the 
characteristics of the first family, overtake the shock 
situated upstream them, influence its features and 
shape, and make it curvilinear even after point C. That 
is why the shock 4j  can not be formally called straight, 
and the flow behind it (in the region 4) is not exactly 
uniform and isentropic. 

The main goals of the present study are to define and 
analyze the shape and the other features of the 
interacting shock, to find out the type of the resulted 
perturbations and their transition criteria, as well as 
some special features of the considered interaction, and 
the influence of the ratio of gas specific heats on the 
problem solution. 

2. Materials and Methods 

2.1 Non-uniformities of the Two-Dimensional Gas Flow 

To characterize not only flow parameters, but also 

their spatial derivatives at the non-uniform stream of a 
perfect inviscid gas, we introduce so-called in Ref. [2] 
“basic non-uniformities” given from two-dimensional 
flow equations in natural coordinates: 

0sin1
42

2

=+
∂
∂

+
− θθ

γ
N

nM
M , 

npNM ∂∂−= ln2
2γ , 

00 =∂∂ sp . 

Here, spN ∂∂= ln1  expresses the flow 
non-isobaricity, sN ∂∂= θ2  is the geometric 
curvature of streamlines, the quantity npN ∂∂= 03 ln  
characterizes the flow vorticity (i.e., its non-isentropic 
features), and yN δ=4  expresses the type of flow 
symmetry ( 04 ≡N  for the plane flow considered here). 
Also, here s  and n  are natural coordinates counted 
along and normally the sreamlines, correspondingly; 
M  is the local Mach number; p  is the static pressure; 

0p  is the full (stagnation) pressure of the flow; y  is 
the distance to the axis of symmetry in axis-symmetric 
flow; 0=δ  and 1=δ  for the plane flow and for the 
axis-symmetric one, correspondingly; γ  is the ratio of 
specific heats ( 4.1=γ  everywhere if not specifically 
mentioned otherwise). 

The geometrical curvature σK  of the shock 
conventionally remarked here as the additional 
non-uniformity ( σKN ≡5 ). We admit that the 
curvature 0>σK  for the shocks convex downwards 
(for instance, the shocks BE  in Fig. 1b, and BC  in 
Fig. 1c), and 0>σK  for shocks convex upwards (e.g., 
the shock EC  in Fig. 1b, and the shock after the point 
E  in Fig. 1a). 

2.2 Prandtl-Meyer Flow Non-uniformities and the 
Envelope Line of Its Straight Characteristics 

The variation of gas stream parameters at 
Prandtl-Meyer wave can be described by using the 
isentropic flow functions. So the wave intensity, i.e., 
the relation 1J  of the static pressures behind the wave 
and after this one: 

( ) ( )011 MMJ ππ=                 (1) 
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where, ( ) ( )( ) ( )1215.01 −−
−+=

γγ
γπ MM  is the 

isentropic pressure function. The Prandtl-Meyer wave 
deflection angle is: 

( ) ( )( )MM ωωχβ −= 01             (2) 

Here, 1=χ  is the wave direction index, and: 
( ) ( ) 1arctan1arctan1 22 −−−= MMM εεω  (3) 

is the Prandtl-Meyer function, such as: 

( ) ( )
( )( )11

11
2

2

−+
−−

=
MM
M

dM
Md

ε
εω          (4) 

( ) ( )11 +−= γγε  
Analogously, the strength of the reflected wave 3r  

and flow deflection angle are: 
( ) ( )23233 MMppJ ππ==           (5) 

( ) ( )( )233 MM ωωχβ −=              (6) 

where, 1−=χ ; 2p , 2M , 3p  and 3M  are pressures 
and Mach numbers of the flow in regions 2 and 3 (Fig. 
1b), consequently. 

Later we have to deal with not only the whole waves 

1r  and 3r  but with their parts the shock wave has just 
interacted. Such is the sector of the wave 1r  bounded 
by the characteristics OB  and EE1  in Fig. 1b. The 
flow deflection angle ( )ϕβ1  and the strength ( )ϕ

1J  of 
this part of the wave are expressed by the formulas: 

( ) ( ) ( )( )11 MM ωωχβ ϕ −=              (7) 
( ) ( ) ( )01 MMJ ππϕ =                (8) 

Here, ( )ϕMM ≡  is the Mach number at the 
characteristic EE1  determined by the angle ϕ  of its 
inclination: 

( ) ( ) ( )[ ]MMM αωωχθϕ +−+= 00        (9) 

where, ( ) ( )MM 1arcsin=α  is the Mach angle. In a 
similar manner, the strength of the corresponding 
sector of the reflected wave 3r  after the interaction 
between the shock and the above-mentioned sector of 
the wave 1r  is determined as: 

( ) ( )( ) ( )233 MMJ ππ ϕϕ =             (10) 

The flow deflection angle is 
( ) ( )( ) ( )( )233 MM ωωχβ ϕϕ −=           (11) 

where， 1−=χ , and ( )ϕ
3M  is Mach number at the last 

characteristic of the corresponding reflected wave sector. 
We also designate Mach number of the flow just after 
the voluntary point of the interacting shock as 

( )ϕMM
)) ˆ≡ , the flow deflection angle at the interaction 

shock as β , and the shock strength (relation of static 
pressures downstream the shock and upstream it) as J . 

The Mach lines of the Prandtl-Meyer wave 1r  have 
a discriminant curve. This discriminant curve can be a 
smooth envelope (curve OO ′0  in Figs. 1a and 2a) for 
a simple (non-centered) wave 1r . When the part of the 
straight Mach lines intersects at the single point, the 
discriminant curve has a sharp bend (Fig. 2b); when all 
Mach lines have the common point, the Prandtl-Meyer 
wave becomes centered, and the discriminant curve 
degenerates into the sole point—the center of either the 
rarefaction wave (the point 10 EOO ≡≡  in Fig. 1b) or 
the compression one. If one part of the Prandtl-Meyer 
wave realizes the flow rarefaction, and the another part 
realizes the flow deflection, the envelope line consists 
of two separate sections (Fig. 2c). 
 

