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Abstract: A mechanical structure of space is suggested. On the supposition that a space as vacuum has a physical fine structure like 
continuum, it enables us to apply a continuum mechanics to the so-called “vacuum” of space. A space is an infinite continuum and its 
structure is determined by Riemannian geometry. Assuming that space is an infinite continuum, the pressure field derived from the 
geometrical structure of space is newly obtained by applying both continuum mechanics and General Relativity to space. A 
fundamental concept of space-time is described that focuses on theoretically innate properties of space including strain and curvature. 
As a trial consideration, gravity can be explained as a pressure field induced by the curvature of space. 
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1. Introduction  

Given a priori assumption that space as a vacuum 
has a physical fine structure like continuum, it enables 
us to apply a continuum mechanics to the so-called 
“vacuum” of space. Minami proposed a hypothesis for 
mechanical property of space-time in 1988 [1]. A 
primary motive was research in the realm of space 
propulsion theory. His propulsion principle using the 
substantial physical structure of space-time is based 
on this hypothesis [2-10]. 

In this paper, a fundamental concept of space-time 
is described that focuses on theoretically innate 
properties of space including strain and curvature. 

Assuming that space as vacuum is an infinite 
continuum, space can be considered as a kind of 
transparent elastic field. That is, space as a vacuum 
performs the motions of deformation such as 
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expansion, contraction, elongation, torsion and 
bending. The latest expanding universe theories 
(Friedmann, de Sitter, inflationary cosmological 
model) support this assumption. Space can be 
regarded as an elastic body like rubber. This 
conveniently coincides with the precondition of a 
mechanical structure of space. 

General relativity implies that space is curved by 
the existence of energy (mass energy or 
electromagnetic energy etc.). General relativity is 
based on Riemannian geometry. If we admit this space 
curvature, space is assumed as an elastic body. 
According to continuum mechanics, the elastic body 
has the property of the motion of deformation such as 
expansion, contraction, elongation, torsion and 
bending. General relativity uses only the curvature of 
space. Expansion and contraction of space are used in 
cosmology, and a theory using torsion has also been 
studied by Hayasaka [11] and twistor theory as 
proposed by Roger Penrose [12] to the torsion of 
space. 
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2. Mechanical Concept of Space 

When we make a comparison between the space on 
the Earth and outer space throughout the universe, 
although there seems to be no difference, obviously a 
different phenomenon occurs. Simply put, an object 
moves radially inward, that is, drops straight down on 
the Earth, but in the universe, the object floats and 
does not move. 

The difference between the two phenomena can be 
explained as whether space is curved or not, that is, 
whether 20 independent components of a Riemann 
curvature tensor is zero or not. In essence, the 
existence of spatial curvature (and curved extent) 
determines whether the object drops straight down or 
not. Although the spatial curvature at the surface of 
the Earth is very small value, i.e., )/1(1042.3 223 m−× , 
it is of enough value to produce 1G (9.8 m/s2) 
acceleration. Conversely, the spatial curvature in the 
universe is zero, therefore any acceleration is not 
produced. Accordingly, if the spatial curvature of a 
localized area including object is controlled to 
curvature )/1(1042.3 223 m−× with an extent, the object 
moves and receives 1G acceleration in the universe. 
Of course, we are required to control both the 
magnitude and extent of curvature. 

2.1 Fundamental Concept of Space 

Space is an infinite continuum and its structure is 
determined by Riemannian geometry. Space satisfies 
the following conditions: 

(1) When the infinitesimal distance regulating the 
distance between the two points changes by a certain 
physical action, the change is continuous, and the 
space maintains a continuum even after its change. 
Now, the concept of strain of continuum mechanics is 
very important in order to relate a spatial curvature to 
a practical force. Because the spatial curvature is a 
purely geometrical quantity. A strain field is required 
for the conversion of geometrical quantity to a 
practical force. 

(2) The spatial strain is defined as a localized 
geometrical structural change of space. It implies a 
change from flat space involved in zero curvature 
components to curved Riemann space involved in 
non-zero curvature components. 

(3) Space has the only strain-free natural state, and 
space always returns to the strain-free natural state, 
i.e., flat space, when an external physical action 
causing spatial strain is removed. 

