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Abstract: A mechanical structure of space is suggested. On the supposition that a space as vacuum has a physical fine structure like
continuum, it enables us to apply a continuum mechanics to the so-called “vacuum” of space. A space is an infinite continuum and its
structure is determined by Riemannian geometry. Assuming that space is an infinite continuum, the pressure field derived from the
geometrical structure of space is newly obtained by applying both continuum mechanics and General Relativity to space. A
fundamental concept of space-time is described that focuses on theoretically innate properties of space including strain and curvature.
As a trial consideration, gravity can be explained as a pressure field induced by the curvature of space.
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1. Introduction expansion, contraction, elongation, torsion and

) L . bending. The latest expanding universe theories
Given a priori assumption that space as a vacuum . . . . .
. . . . (Friedmann, de Sitter, inflationary cosmological
has a physical fine structure like continuum, it enables . .
. . model) support this assumption. Space can be
us to apply a continuum mechanics to the so-called . . .
. . . regarded as an elastic body like rubber. This
“vacuum” of space. Minami proposed a hypothesis for ) o ) o
. . . conveniently coincides with the precondition of a
mechanical property of space-time in 1988 [1]. A .
) i . mechanical structure of space.
primary motive was research in the realm of space L ] )
. . ) o . General relativity implies that space is curved by
propulsion theory. His propulsion principle using the .
) ; L the existence of energy (mass energy or
substantial physical structure of space-time is based

on this hypothesis [2-10].

In this paper, a fundamental concept of space-time

electromagnetic energy etc.). General relativity is
based on Riemannian geometry. If we admit this space

) . ) ] curvature, space is assumed as an elastic body.
is described that focuses on theoretically innate . ] ] )
. . . ) According to continuum mechanics, the elastic body
properties of space including strain and curvature. . .
) ) o has the property of the motion of deformation such as
Assuming that space as vacuum is an infinite i . . .
. . . expansion, contraction, elongation, torsion and
continuum, space can be considered as a kind of ] o
) . bending. General relativity uses only the curvature of
transparent elastic field. That is, space as a vacuum ] ] ]
) ) space. Expansion and contraction of space are used in
performs the motions of deformation such as ) .
cosmology, and a theory using torsion has also been

studied by Hayasaka [11] and twistor theory as
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proposed by Roger Penrose [12] to the torsion of
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2. Mechanical Concept of Space

When we make a comparison between the space on
the Earth and outer space throughout the universe,
although there seems to be no difference, obviously a
different phenomenon occurs. Simply put, an object
moves radially inward, that is, drops straight down on
the Earth, but in the universe, the object floats and
does not move.

The difference between the two phenomena can be
explained as whether space is curved or not, that is,
whether 20 independent components of a Riemann
curvature tensor is zero or not. In essence, the
existence of spatial curvature (and curved extent)
determines whether the object drops straight down or
not. Although the spatial curvature at the surface of
the Earth is very small value, i.e.,3.42x10 % (1/m?),
it is of enough value to produce 1G (9.8 m/s%)
acceleration. Conversely, the spatial curvature in the
universe is zero, therefore any acceleration is not
produced. Accordingly, if the spatial curvature of a
localized area including object is controlled to

curvature 3.42x107%

(1/m*)with an extent, the object
moves and receives 1G acceleration in the universe.
Of course, we are required to control both the

magnitude and extent of curvature.
2.1 Fundamental Concept of Space

Space is an infinite continuum and its structure is
determined by Riemannian geometry. Space satisfies
the following conditions:

(1) When the infinitesimal distance regulating the
distance between the two points changes by a certain
physical action, the change is continuous, and the
space maintains a continuum even after its change.
Now, the concept of strain of continuum mechanics is
very important in order to relate a spatial curvature to
a practical force. Because the spatial curvature is a
purely geometrical quantity. A strain field is required
for the conversion of geometrical quantity to a

practical force.

(2) The spatial strain is defined as a localized
geometrical structural change of space. It implies a
change from flat space involved in zero curvature
components to curved Riemann space involved in
non-zero curvature components.

(3) Space has the only strain-free natural state, and
space always returns to the strain-free natural state,
i.e., flat space, when an external physical action
causing spatial strain is removed.