 
Fig. 2  Discriminant curves of Prandtl-Meyer waves: (a) the 
smooth envelope of the expansion wave; (b) the expansion 
wave with a centered sector; (c) the transition of the 
expansion wave into the compression one and the 
corresponding discontinuity of the envelope curve. 

(a) (b) 

(c)
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The shape of the envelope of the straight Mach lines 
family is defined by any given streamline of this wave 
unambiguously. Let the only streamline equation 

( )00 xy  (for example, the section AB  of the 
impermeable surface in Fig. 2a) to be given, as well as 
the initial Mach number 0M  and flow angle 0θ . An 
equation of one-parameter family of the straight 
characteristics looks like: 

( ) ( ) ( )0000 tan xxxxyy −⋅+= ϕ          (12) 

where, 0x  is the parameter. 
The inclination angle ϕ  of any straight Mach line 

and Mach number M  on this one are defined by 
( )00 xy ′  through Eq. (9) and the following: 

( ) ( )( )[ ]MMy ωωχθ −+=′
000 tan         (13) 

The equation ( )ΓΓ xy  for the envelope of the 
straight family of Mach lines is derived from Eqs. (3), 
(4), (9), (12) and (13) at the condition 00 =∂∂ xy  
[3]: 

( )( ) ϕεχ cos11

2
3

2

NM
Mxx −−

=−Γ  

( )( ) ϕεχ sin11

2
3

2

NM
Myy −−

=−Γ  

( )( )
3

2

2 11
MN

Mr −−
=

ε  

Here, 10CCr =  is the distance from the voluntary 
point 1C  at a straight characteristic to the 
corresponding point 0C  at the envelope line. In 
particular, at 0xx ≡ , 0yy ≡ , 2N  is the curvature of 
the given streamline, and the envelope ( )ΓΓ xy  can be 
easily built. 

The two first basic non-uniformities of the 
Prandtl-Meyer flow are inversely proportional to the 
distance r  to the envelope along the characteristic line: 

( )
rM

MN 11 2

1
−+

=
εψ            (14) 

( )( )
3

2

2
11

rM
MN −−

=
εχψ            (15) 

(here 1=ψ  for the compression wave, and 1−=ψ  
for the expansion one).  

The spatial derivative of any variable flow parameter 

f  given in the voluntary direction qρ  inside 
Prandtl-Meyer wave depends on the angle between qρ  
and gradient vector grad f which is normal to the 
straight characteristics: 

fqqf grad⋅=∂∂
ρ

              (16) 

The Eqs. (9), (13) and (16), and the well-known 
functions of the isentropic flow allow us to calculate all 
flow parameters derivatives along the direction of the 
oblique shock coming through Prandtl-Meyer fan of 
characteristics situated upstream. 

2.3 Dynamic Compatibility Conditions at Stationary 
Shocks 

Among the numerous variables for shock description, 
we choose the shock strength J  (i.e., the relation of 
the static pressures downstream and upstream the 
shock) as the main parameter. We denote below that J  
is the strength of the shock inside the Prandtl-Meyer 
fan, 122 ppJ =  is the strength of the shock 2j , and 

4J  is the strength of the resulting shock 4j . Here, 1p  
is the pressure in zone 1, and 2p  is the pressure in 
zone 2 of the flow (Fig. 1). 

The shock strength here is the main quantity binding 
flow parameters before and behind the shock. For 
example, Mach numbers 2M  (downstream the shock 

2j ) and 1M  (upstream the shock) relate between 
themselves as it follows: 

( ) ( )( )
( )22

2
2

2
12

2 1
11

JJ
JMJ

M
ε

εε
+

−−−+
=       (17) 

The flow deflection angle 2β  also depends upon 
the shock strength: 

( ) ( )( )
( ) ( )( )⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−+
−−

+
−

=
11

11arctan
21

2

2

21
2 JMJ

J
J

JMJ

m

m

εε
ε

ε
β (18) 

Here, ( ) ( ) εε −+= 21 MMJ m  is the strength of the 
normal shock in the flow with Mach number M . The 
relations analogous to Eqs. (17) and (18) are correct for 
the shock 4j : 

( ) ( )( )
( )44

2
4

2
04

4 1
11

JJ
JMJ

M
ε

εε
+

−−−+
=      (19) 
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( )( )
( )( )⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−+
−−

+
−

=
11

11arctan
40

4

4

40
4 JJ

J
J

JJ

m

m

εε
ε

ε
β    (20) 

(here, ( )00 MJJ mm ≡ ) and also for any point at the 
interacting part BC of the shock considered: 

( ) ( )( )
( )JJ

JMJM
ε

εε
+

−−−+
=

1
11 22)

        (21) 

( ) ( )( )
( ) ( )( )⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−+
−−

+
−

=
111

11arctan 2 JM
J

J
JMJm

εε
ε

ε
β (22) 

The angle σ  of shock inclination relative to the 
flow velocity vector upstream the given point is also 
bound with shock strength ( J ) and local Mach number 
upstream ( M ): 

( ) εσε −+= 22 sin1 MJ           (23) 

In the coordinate system admitted here, Eq. (23) 
determines the dependence of shock slope angle ξ  
(Fig. 1) on the shock strength: 

( )ϕβσξ 1+=                   (24) 

that is an equivalent to the quantity ( )σσ xy ′  where 
( )σσ xy  is the shock shape looked for. 

Except of ( )MJ m , we must emphasize here the 
following special shock strengths: the strength of the 
shock declining the flow to a maximum angle possible 
at a given Mach number: 

( ) ( )( ) 2121
2

2
2

2 2
222

+−++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

−
= MMMMJl ε  

and the strength of the shock reducing the flow velocity 
downstream it to the critical speed: 

( ) ( ) 11
2

1
2

1 2
222

* +−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

−
= MMMMJ ε  

Dependencies ( )MJ * , ( )MJ l  and ( )MJ m  are 
given in Fig. 3 (curves 1, 2 and 3, consequently). At all 
Mach numbers 1>M , the inequality 

( ) ( ) ( )MJMJMJ ml <<< *1  is correct. 
Eqs. (17)-(22) and a lot of similar others express 

zero-order dynamic compatibility conditions (i.e., they 
bind flow parameters, not their spatial derivatives). To 
connect the spatial derivatives of the flow parameters 
downstream and upstream the shock, we should use 
first-order (differential) dynamic compatibility conditions. 

