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The main objective of this paper is that of surveying both theoretic and econometric models exploring the existence 

of knowledge spillovers and quantifying firm’s ability to identify, assimilate, and exploit existing information 

(absorptive capacity). In so doing, we explore different methodologies through which we may analyze the 

knowledge transmission: both the production function approach and the knowledge function approach. In order to 

construct the spillover stocks, different dimensions are considered: geographic and technological. 
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Introduction 
The diffusion of knowledge regards international technical communication, multinational corporations, 

international trade and direct capital investments among different technological areas. 
Cohen and Levinthal (1989) argue that research and development (R&D) investments have two targets: 

They generate new information (innovation process), and they enhance the firm’s ability to identify, assimilate 
and exploit existing information (learning process or absorptive capacity). 

A fundamental difference between the learning-by-doing process and the absorptive capacity is that in the 
former case, the production of the output becomes more efficient, through the repetition of the industrial 
process, while in the latter one, agents receive new ideas from outside to realize a new product. 

Technological knowledge is a public good, suggesting the existence of the indirect effects of own R&D 
capital on other firms productivity; these effects are generally called spillovers (Griliches, 1992). 

Knowledge external to a production unit is a combination of R&D performed by other production units 
(firms, regions or countries) somehow weighted to account for the intensity of knowledge flows between the 
source and the destination.  

Regardless of the way external knowledge has been measured, its impact has been assessed mainly within 
two different frameworks: by introducing the chosen measure into an aggregate production function or into a 
knowledge production function. In the first case, the aim is to assess the impact of spillovers on productivity, 
while in the second case their effect is measured directly on innovation. 

The paper is organised as follows. Section 2 reviews the main approaches proposed in the literature to 
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formalize the impact of R&D spillovers on firms’ economic performance, while their empirical findings are 
summarised in the section 3. Finally, conclusions discuss some points deserving further research. 

Framework to Formalize the R&D Spillovers: A Review of the Literature 
Technological Proximity  

Knowledge externalities are realized into two steps. Knowledge flows represent the first step and take 
place whenever ideas generated by a firm or country are learned by another firm or country. Such learning 
creates a pool of accessible external knowledge, which has a positive effect on productivity, however measured 
(this is the second step). 

Griliches (1979) identifies two sources of potential externalities generated by R&D activities: rent 
spillovers and pure knowledge spillovers. Rent spillovers arise when the prices of intermediate inputs purchased 
from other firms or countries are not fully adjusted for quality improvements resulting from R&D investment. As 
such, they originate from economic transactions and are the consequence of “measurement errors”. 

By contrast, pure knowledge spillovers arise because of the imperfect appropriability of ideas: The 
benefits of new knowledge accrue not only to the innovator, but “spill over” to other firms or countries, thus 
enriching the pool of ideas upon which subsequent innovations can be based. Hence knowledge spillovers may 
occur without any economic transactions and are not the manifestation of any measurement error. 

Theoretically, the distinction between the two concepts of spillovers seems clear, but their empirical 
identification is rather more complex. One reason for this ambiguity is that economic transactions that originate 
rent spillovers may also imply some knowledge transfers1.  

Further difficulties arise because innovation by competitors may also generate strategic effects. If 
technological rivalry is strong and means of appropriation are effective, firms could find themselves engaged 
into a race for the appropriation of new profitable ideas. As a consequence, the positive technological 
externality arising from other firms’ research can potentially be confounded with a negative effect due to the 
competition. 

A key issue in the empirical analysis on knowledge spillovers is the measurement of the pool of external 
knowledge. This is usually built as the amount of R&D conducted elsewhere weighted by some measure 
proximity in the technological or geographic space, taken to be representative of intensity of knowledge flows 
between the source and the recipient of spillovers. 

Different proximity measures have been used in the literature. The first one was employed by Bernstein 
and Nadiri (1989), who built the pool of knowledge external to a firm as the unweighted sum of the R&D 
spending by other firms in the same industry. The total unweighted stock of R&D spillovers (TUi) is computed 
as follows: 

ii RiRTU −= _                                     (1) 
where R_i is the total amount of R&D performed in i industry, and Ri is firm’s i own R&D expenditure. 

This measure is fairly unsatisfactory as it assumes that a firm equally benefits from R&D of all other firms 
in the same industry and does not benefit at all from R&D conducted by firms in other industries. Results on 
spillovers based on industry measures like this might also capture spurious effects due to common industry 

                                                        
1 As pointed out in Cincera and Van Pottelsberghe de la Potterie (2001), there are also other channels through which rent 
spillovers potentially operate: transaction in investment goods and the use by one firm or country of patents granted to other firms 
or countries. 
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trends and shocks. 
Many authors agree that the measure of technological spillovers should be a weighted sum of R&D capital 

stock of other firms. However, there is not a consensus on the weighting system to be used. The most 
commonly used methods are based on either patent data (Jaffe, 1986; Jaffe, 1988; Los & Verspagen, 2000; 
Cincera, 2005; Aldieri & Cincera, 2009) or input-output matrices (Wakelin, 2001; Medda & Piga, 2004; Aiello & 
Pupo, 2004; Aiello & Cardamone, 2005).  