(4) Spatial strain means some kinds of structural
deformation of space, and a body filling up space is
affected by the action from its spatial strain. We must
distinguish space from an isolated body. An isolated
body occupies an area of space by its movement.
Basically, an isolated body can move in space and also
can change its position.

(5) In order to keep the continuity of space, the
velocity of body filling up space cannot exceed the
strain rate of space itself.

Since the subject of our study is a four-dimensional
Riemann space as a curved space, we ascribe a great
deal of importance to the curvature of space. We a
priori accept that the nature of actual physical space is
a four-dimensional Riemann space, that is, three
dimensional space (x=x', y=x’, z=x") and one
dimensional time (w=ct=x"), where ¢ is the velocity of
light. These four coordinate axes are denoted as x' (i =
0,1,2,3).

The square of the infinitesimal distance “ds”
between two infinitely proximate points x' and x+dx’

is given by equation of the form:
ds®> = gij.dxidxj (1)

where g;; is a metric tensor.

The metric tensor g; determines all the geometrical
properties of space and it is a function of this space
coordinate. In Riemann space, the metric tensor g’
determines a Riemannian connection coefficient 17, ,
and furthermore determines the Riemann curvature
tensor R'ijk or Rk, thus the geometry of space is

determined by a metric tensor.
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Riemannian geometry is a geometry which provides
a tool to describe curved Riemann space, therefore a
Riemann curvature tensor is the principal quantity. All
the components of Riemann curvature tensor are zero
for flat space and non-zero for curved space. If a
non-zero component of Riemann curvature tensor
exists, the space is not flat space, but curved space. In
curved space, it is well known that the result of the
parallel displacement of vector depends on the choice
of the path. Further, the components of a vector differ
from the initial value, after we displace a vector
parallel along a closed curve until it returns to the
starting point.

An external physical action such as the existence of
mass energy or electromagnetic energy yields the
structural deformation of space. In the deformed space
region, the infinitesimal distance is given by:

ds'* = g;dxidxj (2)

where & ; the metric tensor of deformed space
region, and we use the convected coordinates
(x'"=x").

As shown in Fig. 1, if the line element between the
arbitrary two near points (A and B) in space region S
(before
ds = g,dx", the infinitesimal distance between the
two near points is given by Eq. (1):

ds® = ggdxidxj

structural deformation) is defined as

Let us assume that a space region S is structurally
deformed by an external physical action and
transformed to space region T. In the deformed space
region T, the line element between the identical two
near point (A’ and B’) of the identical space region
newly changes, differs from the length and direction,
and becomes ds' = gldx’ -

Therefore, the infinitesimal distance between the
two near points using the convected coordinate

(X'i = Xi) is given by:
ds'? = gj.dx'dx’ 3)

The g is the transformed base vector from the

original vase vector gi and the & ,', is the

transformed metric tensor from the original metric

tensor & . Since the degree of deformation can be

expressed as the change of distance between the two
points, we get:

1?2 2 _ i J _ i J

ds" —ds” = gidx'dx’ — g, dx'dx @

= (g} — g;)dx'dx’ = r,dx'dx’

Hence the degree of geometrical and structural

deformation can be expressed by the quantity denoted

change of metric tensor, i.e.
!
Ty =85 — &y ®)

On the other hand, the state of deformation can be
also expressed by the displacement vector “u” (Fig. 1).
From the continuum mechanics [13-16], using the

following equations:
du = g'u, dx’ (6)

ds' =ds+du=ds+g'u,;dx’ 7)

1738 2)

We use the usual notation for covariant
differentiation. From the usual continuum mechanics,
the infinitesimal distance after deformation becomes
[13] (see Appendix A):
ds' —ds® = rydx'dx’ @
= (u;,; +u,, +u’ g, )dx' dx’

The terms of higher order than second uk:z‘uk;j
can be neglected if the displacement is of small
enough value. As the actual physical space can be
dealt with the minute displacement from the trial

calculation of strain, we get:
Ty =Wy t U (€))

Whereas, according to the continuum mechanics [13],

the strain tensor % is given by:
1 1
ey—a"ij—z'(“i:j"‘“,’:f) (10)

So, we get:

ds'> —ds® = (g, — g, )dx'dx’ = 2e;dx'dx’ (11)
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Fig. 1 Fundamental structure of space.