 
(a) 

 
(b) 

Fig. 3  The parametric solution of the interaction problem 
considered: (a) general solution; (b) the region of small 
Mach numbers. 
 

Several forms of that unambiguous conditions have 
been published already (e.g., in Refs. [4, 5]; the 
universal form for strong discontinuities in the solution 
of two-variables quasi-linear system is given in Ref. 
[6]). 

To express the correlation between the basic 
non-uniformities downstream ( jN

) , 3...1=j ) and 
upstream ( iN , 5...1=i ) the shock with the strength 
J  occurred in the flow with Mach number M , we use 
the differential dynamic compatibility conditions in the 
following form [2]: 

∑
=

=
5

1i
ijijj NACN

)
               (25) 

where, jC  and jiA  are factors depending on M , J , 
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shock direction χ  ( 1=χ  everywhere at the present 
study), and the flow angle θ  (only at axis-symmetric 
flow). The factors we are interested in look as: 

( )( )11 −= JbC γ , 

( ) ( )( )11 3
2 −−= JbJС ε , 

( )
( ) ( )[ ]pmpmp

m

cJJbJJa
J
JA +−−−

+
+

−= 2
311

1
ε
ε

γ
, 

( ) ( )[ ]θθθ εε
ε

χ cJbJasA ++++
+

−= 2
12 1

, 

( )( )ωωωεχ cJbJaA −−−−= 2
15 1 , 

( )[ ]γχ
2

2
121 1 fcJf

J
sA m −+= , 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+

−
+

−= 2122 1
fJJf

J
J
cA m

m

ε
ε

, 

( ) ( )( ) ( )( )[ ]{ }112112
25

−+−++−++⋅
⋅=

JJJJJJm
JaA

m εεε
 

where: 
( )( )[ ] 21ε+−= JJJa m , 

( )22 1 Jab ε++= , 

( ) ( )[ ] 21εε ++= mJJc ,  

( ) ( )[ ] 21ε+−= mm JJJs ,  

( )( )εε −−−= 431 mp Ja , 

( ) ( ) ( )222 36431223 εεεεε −+−+−−−= mmp JJb , 

( )( )( )εε ++−= mmmp JJJc 11 , 

( ) ( )[ ]εεε +−+−=Θ 141 mJa ,  

( ) ( )( ) ( )( )2123112 εεεε −−+−+=Θ mJb , 

( ) ( )( )εεε +−+=Θ mJc 11 2 , 

ε+= 3wa , 

ε323 −−= mw Jb , 

( ) 141 ++= mw Jc ε ; 

( ) ( ) ( )( )JJJmJmJf m −++++= 2
1 12 εεμ , 

( )( ) ( )( )( )JJJJJmf mm −−−++−= 2
2 112 εεεγ , 

( ) ( ) ( )[ ]JJbJm εεε ++−+= 111 , 

( ) ( )( )[ ] 111 −+++−= εεεμ mm JJ . 

To define the flow non-uniformities downstream 

the shock, as seen from Eq. (25), it is enough to know 
the geometrical curvature of the shock ( σKN ≡5 ). 

2.4 Interaction of the Oblique Shock with Preceding 
Overtaking Weak Discontinuities 

The last ( OB ) and the first ( CO0 , Figs. 1b-1d) 
straight characteristics of the wave 1r  are the weak 
discontinuities, i.e., the discontinuities of the basic 
non-uniformities 1N  and 2N . Since these 
non-uniformities are equal to zero in zone 0 and 
correspond to Eqs. (14) and (15) inside Prandtl-Mayer 
wave, we can determine the discontinuities [ ]1N  and 
[ ]2N  at the characteristic line CO0 : 

[ ] ( )
rM

MN 11 2

1
−+

=
εψ            (26) 

[ ] ( )( )
3

2

2
11

rM
MN −−

=
εψ            (27) 

On the contrary, the flow is non-uniform (also 
corresponds to Eqs. (14) and (15)) before the Mach line 
OB  and uniform behind it. So the discontinuities of 
the basic non-uniformities at the last characteristic of 
the Prandtl-Meyer wave are: 

[ ] ( )
rM

MN 11 2

1
−+

−=
εψ           (28) 

[ ] ( )( )
3

2

2
11

rM
MN −−

−=
εψ            (29) 

The distance r  for centered or non-centered wave, 
as it was shown in Subsection 2.2, can be easily 
determined owing to the given equation of the 
streamlined surface. 

It is worthy of notice from Eqs. (26)-(29) that the 
relation: 

[ ] ( )[ ] 021 =Γ− NMN χ  
expresses the dynamical conditions of compatibility at 
weak discontinuities of gas flow parameters (here 

( ) 122 −=Γ MMM γ ; 1=χ  for wave 1r  with the 
straight characteristics of the first family). 

The problem of the interaction of the stationary 
shock with the preceding overtaking weak 
discontinuity has the following solution [2] in variables 
accepted here: 
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[ ]
[ ]

( ) ( )
252151

2221212111

2 ACAC
AACAAC

N
K

Γ+
+ΓΓ++Γ

= )
)

σ    (30) 

Here, ( )MΓ≡Γ , ( )M
))

Γ≡Γ , M  is the Mach 
number upstream the point of the intersection, and M

)  
is the Mach number behind the shock at this point (for 
example, 1MM =  and 2MM =

)
 at point B ). 

Eqs. (27), (29) and (30) allow us not only to define 
the discontinuities of shock curvature at points B  and 
C , but also to determine the shock curvature just after 
the point B  quite exactly ( [ ]σσ KK = , Eq. (29)). 
Declaring that the curvature of the shock 

4j  is equal 
to zero right after the point C , we can determine the 
shock curvature of the interacting shock BC  just 
before this point ( [ ]σσ KK −= , Eq. (27)). But, as it was 
shown in Section 1, this assumption is not absolutely 
exact and needs some proof for its introduction. 