A complex and commonly used measure of technological proximity was the one introduced by Jaffe 
(1986). According to this procedure, each firm is associated to a vector describing the distribution of its patents 
across technology classes. Such vector represents the firm’s location in multi-dimensional technology space. 
Proximity between two firms is then obtained as the uncentered correlation coefficient between the 
corresponding location vectors. 

According to this procedure, the total weighted stock of R&D spillovers has performed as follows: 
∑=
≠ ji

jiji KPTS                                     (2) 

where Pij is the technological proximity between firm i and j, Kj is firm’s j R&D capital.  
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where T is the vector of technological position, regarding K industries. 
From an empirical perspective, the questions to deal with before measuring the proximity between the 

firms are relative to the choice of the variables which define the technological space. Several authors (Jaffe, 
1986; Los & Verspagen, 2000; Cincera, 2005; Aldieri & Cincera, 2009) argue that patent data allow the 
definition of an innovative space, others use investments in R&D (Harhoff, Narin, Schrer, & Vopel, 1999; 
Adams & Jaffe, 1996), Inkmann and Pohlmeier (1995) consider a set of firm characteristics, such as size, 
demand expectations, industry affiliation, while Aiello and Cardamone (2008) take into account investments in 
ICT, the internal and external R&D investments, the ratio between the number of skilled workers and the 
number of unskilled workers and the Herfindahl-Hirschman index, as a measure of market concentration in the 
sector which the firm belongs to. 

The index of technological distance relies on the strong assumption that the appropriability conditions of 
knowledge are the same for all firms (Jaffe, 1988). The more the outcomes of R&D activities are appropriable, 
the less there will be flows of knowledge between R&D performers and the potential users of this knowledge. 
In estimating the spillover effects, one should use industrial or technologically narrowly defined sector 
dummies. Since these variables are not observable at the firm level, their direct assessment is hard to pick up. In 
panel data context, in order to attenuate this matter, one may assume that these firms’ specific unobserved 
effects are constant over the period considered. 

The question of whether firm’s position into the technological space is fixed or not is another issue which 
is empirically difficult to verify. Indeed, firms’ R&D activities evolve over time, so does their technological 
position. However, there is reason to claim that over a short time period, the firms’ position in the technological 
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space is to be fixed. 
Another drawback of this procedure is that the uncentered correlation index for measuring technological 

proximities is a symmetric index. The technological proximity of firm A and firm B is the same as the one 
between the firm B and firm A. 

It would be interesting to use an asymmetrical index so one could separate the ability of firm A in 
capturing benefits from firm B’ R&D from the one of firm B. Indeed, large and diversified firms have relative 
advantages in appropriating results from outside R&D.  

In order to attempt to overcome the unrealistic assumption of symmetry, Aiello and Cardamone (2008) 
assumed that the firm’s absorptive capacity is strongly dependent on the quality of its human capital (Lucas, 
1988; Vinding, 2006; Wang, 2007). For this reason, they multiply equation (3) by the following expression: 
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where the variable h is a measure of human capital (such as the years of schooling). 
One alternative to Jaffe’s procedure is to use Euclidean distance between technological vectors endpoints2. 

But this measure depends on the technological vector’s length. The more the firms are diversified, the lesser the 
length of their technological vectors will be. They will be close each other even if their technological vectors 
are orthogonal, because they will be located in a central region of the technological space. The uncentered 
correlation coefficient is independent of technological vectors’ length. A second possibility is to depart from 
the uncentered correlation proximity measure and apply some transformations to it. Suppose that the 
technological distance is Pij = 0.5. We could investigate whether firms benefit more or much less from R&D 
spillovers than firms at the extreme, i.e., firms very close or very distant from other firms by assuming that the 
technological distance of firms is a multiplicative function of the Pij Another possible transformation is to look 
at the logarithmic reciprocal function. Formally, the transformed Pij lead to the following formulation: 
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ijij PP =*                                        (5) 

for the multiplicative function, and: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ij
ij P

P 11*exp** φ                                (6) 

for the reciprocal logarithmic one. 
The shapes characterizing these transformed proximity measures depend on the parameters φ  and ϕ  of 

the reciprocal logarithmic and multiplicative functions. The different proximity measures can be tested by 
letting the parameter of each function vary over a range of values and see what happens, from a statistical point 
of view, i.e., in terms of the regression’s overall fit and estimated standard errors associated with the estimated 
spillover variables. 

Geographic Proximity 
It is worth noting the geographic dimensions of knowledge spillovers. The innovation production function 

was aspatial or insensitive to issues involving location and geography. Empirical results hinted that knowledge 
production had a spatial dimension. Armed with a new theoretical understanding about the role and significance 
of knowledge spillovers, and the manner in which they are localized, some economists began to estimate the 
                                                        
2 See Cincera (2005) for an empirical application of the Euclidean distance to technological proximity. 
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knowledge production function with a spatial dimension. Location and geographic space have become key 
factors in explaining the determinants of innovation and technological change. 