(4) Spatial strain means some kinds of structural 
deformation of space, and a body filling up space is 
affected by the action from its spatial strain. We must 
distinguish space from an isolated body. An isolated 
body occupies an area of space by its movement. 
Basically, an isolated body can move in space and also 
can change its position. 

(5) In order to keep the continuity of space, the 
velocity of body filling up space cannot exceed the 
strain rate of space itself. 

Since the subject of our study is a four-dimensional 
Riemann space as a curved space, we ascribe a great 
deal of importance to the curvature of space. We a 
priori accept that the nature of actual physical space is 
a four-dimensional Riemann space, that is, three 
dimensional space (x=x1, y=x2, z=x3) and one 
dimensional time (w=ct=x0), where c is the velocity of 
light. These four coordinate axes are denoted as xi (i = 
0, 1, 2, 3). 

The square of the infinitesimal distance “ds” 
between two infinitely proximate points xi and xi+dxi 
is given by equation of the form: 

ji
ij dxdxgds =2

            (1) 

where gij is a metric tensor. 
The metric tensor gij determines all the geometrical 

properties of space and it is a function of this space 
coordinate. In Riemann space, the metric tensor gij 
determines a Riemannian connection coefficient jk

iΓ , 
and furthermore determines the Riemann curvature 
tensor pijkijk

p RorR , thus the geometry of space is 
determined by a metric tensor. 
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Riemannian geometry is a geometry which provides 
a tool to describe curved Riemann space, therefore a 
Riemann curvature tensor is the principal quantity. All 
the components of Riemann curvature tensor are zero 
for flat space and non-zero for curved space. If a 
non-zero component of Riemann curvature tensor 
exists, the space is not flat space, but curved space. In 
curved space, it is well known that the result of the 
parallel displacement of vector depends on the choice 
of the path. Further, the components of a vector differ 
from the initial value, after we displace a vector 
parallel along a closed curve until it returns to the 
starting point. 

An external physical action such as the existence of 
mass energy or electromagnetic energy yields the 
structural deformation of space. In the deformed space 
region, the infinitesimal distance is given by:  

ji
ij dxdxgsd ′=′2             (2) 

where ijg ′  the metric tensor of deformed space 
region, and we use the convected coordinates 
( ii xx =′ ). 

As shown in Fig. 1, if the line element between the 
arbitrary two near points (A and B) in space region S 
(before structural deformation) is defined as

i
idxgds = , the infinitesimal distance between the 

two near points is given by Eq. (1): 
ji

ij dxdxgds =2

 
Let us assume that a space region S is structurally 

deformed by an external physical action and 
transformed to space region T. In the deformed space 
region T, the line element between the identical two 
near point (A’ and B’) of the identical space region 
newly changes, differs from the length and direction, 
and becomes i

idxgsd ′=′ . 
Therefore, the infinitesimal distance between the 

two near points using the convected coordinate 
( ii xx =′ ) is given by: 

ji
ij dxdxgsd ′=′2             (3) 

The ig′  is the transformed base vector from the 

original vase vector ig and the ijg ′  is the 
transformed metric tensor from the original metric 
tensor ijg . Since the degree of deformation can be 
expressed as the change of distance between the two 
points, we get: 

2 2

( )

i j i j
ij ij

i j i j
ij ij ij

ds ds g dx dx g dx dx

g g dx dx r dx dx

′ ′− = −

′= − =
      (4) 

Hence the degree of geometrical and structural 
deformation can be expressed by the quantity denoted 
change of metric tensor, i.e. 

ijijij ggr −′=              (5) 

On the other hand, the state of deformation can be 
also expressed by the displacement vector “u” (Fig. 1).  

From the continuum mechanics [13-16], using the 
following equations: 

j
ji

i dxugdu :=             (6) 

j
ji

i dxugdsdudssd :+=+=′      (7) 

We use the usual notation “:” for covariant 
differentiation. From the usual continuum mechanics, 
the infinitesimal distance after deformation becomes 
[13] (see Appendix A): 

2 2

: : : :( )

i j
ij

k i j
i j j i i k j

ds ds r dx dx

u u u u dx dx

′ − =

= + +
       (8) 

The terms of higher order than second jki
k uu ::  

can be neglected if the displacement is of small 
enough value. As the actual physical space can be 
dealt with the minute displacement from the trial 
calculation of strain, we get: 

ijjiij uur :: +=               (9) 

Whereas, according to the continuum mechanics [13], 
the strain tensor ije  is given by: 

)(
2
1

2
1

:: ijjiijij uure +⋅=⋅=       (10) 

So, we get: 

ji
ij

ji
ijij dxdxedxdxggdssd 2)(22 =−′=−′ (11) 
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Fig. 1  Fundamental structure of space. 
 

where ijij gg ,′  is a metric tensor, ije  is a strain 
tensor, and 22 dssd −′  is the square of the 
infinitesimal distance between two infinitely 
proximate points xi and xi+dxi.  