’

where &;>8; is a metric tensor, €; is a strain
12 2 .

and ds'" —ds” is the

infinitesimal between

tensor, square of the

distance two infinitely
proximate points x’ and x"+dx’.

Eq. (11) indicates that a certain geometrical
structural deformation of space is shown by the
concept of strain. In essence, the change of metric
tensor (&7 —&;) due to the existence of mass energy
or electromagnetic energy tensor produces the strain
field ©

Since space-time is distorted, the infinitesimal
distance between two infinitely proximate points x'
and x+dx' is important in our understanding of the
geometry of the space-time; the physical strain is
generated by the difference of a geometrical metric of
space-time. Namely, a certain structural deformation
€j . From Eq. (11), the
strain of space is described as follows:

e, =1/2-(g;'-g;)

is described by strain tensor

(12)

It is also worth noting that this result yields the
principle of constancy of light velocity in Special

Relativity.
2.2 Mechanics of Space

Expanding the concept of vector parallel
displacement in Riemann space, the following

equation has newly been obtained (see Appendix B):

=

Deformation of Space T

\

V:gwdw

is rotation tensor,

13)
where @, dA" is infinitesimal
areal element.

According to the nature of Riemann curvature
tensor R, , @, indicates the rotation of
displacement field. Eq. (13) indicates that a curved
space produces the rotation of displacement field in
the region of space. Now, the rotation tensor @,,
and strain tensor €; satisfy the following differential

equation in continuum mechanics:

uv,j v~ Cuv

(14)

This equation is true on condition that the order of
differential can be exchanged in a flat space. To
expand above equation into a curved Riemann space,
the equation shall be transformed to covariant
differentiation and it is possible on condition of
I'te,,=I%e

jveua =1 jubva .

Thus, we obtain

a),uv:j = el_q':,u _e,q/':v (15)
Here we use the usual notation “:” for covariant
differentiation. As is well known, the partial

. ou,
derivative u, . =——
5] J

is not tensor equation. The
ox

. k .
covariant derivative Ui =U; ukrg'j 1S tensor

equation and can be carried over into all coordinate

systems.
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Eq. (15) indicates that the displacement gradient of
rotation tensor corresponds to difference of the
displacement gradient of strain tensor.

Here, if we multiply both sides of Eq. (15) by
fourth order tensor denoted the nature of space E7#"
formally, we obtain

E" @, =E" (R,,dA"),; = E™"R,,,d4"

uvij

(16)

and

juv _ Linv _
E ev/:,u E e;z/:v -

Eij,uv Eij/zv _ iu iv _A ir (17)
( evj):;l _( eyj) v 9 u -0 =A0 .

v r

As is well known in the continuum mechanics
[13-16], the relationship between stress tensor Oj

and strain tensor €m is given by
i _ iml
c’=E""e,, (18)

Furthermore, the relationship between body force

F' and stress tensor O is given by
F'=0"; (19)

from the equilibrium conditions of continuum. That is,
the elastic force F' is given by the gradient of stress
tensor 9.

Therefore, Eq. (17) indicates the difference of body
force AF’. Accordingly, from Egs. (16) and (17), the
change of body force AF ! (=Aoc o ) becomes

AF' = Eij"VRﬂ‘,,(,:jdAkl (20)

Here, we assume that F¥# is constant for
covariant differentiation, A" s area element.

The stress tensor O; is a surface force and F " s
a body force. The body force is an equivalent
gravitational action because of acting all elements of
space uniformly.

Eq. (20) indicates that the gradient of Riemann
curvature tensor implying space curvature produces
the body force as a space strain force. The non-zero
component of Eq. (20) is just only one equation as
follows:

F3 :33];): E3330 (R3;)30A30 ):3 (21)
=E77 - O(Ry,0 A7) ar
2.3 Generation of Surface Force Induced by Spatial

Curvature

On the supposition that space is an infinite
continuum, continuum mechanics can be applied to
the so-called “vacuum” of space. This means that
space can be considered as a kind of transparent field
with elastic properties. That is, space as a vacuum has
the elastic properties of expansion, contraction,
elongation, torsion and bending. The latest expanding
universe theory (Friedmann, de Sitter, inflationary
cosmological model) supports this assumption. We
can regard the space of the cosmos as an infinite
elastic body like rubber.