2.5 Problem Solution Based on the Assumption of Zero 
Curvature of the Resulting Shock 

The calculations carried out by the second-order 
method of characteristics at utmost asymptotic refining 
of the numerical grid have shown that the shock 4j  is 
of an extremely small curvature (in particular, at point 
C ). For example, in case of the interaction with the 
centered expansion fan, its curvature is equal to 

6102 −⋅  at 5.11 =M , 8.01 =J  and 4.12 =J ; to 
5103 −⋅  at 31 =M , 4.01 =J  and 42 =J ; to 6104 −⋅  

at 51 =M , 3.01 =J  and 102 =J . The intersection 
with the weak discontinuity CO0  diminishes the 
shock geometric curvature approximately by 1,200 
times in the first case, by 800 times in the second case, 
and by 4,500 times in the third one. So we can conclude 
that the curvature of the shock 4j  is very small 
compared with the curvature of the interacting shock 
BC  and can be accepted to be equal to zero. Then the 
curvature of the shock BC  at point С  can be easily 
determined from Eqs. (27) and (30): [ ]σσ KK −= . 

Let us now consider the shock which has interacted 
not with the whole expansion fan, but with its part 
bounded by the straight characteristics OB  and EE1  
(Figs. 1a and 1b). The following interaction of this 

shock with the remaining part of the wave does not 
change the shock section EC . So the assumption of 
zero shock curvature at the point of its exit out of the 
Prandtl-Meyer fan is equivalent to the possibility of 
using the relation analogous to Eq. (30) at all inner 
points of the interacting shock: 

( ) ( )
2

252151

2221212111 N
ACAC

AACAAC
K ⋅

Γ+
+ΓΓ++Γ

= )
)

σ (31) 

Considering Eqs. (15), (21) and (31), we conclude 
that the dimensionless curvature of the interacting 
shock depends only on wave type 1±=ψ , the shock 
strength J  and the local Mach number M  upstream: 

( ) ( )

( )( ) .11              3

2

252151

2221212111

M
M

ACAC
AACAACrK

−−
×

×
Γ+

+ΓΓ++Γ
⋅=

ε

ψσ )
)

 

Since ( )( ) 232''' 1 σσσ yyK += , where, ( )σσ xy  is 
the shape of the shock, Eq. (31) allows us to determine 
the shape of the shock in the interaction region. Eqs. 
(17)-(23) binding shock shape and strength and Eqs. 
(2)-(4), (9) and (12)-(16) which allow us to calculate 
flow parameters derivatives at all points and in all 
directions inside the Prandtl-Meyer fan lead to the 
following equations complementary to Eq. (31): 

( ) MfJdMdJ 32 ε+= ,            (32) 

( )
( )

( )
42

2

3 11
111 f

J
JMJ

M
Mf m ⋅
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−

⋅
−+

−−
+=

εε
ε , 

( ) ( )
( ) ( )252151

2221212111
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1
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+ΓΓ++Γ

−= )
)

ασ
, 

where, to exclude trigonometric expressions, 

( ) ( )( ) ( )
ε

ε
ασ

+

−−−+
=−

1
1

sin
2

2

M
JMJMJ m  

(the intermediate calculations are contained in Ref. 
[7]). 

Taking into account that the derivative dMdJ  
does not depend on upstream flow non-uniformities, 
we must conclude that Eq. (32) is most convenient to 
solve the problem. Neither initial data ( 1M , 2J , etc.) 
nor local non-uniformities, but only local Mach 
number M  and shock strength J  participate in this 
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equation. The integral curves of Eq. (32) are shown in 
Figs. 3a and 3b as slim lines. The shock strength 
decrease under the influence of the rarefaction wave 
corresponds to the motion downward these curves; the 
increase of the strength J  at the interaction with the 
compression wave corresponds to the motion upward. 
Mach number at sonic line 1 ( ( )MJJ *=  there) or on 
abscissa axis ( 1=J ; that corresponds to the shock 
degeneration) can be considered as the only parameter. 

In fact, the assumption of zero curvature of the 
resulted shock implied the neglect to the influence of 
the perturbations refracted at the entropy layer on the 
shock parameters. These assumptions concerning the 
moving shock waves in non-steady flow underlie 
Chester, Chisnell and Whitham’s approximate 
analytical methods [8]. Analogous assumptions 
concerning shocks in steady flow were introduced in 
Ref. [9] and other studies. 

2.6 The Solution Based on the Static Pressure Equality 
and Collinearity of Flow Directions Downstream the 
Resulting Waves 

The straightness of the shock 4J  in Fig. 1 is 
possible only at the absence of the perturbations which 
overtakes the shock from behind. The equality of static 
pressures and the collinearity of the streams on both 
sides of vortex layer 5 is a necessary (not sufficient, 
though) condition for it. These conditions can be 
formulated as the system binding wave strengths iJ  
and deflection angles iβ  ( 4...1=i ): 

4321 JJJJ =                   (33) 
( ) ( ) ( )

( )404

323212101

,
,,,

JM
JMJMJM

β
βββ

=
=++

    (34) 

Shock strengths 2J  and 4J , corresponding 
deflection angles, and Mach numbers are tied together 
with Eqs. (17)-(20), and the same flow variables 
upstream and downstream Prandtl-Meyer waves are 
bound with Eqs. (1), (2), (5) and (6). 

Using Eq. (33) in logarithmic form ( ii Jln=Λ ), it is 
not difficult to solve the system Eqs. (33) and (34) 
owing to the well-known technique of shock and 

expansion-compression polars. 
Like Eq. (30) in the previous model, Eqs. (33) and 

(34) can be generalized for the inner points of the 
interacting curvilinear shock: 

( ) ( ) JJJJ =ϕϕ
321                  (35) 

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )( )JMJM

JMJM
,,

,,

323

21211

ϕββ

βϕβ
ϕϕ

ϕϕ

=+

++
        (36) 

Here, ( )ϕM  is Mach number at a straight 
characteristic coming into the given point of the shock; 

( ) ( ) ( )( )ϕππϕ MMJ 11 =  is the strength of the 
Prandtl-Meyer wave part which have just interacted 
with the shock; ( ) ( )( ) ( )233 MMJ ππ ϕϕ =  is the strength 
of the corresponding part of the reflected wave 3r ; 

( )ϕ
3M  is the Mach number at the last characteristic of 

this reflected part; ( )ϕβ 1
 and ( )ϕβ 3

 are the flow 
deflection angles at the named parts of the waves 1r  
and 3r . Shock strengths 2J  and J , corresponding 
deflection angles, and the Mach numbers are tied here 
by Eqs. (17), (18), (21) and (22). Corresponding flow 
parameters at Prandtl-Meyer wave sectors are bound 
by Eqs. (7), (8), (10) and (11). 