Eq. (11) indicates that a certain geometrical 
structural deformation of space is shown by the 
concept of strain. In essence, the change of metric 
tensor )( ijij gg −′  due to the existence of mass energy 
or electromagnetic energy tensor produces the strain 
field ije . 

Since space-time is distorted, the infinitesimal 
distance between two infinitely proximate points xi 
and xi+dxi is important in our understanding of the 
geometry of the space-time; the physical strain is 
generated by the difference of a geometrical metric of 
space-time. Namely, a certain structural deformation 
is described by strain tensor ije . From Eq. (11), the 
strain of space is described as follows: 

)'(2/1 ijijij gge −⋅=           (12) 

It is also worth noting that this result yields the 
principle of constancy of light velocity in Special 
Relativity. 

2.2 Mechanics of Space 

Expanding the concept of vector parallel 
displacement in Riemann space, the following 
equation has newly been obtained (see Appendix B): 

kl
kl dARμνμνω =             (13) 

where μνω  is rotation tensor, kldA  is infinitesimal 
areal element.  

According to the nature of Riemann curvature 
tensor klRμν , μνω  indicates the rotation of 
displacement field. Eq. (13) indicates that a curved 
space produces the rotation of displacement field in 
the region of space. Now, the rotation tensor μνω  
and strain tensor ije  satisfy the following differential 
equation in continuum mechanics: 

νμμνμνω ,,, jjj ee −=           (14) 

This equation is true on condition that the order of 
differential can be exchanged in a flat space. To 
expand above equation into a curved Riemann space, 
the equation shall be transformed to covariant 
differentiation and it is possible on condition of

να
α
μμα

α
ν ee jj Γ=Γ . 
Thus, we obtain 

νμμνμνω ::: jjj ee −=           (15) 

Here we use the usual notation “:” for covariant 
differentiation. As is well known, the partial 

derivative j
i

ji x
uu

∂
∂

=,  is not tensor equation. The 

covariant derivative
k
ijkjiji uuu Γ−= ,:  is tensor 

equation and can be carried over into all coordinate 
systems. 
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Eq. (15) indicates that the displacement gradient of 
rotation tensor corresponds to difference of the 
displacement gradient of strain tensor. 

Here, if we multiply both sides of Eq. (15) by 
fourth order tensor denoted the nature of space μνijE
formally, we obtain 

kl
jkl

ij
j

kl
kl

ij
j

ij dAREdAREE ::: )( μν
μν

μν
μν

μν
μνω ==

(16) 
and 

: :

: : : : :( ) ( )

ij ij
j j

ij ij i i ir
j j r

E e E e

E e E e

μν μν
ν μ μ ν

μν μν μ ν
ν μ μ ν μ νσ σ σ

− =

− = − = Δ
(17) 

As is well known in the continuum mechanics 
[13-16], the relationship between stress tensor ijσ  
and strain tensor mle  is given by 

ml
ijmlij eE=σ             (18) 

Furthermore, the relationship between body force 
iF  and stress tensor ijσ  is given by 

j
ijiF :σ=               (19) 

from the equilibrium conditions of continuum. That is, 
the elastic force iF  is given by the gradient of stress 
tensor ijσ . 

Therefore, Eq. (17) indicates the difference of body 
force iFΔ . Accordingly, from Eqs. (16) and (17), the 
change of body force iFΔ (= r

ir
:σΔ ) becomes 

kl
jkl

iji dAREF :μν
μν=Δ          (20) 

Here, we assume that μνijE  is constant for 
covariant differentiation, klA  is area element. 

The stress tensor ijσ  is a surface force and iF  is 
a body force. The body force is an equivalent 
gravitational action because of acting all elements of 
space uniformly. 