If space curves, then an inward normal stress “—P”
is generated. This normal stress, i.e. surface force
serves as a sort of pressure field.

~P=N-2R")"* =N-(1/R, +1/R,) (22)

where N is the line stress, R,, R, are the radius of
principal curvature of curved surface, and R" s the
major component of spatial curvature.

A large number of curved thin layers form the
unidirectional surface force, i.e. acceleration field.
Accordingly, the spatial curvature R® produces the
acceleration field .

The fundamental three-dimensional space structure
is determined by quadratic surface structure.
Therefore, a Gaussian curvature K in two-dimensional
Riemann space 1is significant. The relationship
between K and the major component of spatial

curvature R is given by:

R 1
1212 _ R 23)

K = >
(8182 —8&1) 2

where R, is non-zero component of Riemann
curvature tensor.

It is now understood that the membrane force on
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the curved surface and each principal curvature
generates the normal stress “-P” with its direction
normal to the curved surface as a surface force. The
normal stress —P acts towards the inside of the surface
as shown in Fig. 2a.

A thin-layer of curved surface will take into
consideration within a spherical space having a radius
of R and the principal radii of curvature that are equal
to the radius (R;=R,=R). Since the membrane force N
(serving as the line stress) can be assumed to have a
constant value, Eq. (22) indicates that the curvature
R” generates the inward normal stress P of the
curved surface. The inwardly directed normal stress
serves as a pressure field.

When the curved surfaces are included in a great
number, some type of unidirectional pressure field is
formed. A region of curved space is made of a large
number of curved surfaces and they form the field as a
unidirectional surface force (i.e. normal stress). Since
the field of the surface force is the field of a kind of
force, the force accelerates matter in the field, i.e. we
can regard the field of the surface force as the
acceleration field. A large number of curved thin
layers form the unidirectional acceleration field (Fig.
2b). Accordingly, the
produces the acceleration field ¢ . Therefore, the

spatial curvature R
curvature of space plays a significant role to generate
pressure field.

Applying membrane theory, the following
equilibrium conditions are obtained in quadratic

surface, given by:
af —
N“b,,+P=0 (24)

where N % is a membrane force, i.e. line stress of
curved space, baﬂ is second fundamental metric of
curved surface, and P is the normal stress on curved
surface [13].

The second fundamental metric of curved space
baﬂ and principal curvature K ¢y has the following
relationship using the metric tensor &gz,

baﬂ =K8up (25)

Therefore we get:
afp _ arap _
N baﬁ =NTK & =

s 3 (26)
8upN" Ky =N, Ky =N- K,
From Eq. (24) and Eq. (26), we get:
No Ky ==F 27)

As for the quadratic surface, the indices & and i
take two different values, i.e. 1 and 2, therefore Eq.
(27) becomes:

N,'K

2
m TN, Ko =-P (28)

where K@) and K@) are principal curvature of
curved surface and are inverse number of radius of
principal curvature (i.e. 1/R; and 1/Ry).

The Gaussian curvature K is represented as:
K=K, K, =~0/R)-(1/R,) (29)
Accordingly, suppose N 11 =N 22 =N, we get:
N-(1/R,+1/R,)=-P 30)

It is now understood that the membrane force on the
curved surface and each principal curvature generate
the normal stress “—P” with its direction normal to the
curved surface as a surface force. The normal stress
—P is towards the inside of surface as showing in Fig. 2.

A thin-layer of curved surface will be taken into
consideration within a spherical space having a radius
of R and the principal radii of curvature which are
equal to the radius (R;=R,=R). From Egs. (23) and
(29), we then get:

== (31)

Considering  n.(2/R)=-p of Eq. (30), and
substituting Eq. (31) into Eq. (30), the following
equation is obtained:

~P=N-v2R" (32)

Since the membrane force N (serving as the line
stress) can be assumed to have a constant value, Eq.

(32) indicates that the curvature R® generates the
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R%: curvature of space

=

Ar= (b-a)/n

lim}, ./ g, c>R™(r,)Ar
i=1

o e i

curved thin layer

Fig. 2 Curvature of Space: (a) curvature of space plays a significant role. If space curves, then inward stress (surface force)
“P” is generated = A sort of pressure field; (b) a large number of curved thin layers form the unidirectional surface force,

i.e. acceleration field «.

inward normal stress P of the curved surface. The
inwardly directed normal stress serves as a kind of
pressure field. When the curved surfaces are included
in great number, some type of unidirectional pressure
field is formed. A region of curved space is made of a

large number of curved surfaces and they form the

field of unidirectional surface force (i.e. normal stress).