The system Eqs. (35) and (36) determines the local 
shock strength J  and deflection angle β  in any 
inner point of the interacting shock. 

Differentiating Eqs. (35) and (36), we can get the 
expressions analogous to Eq. (31) for the shock 
curvature, and the expressions analogous to Eq. (32) 
for the shock strength variation. But, unlike in Eqs. (31) 
and (32), the initial parameters ( 1M  and 2J ) are 
present in these expressions which become rather more 
complicated [7]. So the solutions of Eqs. (33) and (34) 
do not compose the one-parameter family of curves at 
the ( )JM , -plane. The system Eqs. (33) and (34) is 
definitely not an integral of Eq. (32). 

Conditions Eqs. (33) and (34) were, in fact, 
introduced in Ref. [10] to solve the problem of the 
interaction between the shock and Prandtl-Meyer wave 
of opposite direction [11]. Eqs. (33)-(36) are formally 
analogous to the compatibility conditions in the case of 
two overtaking shocks intersections. But Eqs. (33) and 
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(34) give us, as a rule, only an approximate solution of 
the problem because we neglect the influence of 
refracted perturbations on flow downstream the shock 

4j  and the wave 3r .  

3. Results and Discussion 

3.1 The Accuracy of the Methods Proposed 

The results achieved due to the “differential” model 
Eqs. (31) and (32) and the “integral” one Eqs. (35) and 
(36) demonstrate a very high accuracy. 

The errors eJJJ −=Δ  of the shock strength 
computation resulting at the application of Eqs. (31) and 
(32) and Eqs. (35) and (36) are shown in Fig. 4 relative 
to the series of incoming centered expansion wave 
strengths 1J  given shock interacts with. Here, eJ ’s are 
the strengths of the interacting shock at the same 1M , 

2J  and 1J ’s calculated by second-order method of 
characteristics with asymptotic grid refining and accepted 
here as being exact. Curves 1 in Fig. 4 show us the errors 
of the model based on Eqs. (31) and (32), and curves 2 
—of the model given by Eqs. (35) and (36). 
 

  
(a)         (b) 

 
(c)         (d) 

Fig. 4. The errors in the approximate analytical solutions 
Eqs. (31) and (32) and Eqs. (35) and (36) at the interaction 
of a given shock with a series of the centered expansion 
waves: (a) 5.11 =M , 4.12 =J , 0.1...8.01 =J ; (b) 

21 =M , 5.22 =J , 0.1...5.01 =J ; (c) 31 =M , 

42 =J , 0.1...4.01 =J ; (d) 51 =M , 102 =J , 

0.1...3.01 =J . 

The errors in the proposed models are small enough 
relatively to both the shock strength total variation 
( 42 JJ − ) and the pressure variation in the reflected wave 

3r . For example, 014.13 =J  at 31 =M , 4.01 =J  and 
42 =J , and the errors of the resulting shock strength 

according to the above-mentioned models are 
4

4 108.1 −⋅=ΔJ  and 5
4 107 −⋅=ΔJ , correspondingly. 

The model [1] based on the neglect to the reflected 
waves at all ( 13 ≡J ) is qualitatively less accurate 
( 4.002.0 ÷≈ΔJ  for the cases shown in Figs. 4a-4d). 

So, owing to very high order of smallness of the 
neglected perturbations reflected from the vortex layer 
and influencing the shock from behind, the solutions 
proposed here are accurate enough to study the type of 
the reflected wave 3r  and other special features of the 
interaction considered. 

3.2 The Inflections of the Interacting Shock 

The relation Eq. (31) determines the geometric 
curvature of the interacting shock in an explicit form 
though this formula can not be applied to the shock 
with the subsonic flow downstream. In the critical case 
( ( )MJJ *= , 1→M

) ) the shock curvature is finite, and 
Eq. (31) with the coefficients iA2  computed at 

( )MJJ *=  confirms it. 
As it follows from Eq. (31), rather strong shocks 

interacting with the expansion wave are convex 
downwards (for example, the section BE  of the shock 
in Fig. 1b). The loss of the shock strength under the 
further influence of the expansion wave leads to shock 
inflection, and the curvature becomes negative (such is 
the section EC ). The negative curvature of the shock 
degenerating inside the expansion fan into a weak 
discontinuity as shown in Fig. 1a asymptotically strives 
to zero. If the shock interacts with the compression 
wave, the sign of its curvature changes in a reverse 
order. 

The location of the shock inflection point is 
determined by Eq. (31) at the condition 0=σK . The 
shock curvature direction changes when shock 
parameters cross curve 4 in Fig. 3a. Curve 4 goes out 
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the point r  at the “critical” (“sonic”) line 1. The finite 
limit of the shock curvature determined from Eq. (31) 
at 1→M

)  ( ( )MJJ *→ ): 
( ) ( )

( ) 2
*25

*22*21

,
,,

N
JMA

JMAJMA
K ⋅

+Γ
=σ  

leads to the equations 
( ) ( ) ( ) ( ) 01162112951 246 =−−−+−−− εεεε rrr MMM  

for Mach number 676.1=rM  and 
( ) 0132 23 =−−−− εε rrr JJJ  

for the shock strength ( ) 361.2* == rr MJJ  at the 
point r  where the inflection line starts. Inflection line 
4 has the horizontal asymptote ( 360.6== AJJ ) at 

∞→M  where, AJ  is the root of the following 
equation: 

0
6

0

=∑
=i

i
Ai JB , 

( )42
6 1 εε −=B , 

( ) ( )322
5 335112 εεεεε −+−−=B , 

,16964
714847161

765

432
4

εεε

εεεε

++−

−+−+−=B
 

,161672

3015810036266
876

5432
3

εεε

εεεεε

+−−

−−−+−+−=B
 

( )
( ),16441221614042101

21
765432

2

εεεεεεε

ε

++++++−⋅

⋅−=B  

( )654322
1 41476718 εεεεεεε +++−+−−=B , 

( )224
0 116 εεε −−=B . 