Eq. (20) indicates that the gradient of Riemann 
curvature tensor implying space curvature produces 
the body force as a space strain force. The non-zero 
component of Eq. (20) is just only one equation as 
follows: 

3 3330 30
3030 :3

3330 30
3030

( )

( ) /

F F E R A

E R A r∂ ∂

= =

= ⋅
        (21) 

2.3 Generation of Surface Force Induced by Spatial 
Curvature 

On the supposition that space is an infinite 
continuum, continuum mechanics can be applied to 
the so-called “vacuum” of space. This means that 
space can be considered as a kind of transparent field 
with elastic properties. That is, space as a vacuum has 
the elastic properties of expansion, contraction, 
elongation, torsion and bending. The latest expanding 
universe theory (Friedmann, de Sitter, inflationary 
cosmological model) supports this assumption. We 
can regard the space of the cosmos as an infinite 
elastic body like rubber. 

If space curves, then an inward normal stress “－P” 
is generated. This normal stress, i.e. surface force 
serves as a sort of pressure field. 

)/1/1()2( 21
2/100 RRNRNP +⋅=⋅=−  (22) 

where N is the line stress, 1R , 2R  are the radius of 
principal curvature of curved surface, and 00R  is the 
major component of spatial curvature. 

A large number of curved thin layers form the 
unidirectional surface force, i.e. acceleration field. 
Accordingly, the spatial curvature 00R  produces the 
acceleration field α . 

The fundamental three-dimensional space structure 
is determined by quadratic surface structure. 
Therefore, a Gaussian curvature K in two-dimensional 
Riemann space is significant. The relationship 
between K and the major component of spatial 
curvature 00R  is given by: 

00
2

122211

1212

2
1

)(
R

ggg
R

K ⋅=
−

=     (23) 

where 1212R  is non-zero component of Riemann 
curvature tensor. 

It is now understood that the membrane force on  
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the curved surface and each principal curvature 
generates the normal stress “-P” with its direction 
normal to the curved surface as a surface force. The 
normal stress –P acts towards the inside of the surface 
as shown in Fig. 2a. 

A thin-layer of curved surface will take into 
consideration within a spherical space having a radius 
of R and the principal radii of curvature that are equal 
to the radius (R1=R2=R). Since the membrane force N 
(serving as the line stress) can be assumed to have a 
constant value, Eq. (22) indicates that the curvature

00R  generates the inward normal stress P of the 
curved surface. The inwardly directed normal stress 
serves as a pressure field. 

When the curved surfaces are included in a great 
number, some type of unidirectional pressure field is 
formed. A region of curved space is made of a large 
number of curved surfaces and they form the field as a 
unidirectional surface force (i.e. normal stress). Since 
the field of the surface force is the field of a kind of 
force, the force accelerates matter in the field, i.e. we 
can regard the field of the surface force as the 
acceleration field. A large number of curved thin 
layers form the unidirectional acceleration field (Fig. 
2b). Accordingly, the spatial curvature 00R  
produces the acceleration field α . Therefore, the 
curvature of space plays a significant role to generate 
pressure field. 

Applying membrane theory, the following 
equilibrium conditions are obtained in quadratic 
surface, given by: 

0=+ PbN αβ
αβ

           (24) 

where αβN  is a membrane force, i.e. line stress of 
curved space, αβb  is second fundamental metric of 
curved surface, and P is the normal stress on curved 
surface [13]. 

The second fundamental metric of curved space 

αβb  and principal curvature )(iK  has the following 
relationship using the metric tensor αβg ,  

αβαβ gKb i)(=             (25) 

Therefore we get: 

( )

( ) ( ) ( )

i

i i i

N b N K g

g N K N K N K

αβ αβ
αβ αβ

αβ α
αβ α

= =

= = ⋅
      (26) 

From Eq. (24) and Eq. (26), we get: 

PKN i −=)(
α

α              (27) 

As for the quadratic surface, the indices α  and i 
take two different values, i.e. 1 and 2, therefore Eq. 
(27) becomes: 

PKNKN −=+ )2(
2

2)1(
1

1        (28) 

where )1(K and )2(K  are principal curvature of 
curved surface and are inverse number of radius of 
principal curvature (i.e. 1/R1 and 1/R2). 