Since the field of surface force is the field of a kind of
force, a body in the field is accelerated by the force,
i.e. we can regard the field of surface force as the
acceleration field. Accordingly, the cumulated curved

region of curvature R® produces the acceleration
field «.

Here, we give an account of curvature R% in
advance. The solution of metric tensor g“” is found
by gravitational field equation as the following:

RS R=-T Ty

where R“v 1is the Ricci tensor, R is the scalar
curvature, G is the gravitational constant, ¢ is the
velocity of light, 7#" is the energy momentum
tensor. Furthermore, we have the following relation
for scalar curvature R:
R=FR", :g”‘ﬂRaﬂ,
R" =g"g"R,, (34)
Ry=R ;=8 R
Ricci tensor R*" is represented by:
_ 1@ a a 1 p a 18 —
R,uv - F,ua,v _Fyv,a _F,uvraﬂ +F,uﬁrva (_ Rv,u)
(35)
where ['; is Riemannian connection coefficient.
If the curvature of space is very small, the term of

higher order than the second can be neglected, and

Ricci tensor becomes:

R, =T, -T, (36)

uv,a
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The major curvature of Ricci tensor (# =V = 0)is
calculated as follows:

g"g"R,, =—1x—1xR,, =R, (37)

As previously mentioned, Riemannian geometry is
a geometry that deals with a curved Riemann space,
therefore a Riemann curvature tensor is the principal
quantity. All components of Riemann curvature tensor
are zero for flat space and non-zero for curved space.
If an only non-zero component of Riemann curvature
tensor exists, the space is not flat space but curved
space. Therefore, the curvature of space plays a
significant role.

2.4 Acceleration Induced by Spatial Curvature

A massive body causes the curvature of space-time
around it, and a free particle responds by moving
along a geodesic in that space-time. The path of free
particle is a geodesic line in space-time and is given
by the following geodesic equation;
dxj a’x

+T - — =0 38
*dr dr (38)

d*x'
dr’

where T jk 1s Riemannian connection coefficient,
T is proper time, x' is four-dimensional Riemann
space, that is, three dimensional space (x=x', y=x"
=X’ ) and one dimensional time (w=ct=x0), c is the
velocity of light. These four coordinate axes are
0,1,2,3).

Proper time is the time to be measured in a clock

denoted as x' (i =

resting for a coordinate system. We have the
following relation derived from an invariant line
element ds’ between Special Relativity (flat space)

and General Relativity (curved space):

dr =4— gdx’ = |- g, cdt (39)

From Eq. (38), the acceleration of free particle is
obtained by

d*x' - dx dx
=1 . 40
dr? *dr dr “0)

As is well known in General Relativity, in the

i

a =

curved space region, the massive body “m (kg)”
existing in the acceleration field is subjected to the
following force F(N):
j
Fr=mr, 2 dx” dx
/ dr dT (41)

21i _
myJ=go ¢’ T u'u" = ma'

where o/, u* are the four velocity, I'ijk is the
Riemannian connection coefficient, and 1 is the proper
time.

From Egs. (40) and (41), we obtain:
A 'dxj dx*
dr’ *dr dr (42)

i i

2
N E8w€ rjku u*

Eq. (42) yields a more simple equation from the
condition of linear approximation, that is, weak-field,
quasi-static, and slow motion (speed v << speed of
light c:u® = 1):

a' = 8o 'CZF(;O (43)

On the other hand, the major component of spatial

curvature R % in the weak field is given by

ROO ,uO
aor(;# ~3, Tl + Ty T~y I

O™ vO0 Vi

(44)

In the nearly Cartesian coordinate system, the value

Y7
of va are small, so we can neglect the last two
terms in Eq. (44), and using the quasi-static condition

we get
®x~-0 T =-0T, 45
~=0, oo it 00 (45)
From Eq. (45), we get formally
Loy =—[ R™ (x")ax’ (46)