When we try to determine the shock curvature from 
Eqs. (35) and (36), the shock inflection depends not 
only on the local parameters ( M  and J ) but also on 
the initial data for the incoming shock ( 1M  and 2J ). 
But the results of the applications of the two proposed 
models can be barely distinguished. So for 31 =M  
and 62 =J  the shock inflection occurs at 808.2=M  
and 557.4=J  according to Eq. (31). Determining the 
shock curvature from Eqs. (35) and (36), it was 
calculated that the inflection point corresponds to 

806.2=M  and 556.4=J . 

3.3 The Reflected Wave and the Change of Its Type 

Change of flow types (expansion or compression) in 

the wave 3r  can be analyzed based on Eqs. (35) and 
(36). The second-family characteristic where the wave 

3r  changes its type corresponds to the extremum of 
current strength ( )ϕ

3J  of the reflected wave part: 

( ) ( )( ) extr13 →ϕϕ JJ                   (37) 

with the limitations Eqs. (35) and (36) binding ( )ϕ
1J  

and ( )ϕ
3J  in an implicit form. The solution of Eq. (37) 

depends only on the local Mach number M  and the 
shock strength J : 

0
3

0

2 =∑
=i

i
i MD                 (38) 

( ) ( )222
3 41 εεε +−+= JJD , 

( )( )( )
( ) ( ) ( )( ) ,214112

114
222

2
2

εεε

εεε

+−−−−−

−−+−=

JJJ

JJD
 

( )
( )( )( ) ( ) ( ) ( )[ ],1141214

1
2222

1

−−++++−−⋅

⋅−=

JJJJJ

D

εεεε

ε  

( ) ( )( )114 22
0 −+−−= JJD εε . 

Eq. (38) determines the curves iϕ  ( 2,1=i ) at 
( )JM , -plane (Figs. 3a and 3b). If 1r  is the expansion 
Prandtl-Meyer flow then the regions I and II 
correspond to the reflection of compression waves, and 
the region III to the reflection of rarefaction waves. The 
contrary conclusions are correct if 1r  is the 
compression wave. 

Curves iϕ  emerge from the points iF  at the axis 
1=J . The corresponding Mach numbers ( 245.1

1
=FM , 

540.2
2

=FM ) are determined by the relation: 

( ) ( )εε 2112
2,1

±±=FM  

These special Mach numbers were d discovered 
earlier in the problems of overtaking shock-shock 
anshock—weak discontinuity interactions. They occur 
also in the study of the systems which consist of 
Prandtl-Meyer waves and subsequent overtaking 
shocks and provide extreme static pressure at fixed 
total flow deflection [12, 13]. 

The curve 1ϕ  reaches the “sonic” line 1 at the point 
s  ( 305.1=sM , ( ) 466.1* == ss MJJ ) with the 
coordinates determined by the equations: 
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The coordinates ( 089.2=uM , 989.1=uJ ) of the 
point u  where the curve 2ϕ  has a vertical tangent are 
determined by more complex expressions (for example, 

( )εuJ  can be presented as a root of an eighth-order 
algebraic equation). To find out its coordinates it is 
easier to solve the system which consists Eq. (38) and 
the following equation: 

0
3

0

2 =∑
=i

i
ui ME , 

( ) 22
3 812 εε −−= JE , 

( ) ( ) ( )( )εεεεεε 5322412132 3222
2 −++−−+−−= JJE , 

( )
( ) ( ) ( )( ) ( )[ ],41285131312

12
23

1

εεεεε

ε

−−+−+−+−⋅

⋅−=

JJJ
E  

( ) ( )22
0 32114 JJE −−−= εε . 

As it is seen in Fig. 3a, one of the integral curves of 
Eq. (32) has point v  of contact with the curve 2ϕ . To 
achieve its coordinates ( 282.2=vM , 434.3=vJ ), we 
have to equate the slopes of the curve 2ϕ  and the 
integral curve of Eq. (32). The thick integral curve 5 of 
Eq. (32) descending from the point ( 670.2=M , 

( ) 440.6* == MJJ ) at the “sonic” line 1 to the point 
( 477.1=M , 1=J ) contacted the curve 2ϕ  at the 
point v . All the integral curves situated to the right of 
curve 5 correspond to at least one reflected wave type 
change point. 

The curve 2ϕ  asymptotically reaches the line 
12 −= MJ  at ∞→M . 

Using the “differential” curved shock model Eqs. 
(31) or (32) and differential conditions (25) of the 
dynamic compatibility at the interacting shock as well 
as Eqs. (14) and (15) we went to the following 
correlation of flow non-uniformities upstream and 
downstream the shock: 

( ) ( )[ ]
252151

12112522211521

2

2

1

1

ACAC
AAAAAACC

N
N

N
N

Γ+
+Γ−+Γ

−=

==

)

))

 (39) 

We have to note the following correlation of the 
basic non-uniformities immediately after every inner 
point of the curved shock: 

021 =Γ+ NN
)))

                  (40) 

which is analogous to the relation correct everywhere 
inside Prandtl-Meyer wave 3r . The Eq. (40) is the 
special case of generalized Chester-Whitham theorem 
proven in Ref. [8].  

Analyzing Eq. (39) for 01 =N
) , we transformed it to 

the same Eq. (38) which was achieved earlier 
concerning wave 3r  change of type. The coincidence 
of the solutions subsequent to “differential” model (for 
the points situated immediately after the shock) and 
“integral” model (for the reflected wave) reveals that 
the flow type seems not to change along the 
second-family reflected characteristics, even in zone 5. 

Flow type change in the reflected wave can be 
illustrated by the influence of the expansion wave on 
the shock with initial “sonic” strength 

282.8*2 == JJ  at 31 =M  (the integral curve 1KK  
in Fig. 3). The sector 2KK  of this curve corresponds 
to the flow expansion in the reflected wave (from 

12 =M  to ( ) 0208.13 =ϕM ). The flow compression in 
the reflected wave begins at 860.2=M  and 

543.6=J  (point 2K ). Shock inflection point 3K  
( 572.2=M , 258.4=J ) is situated in this sector. The 
Mach number in the reflected wave diminishes to 

( ) 0007.13 =ϕM  at the end of the compression sector 
42 KK  ( 089.2=M  and 016.2=J  at point 4K ). 