The Gaussian curvature K is represented as: 

)/1()/1( 21)2()1( RRKKK ⋅=⋅=     (29) 

Accordingly, suppose NNN == 2
2

1
1 , we get: 

PRRN −=+⋅ )/1/1( 21         (30) 

It is now understood that the membrane force on the 
curved surface and each principal curvature generate 
the normal stress “–P” with its direction normal to the 
curved surface as a surface force. The normal stress 
–P is towards the inside of surface as showing in Fig. 2. 

A thin-layer of curved surface will be taken into 
consideration within a spherical space having a radius 
of R and the principal radii of curvature which are 
equal to the radius (R1=R2=R). From Eqs. (23) and 
(29), we then get: 

2
111 00

2
21

R
RRR

K ==⋅=        (31) 

Considering PRN −=⋅ )/2(  of Eq. (30), and 
substituting Eq. (31) into Eq. (30), the following 
equation is obtained: 

002RNP ⋅=−            (32) 

Since the membrane force N (serving as the line 
stress) can be assumed to have a constant value, Eq. 
(32) indicates that the curvature 00R  generates the  
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(a) 

 
(b) 

Fig. 2  Curvature of Space: (a) curvature of space plays a significant role. If space curves, then inward stress (surface force) 
“P” is generated ⇒  A sort of pressure field; (b) a large number of curved thin layers form the unidirectional surface force, 
i.e. acceleration field α . 
 

inward normal stress P of the curved surface. The 
inwardly directed normal stress serves as a kind of 
pressure field. When the curved surfaces are included 
in great number, some type of unidirectional pressure 
field is formed. A region of curved space is made of a 
large number of curved surfaces and they form the 
field of unidirectional surface force (i.e. normal stress). 
Since the field of surface force is the field of a kind of 
force, a body in the field is accelerated by the force, 
i.e. we can regard the field of surface force as the 
acceleration field. Accordingly, the cumulated curved 
region of curvature 00R  produces the acceleration 
field α . 

Here, we give an account of curvature 00R  in 
advance. The solution of metric tensor μνg  is found 
by gravitational field equation as the following: 

μνμνμν π T
c

GRgR ⋅−=⋅− 4
8

2
1

      (33) 

where μνR  is the Ricci tensor, R is the scalar 
curvature, G is the gravitational constant, c is the 
velocity of light, μνT  is the energy momentum 
tensor. Furthermore, we have the following relation 
for scalar curvature R : 

,

,
j ij

j i j

R R g R

R g g R

R R g R

α αβ
α αβ

μν μα νβ
αβ

αβ α β α β

= =

=

= =

         (34) 

Ricci tensor μνR  is represented by: 

)(,, νμ
β

να
α
μβ

β
αβ

α
μν

α
αμν

α
νμαμν RR =ΓΓ+ΓΓ−Γ−Γ=

 
(35) 

where jk
iΓ  is Riemannian connection coefficient. 

If the curvature of space is very small, the term of 
higher order than the second can be neglected, and 
Ricci tensor becomes: 

α
αμν

α
νμαμν ,, Γ−Γ=R           (36) 
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The major curvature of Ricci tensor ( 0== νμ ) is 
calculated as follows: 

000000
000000 11 RRRggR =×−×−==      (37) 

As previously mentioned, Riemannian geometry is 
a geometry that deals with a curved Riemann space, 
therefore a Riemann curvature tensor is the principal 
quantity. All components of Riemann curvature tensor 
are zero for flat space and non-zero for curved space. 
If an only non-zero component of Riemann curvature 
tensor exists, the space is not flat space but curved 
space. Therefore, the curvature of space plays a 
significant role. 

2.4 Acceleration Induced by Spatial Curvature 

A massive body causes the curvature of space-time 
around it, and a free particle responds by moving 
along a geodesic in that space-time. The path of free 
particle is a geodesic line in space-time and is given 
by the following geodesic equation; 

02

2

=⋅⋅Γ+
τττ d

dx
d
dx

d
xd kj

i
jk

i

       (38) 

where jk
iΓ  is Riemannian connection coefficient, 

τ  is proper time, ix  is four-dimensional Riemann 
space, that is, three dimensional space (x=x1, y=x2, 
z=x3) and one dimensional time (w=ct=x0), c is the 
velocity of light. These four coordinate axes are 
denoted as xi (i = 0, 1, 2, 3).  