Substituting Eq. (46) into Eq. (43), we obtain

ai — l_ goocszOO (xi)dxi (47)

Accordingly, from the following linear

approximation scheme for the gravitational field

equation: (1) weak gravitational field, i.e. small
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curvature limit, (2) quasi-static, (3) slow-motion
approximation (i.e., v/c<<1), and considering
range of curved region, we get the following relation
between acceleration of curved space and curvature of

space:

. b . .
a' =4-g,c’ L R” (x")dx’ (48)

where @': acceleration (m/s®), o time component
of metric tensor, a-b: range of curved space region (m),
X components of coordinate (i = 0, 1, 2, 3), c:
velocity of light, R : major component of spatial
curvature (l/mz).

Eq. (48) indicates that the acceleration field a' s
produced in curved space. The intensity of
acceleration produced in curved space is proportional
to the product of spatial curvature R and the
length of curved region.

Eq. (41) yields

above-stated linear approximation (u° ~1),

more simple equation from

i i
F'=my\=gycTy =

ma' =my-g,c’ jj R (x")dx'

Setting i = 3(i.e., direction of radius of curvature: 1),

(49)

we get Newton’s second law:

F'=F=ma=

m,/ _goochbROO(”)d” =My ~200¢' T

The acceleration (&) of curved space and its

(50)

. . . . 3 .
Riemannian connection coefficient (I'y,) are given
by:

— &o0,3
2g;

a= =8y To . To= (s1)
where c: velocity of light, goo and gs3: component of
metric tensor,  Zos 00 /0%’ =gy, /Or . We
choose the spherical coordinates “ct=x°, =x" s 6=x1,
@=x" in space-time. The acceleration « is
represented by the equation both in the differential
form and in the integral form. Practically, since the
metric is usually given by the solution of gravitational

field equation, the differential form has been found to

be advantageous.

3. Consideration of Gravity

Let us consider about gravity. Why does apple fall
in the Earth? A well-known answer is that there exists
gravity between Earth and apple. Apple is because it’s

Mm

2
r

to the Earth. Here, M is the mass of Earth, m is the
mass of apple, G is the gravitational constant, r is the

pulled by a law of universal gravitation F =G

distance between Earth and apple, F is the

gravitational force. From a phenomenological
standpoint, it is a sufficient explanation.

However, what is the mechanism? According to
General Relativity, it is said that apple moves
geodesic line formed by curved space near the Earth.
This is seen as lacking in sufficient explanation. The
following explanation may allow someone to
understand the mechanism of gravity.

If we were to visualize the curvature of space
around the Earth (M), we would describe it as
having an aggregation of curved surface. A great
number of thin curved surfaces are arranged in a
spherical concentric pattern. This curvature would
gradually become smaller as we moved away from the
Earth in what we could imagine as layers of an onion.
The surrounding space becomes a flat space of
curvature 0 at an imagined immense distance from the
Earth (Fig. 3).

In the following thought experiment, an apple of
mass m positioned at a distance r apart from the Earth
would receive a pressure of the field formed by an
accumulation of the normal stress (Fig. 3). As was
described earlier, with reference to Fig. 2, the
membrane force on the curved surface and each
principal curvature generates the normal stress “—P”
with its direction normal to the curved surface as a
surface force. The normal stress —P acts towards the
inside of the surface as shown in Fig. 2a.

A thin-layer of curved surface will take into

consideration within a spherical space having a radius
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of R and the principal radii of curvature that are equal
to the radius (R;=R,=R). Since the membrane force N
(serving as the line stress) can be assumed to have a
constant value, the inwardly directed normal stress
serves as a pressure field. When the curved surfaces
are included in a great number, some type of
unidirectional pressure field is formed.

That is, a sort of graduated pressure field is
generated by the curved range from an imaginary
point “a” in curved space to a point “b” (the point at
which space is absent of curvature, i.e., flat space of
curvature 0) (Fig. 3). Then apple moves directly
towards the center of the Earth, that is, the apple falls.
Falling acceleration of apple in curved space is
proportional to both the value of spatial curvature and
the size of curved space.