But the flow at the reflected compression wave does 
not decelerate to the critical speed because the new 
expansion sector begins after the point 4K  till the very 
shock degeneration into the weak discontinuity ( 1→J  
at 630.1=M ; point 1K ). The Mach number in the 
reflected wave strives there to 0016.1 , and the integral 
strength 3J  of the reflected wave strives to 9981.0 . 
The change of the reflected wave type under the 
influence of the compression wave on the oblique 
shock occurs in an inverse order. 

Comparing the data on the reflected wave obtained 
here with the analytical results in Ref. [13] where the 
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sequence of the Prandtl-Meyer wave and the shock is 
considered without the interaction between them, we 
must conclude in the following way. The wave 3r  
reflected as a result of the interaction of the wave 1r  
(flow deflection angle 1β ) with the shock 2s  (flow 
deflection angle 2β ) always strives to reduce 
gradually the pressure and the total deflection angle 
downstream it and, consequently, these parameters 
behind the resulting wave 4s  ( 4r ), to the parameters 
after the sole shock (wave) in a flow with Mach 
number 0M  which deflects the stream on an angle 
equal to 21 ββ + . Basing on Ref. (38), we can 
consider this conclusion as proven analytically. 

3.4 The Degeneration of the Resulting Shocks and 
Waves 

The condition 14 =J  is introduced as 
supplementary to Eqs. (33) and (34) corresponds to 
the shock degeneration at the very first (upstream) 
characteristic of the Prandtl-Meyer fan 1r . The total 
deflection angle in the incoming waves 021 ≠+ ββ  
generally in this case. The overall angle of flow 
deflection far from the streamlined surface strives to 

21 ββ +  asymptotically mainly due to the 
disturbances occurring at wave 3r  reflection from 
this surface. 

Inasmuch as some sectors of the reflected wave 3r  
realize the expansion flow, and some sectors the 
compression one, they also mutually compensate each 
other sometimes. Supposing both 13 =J  and 14 =J  
in Eqs. (33) and (34), we define the special type of the 
interaction between the expansion wave and the 
oblique shock. These conditions determine the curves 

ih  ( 1, 2=i ) in Figs. 3a and 3b. When the shocks 
which correspond to these curves degenerate to weak 
discontinuities, they leave mutually annihilating 
disturbances in the reflected wave contemporarily. 

The curves ih  begin at the above-mentioned 
points iF . We can indicate the coordinates of the 
marginal left point a  of the curve 2h  ( 230.2=aM , 

081.2=aJ ), the point b  of its intersection with the 

line 1ϕ  ( 506.2=bM , 611.4=bJ ), the points d  
( 464.1=dM , ( ) 804.1* == dd MJJ ) and e  
( 013.3=eM , ( ) 358.8* == ee MJJ ) where the 
curves ih  finish at “sonic” line 1. The integral curves 
of Eq. (32) outgoing the sector be  of the curve 2h  
have two intersection points with the curve 2ϕ . This 
means that the reflected wave 3r  which consists of 
two expansion sectors and a compression one can be 
divided mentally into two waves of unit strength. 

3.5 Mach Numbers Downstream the Shocks, Subsonic 
Flow Pockets 

Two contradictory factors influence on the variation 
of the Mach number M

)  immediately downstream the 
interacting shock. On the one hand, this curvilinear 
shock weakens inside the expansion fan, its strength J  
diminishes, and that leads to a Mach number increase 
behind the shock. But, on the other hand, the Mach 
number upstream the shock decreases, and it leads to a 
decrease in the Mach number downstream. 
Computations show that Mach number just 
downstream the shock increases as a rule at large and 
moderate Mach numbers upstream and diminishes at 
small Mach numbers. 

The equation 0=dMMd
)

 analyzed together with 
Eqs. (21) and (32) which bind the shock strength and 
Mach numbers on its sides determines curve 6 (i.e., the 
line kn  in Fig. 3b) of the local Mach numbers maxima 
just behind the interacting shock. Here 127.1=kM , 

1=kJ . The coordinates of the point n  ( 257.1=nM , 
376.1=nJ ) are the only real roots of the equations 

( ) ( ) ( ) ( ) 04587541 246 =−−−+−−− εεεε nnn MMM , 

( ) 0113 =−+− nn JJ ε . 

A local decrease in the downstream Mach number 
that corresponds to the region Okn  can lead to the 
flow transition downstream the shock through the 
critical speed ( 1=M

) ). It can become earlier than the 
shock wave degenerates into a weak discontinuity. So 
the integral curves of Eq. (32) situated in the area 
between “sonic” line 1 and dotted integral line 7, or 
Og  ( 391.1=gM , 640.1=gJ ) both start and finish at 
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the “sonic” line (to the right of point g  and to the left 
of it, correspondingly). Considering only the 
supersonic flow downstream the shock, we can 
conclude that the integral curve starting from point n  
finishes at the same point at once. 

When the shock 2j  interacts with the preceding 
expansion wave 1r , the shock strength diminishes, and 
full pressure losses at the interacting shock become 
smaller. The Mach number immediately behind the 
interacting shock is always larger than the Mach 
number at the corresponding characteristic of the 
reflected wave. So, when the flow immediately after 
the shock sometimes decelerates to a critical and even 
subsonic velocity, it means that the supersonic flow in 
the reflected mainly compression wave 3r  have 
decelerated to the critical velocity sooner.  

According to the model Eqs. (33) and (34), the 
critical flow deceleration in the reflected compression 
wave is possible for incoming shocks which 
correspond to the dashed regions “A” and “B” adjacent 
to the curves a8  (Fig. 3b) and b8  (Fig. 3a) if the 
incoming expansion wave 1r  is strong enough. Points 
d  and e  at the “sonic” line whose coordinates are 
calculated in Subsection 3.4 ( 464.1=dM , 

013.3=eM ) are the endpoints of “A” and “B” regions, 
correspondingly. The region of possible flow 
deceleration immediately downstream the shock 
bounded by the integral curve Og  and “sonic” line 1 
is situated inside the region “A” of flow deceleration in 
the reflected wave. 