Proper time is the time to be measured in a clock 
resting for a coordinate system. We have the 
following relation derived from an invariant line 
element 2ds  between Special Relativity (flat space) 
and General Relativity (curved space): 

cdtgdxgd 00
0

00 −=−=τ      (39) 

From Eq. (38), the acceleration of free particle is 
obtained by 

τττ
α

d
dx

d
dx

d
xd kj

i
jk

i
i ⋅⋅Γ−== 2

2

     (40) 

As is well known in General Relativity, in the 

curved space region, the massive body “m (kg)” 
existing in the acceleration field is subjected to the 
following force Fi(N) : 

2
00

j k
i i

jk

i j k i
jk

dx dxF m
d d

m g c u u m
τ τ

α

= Γ ⋅ ⋅ =

− Γ =
          (41) 

where uj, uk are the four velocity, Гi
jk is the 

Riemannian connection coefficient, and τ is the proper 
time. 

From Eqs. (40) and (41), we obtain: 

2

2

2
00

i j k
i i

jk

i j k
jk

d x dx dx
d d d

g c u u

α
τ τ τ

= = −Γ ⋅ ⋅

= − − Γ
        (42) 

Eq. (42) yields a more simple equation from the 
condition of linear approximation, that is, weak-field, 
quasi-static, and slow motion (speed v << speed of 
light c: 10 ≈u ): 

ii cg 00
2

00 Γ⋅−−=α           (43) 

On the other hand, the major component of spatial 
curvature 00R in the weak field is given by 

00
00 0 0

0 0 00 0 0 00

R R Rμ
μ

μ μ ν μ ν μ
μ μ μ ν νμ

≈ = =

∂ Γ − ∂ Γ + Γ Γ − Γ Γ
     (44) 

In the nearly Cartesian coordinate system, the value 
of 

μ
νρΓ  are small, so we can neglect the last two 

terms in Eq. (44), and using the quasi-static condition 
we get 

i
iR 0000

00 Γ−∂=Γ−∂≈ μ
μ       (45) 

From Eq. (45), we get formally 

∫−=Γ iii dxxR )(00
00        (46) 

Substituting Eq. (46) into Eq. (43), we obtain 

∫−= iii dxxRcg )(002
00α     (47) 

Accordingly, from the following linear 
approximation scheme for the gravitational field 
equation: (1) weak gravitational field, i.e. small 
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curvature limit, (2) quasi-static, (3) slow-motion 
approximation (i.e., 1/ <<cv ), and considering 
range of curved region, we get the following relation 
between acceleration of curved space and curvature of 
space: 

α i i i

a

b
g c R x dx= − ∫00

2 00 ( )       (48) 

where iα : acceleration (m/s2), 00g : time component 
of metric tensor, a-b: range of curved space region (m), 
xi: components of coordinate (i = 0, 1, 2, 3), c: 
velocity of light, 00R : major component of spatial 
curvature (1/m2). 

Eq. (48) indicates that the acceleration field iα  is 
produced in curved space. The intensity of 
acceleration produced in curved space is proportional 
to the product of spatial curvature 00R  and the 
length of curved region. 

Eq. (41) yields more simple equation from 
above-stated linear approximation ( 10 ≈u ), 

2
00 00

2 00
00 ( )

i i

bi i i

a

F m g c

m m g c R x dxα

= − Γ =

= − ∫
       (49) 

Setting i = 3(i.e., direction of radius of curvature: r), 
we get Newton’s second law: 

3

2 00 2 3
00 00 00( )

b

a

F F m

m g c R r dr m g c

α= = =

− = − Γ∫
   (50) 

The acceleration ( α ) of curved space and its 
Riemannian connection coefficient ( 3

00Γ ) are given 
by: 

α = − =
−

g c
g
g00

2
00
3

00
3 00 3

332
Γ Γ, ,

    (51) 

where c: velocity of light, g00 and g33: component of 
metric tensor, rgxgg ∂∂=∂∂ 00

3
003,00 : . We 

choose the spherical coordinates “ct=x0, r=x3, θ=x1, 
ϕ=x2” in space-time. The acceleration α is 
represented by the equation both in the differential 
form and in the integral form. Practically, since the 
metric is usually given by the solution of gravitational 
field equation, the differential form has been found to 

be advantageous.  