If the Earth (M) were to disappear instantly, the
curved surface of space close to the Earth would
return to the flat surface. Because an external action
causing curvature (i.e., mass energy) disappears. The
change from a curved surface to a flat surface would
advance the position r of the apple at the speed of light
(i.e., the strain rate of space-time). The propagation
velocity of the change from flat space to curved space
and the propagation velocity of change from curved
space to flat space are both the same, i.e. the velocity

Fig. 3 Apple falls receiving a pressure of the field.

of light.

However, in our thought experiment, the apple
would still receive pressure from the surrounding field
by the accumulation of the normal stress.

Because, since there still exists the curved region
behind the apple from a to b (the remote flat
space), the apple continues falling. The pressure
continues to push the apple to the center of the Earth
(Fig. 4).

However, as soon as the change from a curved
surface to a flat surface passes through the point of the
apple (i.e., “a” point), the pressure at point “a”
disappears and the apple would only float without
falling (Fig. 5).

The above discussion provides a basis to consider
the following thought experiment. Even if the Sun
instantly disappeared, the Earth would still continue to
revolve around the Sun until 8 minutes 32 seconds, or
the time at which it takes light to advance between the
Sun and Earth. However, as soon as the change from
curved surface to flat surface passes through the point
of the Earth, or at 8 minutes 32 seconds after the event,
the pressure pushing the Earth would disappear, and
the Earth would fly away in a direction tangential to
the revolution of its orbit.

O s curved surface

- 5

0 'f- : flat surface
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Fig. 5 Apple only floats without falling due to lack of pressure of the field.

In view of this, gravity may be considered as a

pressure generated in a region of curved space.

4. Conclusion

Assuming that space is an infinite continuum, a
mechanical concept of space became identified. Space
can be considered as a kind of transparent elastic field.
The pressure field derived from the geometrical
structure of space is newly obtained by applying both
continuum mechanics and General Relativity to space.

As a result, a fundamental concept of space-time is

described that
properties of space including strain and curvature. As

focuses on innate

theoretically
a trial consideration, gravity can be explained as a

pressure field induced by the curvature of space.
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Appendix A: Derivation of Eq. (8)

Let us consider two adjacent spatial points A and B in the unreformed space, Fig. 1, which are the end points of a line element

vector ds. During the deformation, point A undergoes the displacement u and moves point A’, while point B experiences a slightly

different displacement u+du when moving to point B’.

From Fig. 1 we read the simple vector equation

ds' =ds+du=ds+g'u,dx’ = g,dx' + g'u, dx’

(A)

We may now write the square of the deformed line element. Since all indices are dummies, they have been chosen so that the final

result looks best. When we multiply the two factors term by term and switch the notation for some dummy pairs, we obtain:

ds"ds'=(g,dx' +g'u,dx') - (g,dx + g'u, dx’) = (g, +2g, g'uy,; + g"uu,,)dx'dx’

Using Eq. (3) and Eq. (1), from Eq. (A2), we get:

ds'z —gijdxidxj = (Zgz : glul;]‘ + gkluk:iul:j )dxidxl

Left side of Eq. (A3):

gy dx'dx’ — g dx'dx’ =(g',—g,)dx'dx’ =r;dx'dx’

(A2)

(A3)

(A4)

/ _ ! _ kl —_ 0. _ .k
Right side of Eq. (A3): considering 2gig u.; = 251 u.; = 2ui:j and 8 Uply; =Uilly; =U illy.; | (changes of the

dummy indices 1—k), then,

(2g, ~g’ul:j + gkluk:[u,:j)dxidxl = (2“;;j +uk:iuk:j)

(AS)
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Since =Ty considering 2”1‘:‘/' =y F U
[ i J _ i J _ k. i J
(g'y—g,)dx'dx’ =r,dx'dx’ =(u,; +u, +u i, ;)dx dx
Finally we obtain:

ds'> —ds® = rydx'dx’ = (u,; +u,; +u"su,;)dx'dx’ (A6)

Appendix B: Derivation of Eq. (13)

Let us suppose that covariant vector A;(P) at point P(x) is transported parallel to Q(x+d1x+d2x) via path I is A4,(Q); - On the
while, covariant vector A;(P) at point P(x) is transported parallel to Q(x+d1x+d2x) via path 1 is A1(Q)H (Fig. B1).

Qifresd 1akd 23)
)

R (s+dix)

-
Plx]
Fig. B1 Parallel transport of vector via two paths.