Possible solutions for the strong incoming shocks 
(at ( ) ( )MJJMJ m<< 21* , so 12 <M , Fig. 1d) 
ignore the influence of the other disturbances from the 
subsonic flow downstream the shock to this one. So it 
seems that the solutions for the strong shocks cannot 
be mentioned here due to their low practical 
importance. 

3.5 The Influence of Gas Specific Heats Ratio on the 
Problem Solution 

To characterize the influence of specific heats ratio 

on the solutions derived here, it seems enough to study 
the variation of the special curves and the points plotted 
above. 

Starting points iF  of the curves iϕ  merge at 
1→γ  ( 2

21
== FF MM  then). A distance between 

these curves increases with the growth of γ . So the 
region II which corresponds to the expansion wave 
reflection at shock interaction with incoming 
expansion wave widens then. 

The first of the start points iF  moves to smaller 
Mach numbers region (so 245.1

1
=FM  at 4.1=γ , 

189.1
1

=FM  at 3=γ , 32
1

→FM  at ∞→γ ). 
The same is correct for the whole 1ϕ  ( sF1 ) line (so 

318.1→sM  and 434.1→sJ  at 1→γ ; 
305.1=sM  and 466.1=sJ  at 4.1=γ ; 
288.1=sM  and 529.1=sJ  at 3=γ ; 272.1→sM  

and 618.1→sJ  at ∞→γ ). So region I where the 
reflected wave 3r  is of another type than incoming 
wave 1r  becomes narrower. 

The curve kn  of the maximum downstream Mach 
numbers also exists at all ∞<< γ1  moving a little to 
the larger Mach numbers (so 253.1→nM  and 

325.1→nJ  at 1→γ ; 257.1=nM  and 
376.1=nJ  at 4.1=γ ; 263.1=nM  and 567.1=nJ  

at 3=γ ; 272.1→nM  and 618.1→nJ  at ∞→γ ). 
Points n  and s  coincide at ∞→γ . 

Another reflected wave type change curve 2ϕ  
moves sufficiently to the right. So the coordinates of its 
extreme left point u  are the following: 790.1=uM  
and 436.1=uJ  at 2.1=γ ; 089.2=uM  and 

989.1=uJ  at 4.1=γ ; 539.2=uM  and 980.2=uJ  
at 66.1=γ . The Mach number 

2FM  also increases 
( 876.1

2
=FM  at 2.1=γ , 540.2

2
=FM  at 4.1=γ , 

325.16
2

=FM  at 66.1=γ ) and strives to infinity at 
35=γ . The lower branch of the curve 2ϕ  has a 

horizontal asymptote ( 1=J ) in the last case. The 
further increase of the specific heats ratio leads to a 
corresponding shift of the curve 2ϕ  to the right (so 

027.6=uM  and 098.16=uJ  at 3=γ ; ∞→uM  
and ∞→uJ  at ∞→γ ). The curve 2h  and the 
region b3  corresponding to shock degeneration and 
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critical flow deceleration in the reflected waves also 
shift to the right. The rules determining the direction of 
shock curvature remain the same for other γ ’s. Mach 
numbers and shock strengths corresponding to the 
shock inflection increase a little: for example, 

659.1→rM  and 206.2→rJ  at 1→γ ; 
676.1=rM  and 361.2→rJ  at 4.1=γ ; 
3→rM  and 3→rJ  at ∞→γ . The inflection 

curve 2 always has the horizontal asymptote AJJ =  
(e.g., 061.13→AJ  at ∞→γ ). 

So the increase in specific heats ratio widens the 
expansion wave reflection region (as 1r  is the 
expansion wave) and shifts the majority of the special 
curves and points plotted here to the region of larger 
Mach numbers and shock strengths. 

The dependence of some specific Mach numbers 
upon the specific heats ratio in the practically important 
range ( 21 << γ ) is shown in Fig. 5. One can see, for 
example, that some specific small Mach numbers ( kM , 

nM , sM , gM , dM , rM ) are weakly dependent on 
γ  in the range shown there. 

4. Conclusions 

Owing to the expressions derived for the differential 
parameters of Prandtl-Meyer flowfield and the  
 

 
Fig. 5  Variation of the specific Mach numbers in the 
practically important range of γ ’s. According to the 
citation order: rM  (curve 1), 1FM  and 2FM  (curves 2 
and 3, correspondingly), sM  (curve 4), uM  (5), vM  (6), 

aM  (7), bM  (8), dM  (9), eM  (10), kM  (11), nM  
(12) and gM  (13). 

differential dynamic compatibility conditions on a 
curved shock in a generally non-uniform flow, two 
reliable analytical solutions for overtaking 
Prandtl-Meyer wave—oblique shock interaction were 
obtained. 

When used together, these solutions allows us to 
estimate both the flow parameters and their spatial 
derivatives downstream the shock as well as the 
distinctive features of the interacting shock and 
reflected Prandtl-Meyer wave. So the geometrical 
curvature and the inflection points at the interacting 
shock were determined analytically, in particular. 

A simple expression determining the 
rarefaction/compression flow type change immediately 
behind the shock as well as in the reflected wave was 
derived also. It was proven that the reflected 
Prandtl-Meyer wave can change its type, not once 
somewhere. The criteria of the full mutual 
compensation of the different sectors of the reflected 
wave and the criteria of the shock degeneration were 
also derived and studied. 

Non-monotonic variation of the Mach numbers just 
downstream the curvilinear interacting shock was 
discovered, and the possibility of subsonic flow 
pockets was revealed. The influence of the ratio of gas 
specific heats on the deduced solutions was found more 
quantitative than qualitatively remarkable. 

The most evident applications of the presented results 
are: the optimal design of supersonic inlets; the design 
of optimally shaped aerodynamic bodies for supersonic 
flight; the analysis of supersonic jet technology 
apparatus because of the sequential interchange of 
compression and expansion flow regions divided by the 
shocks in the “barrels” of supersonic jet flows. 
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