3. Consideration of Gravity 

Let us consider about gravity. Why does apple fall 
in the Earth? A well-known answer is that there exists 
gravity between Earth and apple. Apple is because it’s 

pulled by a law of universal gravitation  

to the Earth. Here, M is the mass of Earth, m is the 
mass of apple, G is the gravitational constant, r is the 
distance between Earth and apple, F is the 
gravitational force. From a phenomenological 
standpoint, it is a sufficient explanation. 

However, what is the mechanism? According to 
General Relativity, it is said that apple moves 
geodesic line formed by curved space near the Earth. 
This is seen as lacking in sufficient explanation. The 
following explanation may allow someone to 
understand the mechanism of gravity. 

If we were to visualize the curvature of space 
around the Earth (M), we would describe it as  
having an aggregation of curved surface. A great 
number of thin curved surfaces are arranged in a 
spherical concentric pattern. This curvature would 
gradually become smaller as we moved away from the 
Earth in what we could imagine as layers of an onion. 
The surrounding space becomes a flat space of 
curvature 0 at an imagined immense distance from the 
Earth (Fig. 3). 

In the following thought experiment, an apple of 
mass m positioned at a distance r apart from the Earth 
would receive a pressure of the field formed by an 
accumulation of the normal stress (Fig. 3). As was 
described earlier, with reference to Fig. 2, the 
membrane force on the curved surface and each 
principal curvature generates the normal stress “–P” 
with its direction normal to the curved surface as a 
surface force. The normal stress –P acts towards the 
inside of the surface as shown in Fig. 2a. 

A thin-layer of curved surface will take into 
consideration within a spherical space having a radius 
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Appendix A: Derivation of Eq. (8) 

Let us consider two adjacent spatial points A and B in the unreformed space, Fig. 1, which are the end points of a line element 

vector ds. During the deformation, point A undergoes the displacement u and moves point A’, while point B experiences a slightly 

different displacement u+du when moving to point B’. 

From Fig. 1 we read the simple vector equation 

j
ji

ii
i

j
ji

i dxugdxgdxugdsdudssd :: +=+=+=′                       (A1) 

We may now write the square of the deformed line element. Since all indices are dummies, they have been chosen so that the final 

result looks best. When we multiply the two factors term by term and switch the notation for some dummy pairs, we obtain: 

li
jlik

kl
jl

l
iij

j
jl

lj
j

i
ik

ki
i dxdxuugugggdxugdxgdxugdxgdsds )2()()('' ::::: +⋅+=+⋅+=⋅

   
(A2) 

Using Eq. (3) and Eq. (1), from Eq. (A2), we get: 

li
jlik

kl
jl

l
i

ji
ij dxdxuuguggdxdxgds )2(' :::

2 +⋅=−                         (A3) 

Left side of Eq. (A3): 

ji
ij
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ijij

ji
ij

ji
ij dxdxrdxdxggdxdxgdxdxg =−=− )'('                     (A4) 

Right side of Eq. (A3): considering jijl
l
ijl

l
i uuugg ::: 222 == δ and jki

k
jli

l
jlik

kl uuuuuug :::::: == , (changes of the 

dummy indices l→k), then,  

)2()2( :::::: jki
k
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li

jlik
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i uuudxdxuugugg +=+⋅                       (A5) 
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σ
σ xdxdRu k

mikmi 21: = .                                      (B8) 

For convenience, returns the index m to j, 

σ
σ xdxdRu k

jikji 21: =                                          (B9) 

Interchanging index i, j, we get: 

σ
σ xdxdRu k

ijkij 21: =                                       (B10) 

On the other hand, using the nature of the Riemann curvature tensor, 

σσ ijkjik RR −=                                          (B11) 

Subtracting Eq. (B10) from Eq. (B9), we obtain: 

σ
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ijkijji 212121:: 2−=−−=−                   (B12) 

By continuum mechanics, anti-symmetric part of the displacement gradient tensor represents the rotation tensor ωij, 

)(
2
1

:: jiijij uu −=ω                                        (B13) 

Accordingly, we obtain: 
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σω k
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k

ijkjiijij dARxdxdRuu ==−= 21:: )(
2
1

                      (B14) 

where σkdA  is the area element enclosed by the vector kxd1  and vector σxd2 . 

Thus, changing the dummy of incidences lkkji ,,,,,, νμσ → , we get finally: 

kl
kl dARμνμνω =

                                         (B15) 

where μνω  is rotation tensor, kldA  is infinitesimal areal element.  