The result of these parallel transport of vector via two paths does not differ. The difference is indicated by:

A(0), — 4,(Q)y = R o (P)A4, (P)d,x"d,x” (BI)
where Rfits(p) is Riemann curvature tensor at point P.

Considering  4;(Q); +(=4;(Q)y1) , Eq. (B1) indicates the quantum not returned of vector 4;(P) in case that parallel transport

of a vector A;(P) along a closed path has been employed at each segment of the loop P—RI—>Q—R II - P and ultimately
leads back to the point of departure ,i.e., original point P(x) (Fig. B2).
Mathematically, Riemann curvature tensor is the result of a difference that changed the order of the covariant derivatives as seen

Eq. (B2), and its non-commutative part is represented by the Riemann curvature tensor.

Xz’:jk - X’:lg‘ = Rpi/'kXp (B2)

1

Let us consider point R adjacent spatial point P, Fig. B2, which are the end points of a line element vector ds. If vector ds at P(x) is
transported parallel to RI(x+d1x) and thence to Q(x+d1x+d2x), then parallel transport from Q(x+d1x+d2x) to original point P(x) via
R I (x+d2x), the result is the new vector ds .

Parallel transport of a vector ds along a closed path that ultimately leads back to the point of departure will result in a new vector
ds’ at the original point P(x); the new vector ds’ differs from the original vector ds, even though the proper procedure for parallel

transport has been employed at each segment of the loop. ds’-ds indicates the quantum not returned of vector, also is denoted by
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displacement vector du. This arises from nonzero curvature of space.
Another interpretation, two adjacent spatial points P and R in the unreformed space, Fig. B2, which are the end points of a line
element vector ds. During the deformation, P under goes the displacement u and moves P’, while R experiences a slightly different
displacement u+du when moving to R’

These phenomena are equivalent, it is not possible to identify them.

Qlx+d1xrd2x)
udy
daL" /1 du
.r'-' R
P ds
R (x+d1x)
2
ds
P(x]
Fig. B2 Parallel transport of vector along a closed path and displacement vector.
From above, we get:
4(0), - 4,(Q)y; = ds'~ds = R”us(P) A, (P)d,x"d,x° (B3)
Since ds -ds = du, infinitesimal displacement vector du is described in
— — J
du=du;, =u, dx (B4)
4,(0), — 4(Q)y; =ds'-ds = du =u,;dx’ (B5)
Apply a vector A p (P) in Eq. (B3) to a line element vector ds = ds,, from Eq. (BS),
j k
ul.:jdx’ = Rpikadspdlx d2x0 (B6)
Now let us multiply both sides of Eq. (B6) by grp , we get following:
g u, dx’ = R’ ikods"d,x d,x° | then,
ds” dx"
grpu..‘ =R’ —d,x"d,x° = R" o ~d x"d,x° = R”o8"d x"d x7 , finally
i dxj 1 2 dxj 1 2 Jr1 2
g”u,; = R’ iod x"d,x° (B7)

Multiplying both sides of Eq. (B7) by & ,

A . o
88 Uy = & R ko d\ X" d, X7 then applying, &,,&" =0, we get:
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_ k o
u, =R . dx"dx ‘

miko
For convenience, returns the index m to j,
_ k o
u, = Rﬂkadlx d,x

Interchanging index i, j, we get:

_ k o

;= Rijkadlx d,x

On the other hand, using the nature of the Riemann curvature tensor,

R, =-R

Jiko ijko

Subtracting Eq. (B10) from Eq. (B9), we obtain:

_ k o
u, —u,; =—R, dx"d,x" —R

o dx'd,x" =-2R., dx"d,x°

ijko ijko

By continuum mechanics, anti-symmetric part of the displacement gradient tensor represents the rotation tensor w;;,

1
W, = E(uj:i —u;;)
Accordingly, we obtain:

dx'd,x’ =R, _dA*

ijko

1
@, = E(uj:i - ui:j) =R

ijko

where J4%° is the area element enclosed by the vector d, xk and vector a’zxJ .
Thus, changing the dummy of incidences ;, j ko — p,v,k,I » We get finally:

_ K
o, = R deA

where @y, is rotation tensor, J4* is infinitesimal areal element.

(B®)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14)

(B15)