It is commonly agreed that the flows of innovation depend not only on the technological, but also on the 
geographical distance between firms: face-to-face contacts enhance knowledge spillovers whatever the 
technological proximity. Much important knowledge is tacit and dependent on the particular circumstances of time 
and place, and therefore cannot be acquired by traditional market research procedures or transmitted by 
long-distance learning. Even though experienced people can be relocated and modern transportation makes it easier 
than ever to carry people from one location to another, there is no better way to have frequent interaction between 
individuals than by close geographical proximity (Gertler, 1995; Von Hippel, 1994), according to Macdonald 
(1992): Individuals work for firms and much of their value to their employers is related to network membership.  

Geographical proximity often greatly facilitates the building of bonds of trust between people, because of 
the frequent interactions and long-term contracts or commitments between people that it allows in both working 
environments and social activities. 

Interaction with customers and suppliers, along with information about new technologies and ways to deal 
with non routine situations, is critical to business success. Even though many people maintain that such 
knowledge can be conveyed over screens and telephone calls, the fact remains that much useful economic 
information and technical know-how still remain in a tacit, rather than explicit, form. As such, most valuable 
knowledge is embodied in people and is not amenable to any formalized mode of communication. One of the 
ways that firms’ owners and employees can tap into the tacit knowledge of other people is by being located in 
close geographical proximity to them. As we argued, such industrial concentration favors the mobility of 
skilled workers from one firm to another, makes interactions between producers and users much easier, 
enforces reputation effects, lessens the risks of opportunistic behaviour and therefore facilitates exchange of 
information between competitors. The localization of a firm within a relevant industrial district can enhance the 
capability of its employees to generate, diffuse and absorb tacit knowledge, thereby facilitating day-to-day 
problem solving. 

If geographic concentration is not a sufficient condition for innovation, it nonetheless remains a great 
facilitator in the transmission of tacit knowledge. 

Also to identify a geographic proximity measure there exist different techniques. 
According to one methodology, each firm of the sample is to be located into a multi-dimensional space. 

To this end, each firm is assumed to exist at the geographic centroid of the county location of its corporate 
headquarters. A circle is effectively drawn around each firm, and all other firms that fall inside the circle are 
defined geographically near. The remaining firms are defined as geographically distant. 

Specifically, each firm’s geographic location is defined with the state and county name. Each observation 
in the dataset reports the latitude and the longitude of the geographic centroid of a county in degrees, minutes, 
and seconds. The distance between any two firms in a given year is then computed as the distance between their 
respective county centroids. Assuming a spherical earth of actual earth volume, the arc distance in miles 
between any two firms i and j can be derived according to the Haversine formula: 
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where 3.959 is the radius of the earth in miles; latitude and longitude values are in radians.  
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Use of corporate headquarters to represent firm location may be questionable for the purpose of spillover 
detection. One may argue that our true interest is in the location of innovation, not necessarily in the location of 
corporate headquarters. However, if firms view R&D as their most strategically important investment they are 
likely to locate this activity close to corporate headquarters. 

Furthermore, while R&D may be a reasonable proxy of the scale of a firm’s innovative activity, 
spillovers from this implied knowledge base may emerge from any of the locations that compose the firm: 
R&D facilities, production facilities, or corporate headquarters. Thus, corporate headquarters may be as a 
good proxy of firm location. 

The Directory of American Research and Technology 1993 was consulted to establish the reasonableness 
of the claim that corporate headquarters may be useful proxy for the source location of R&D spillovers. 

Another way to take into account the geographic space is to consider the following model: 
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where ΔAi represents the change over the considered period of the stock of knowledge originated in region i. 
Expression (8) says that innovation in region i depends on the Cobb-Douglas combination R&D resources used 
in region i, and on ideas available to the region at the beginning of the period.  

The elasticity of innovation to R&D resources is measured by a. Ideas generated in region i, enter with 
elasticity b, while ideas generated in other regions enter with elasticity c that depends on the distance in 
kilometres between region i and region j. In particular, one may assume that embodied knowledge does not 
diffuse passed a maximum distance K, and that its impact depends on the distance between regions as a step 
function. Hence the function c(dist) is equal to ck/nik for distij∈K, with ( ) ( ) ( ){ }∞= ,,...,,,, 2110 KdistdistdistdistK . 
The index K captures a sequence of distance intervals within which the step function is constant and nik is the 
total number of regions in the distance-interval k from region i. The assumption of no diffusion beyond distance 
K implies 0),( =∞kc . The specified diffusion process implies that innovation in region i depends on the 
average stock of ideas generated in regions within the distance-interval K with different sensitivities c for 
different distance-intervals. 

Finally, it is possible to use the great circle formula, which yields the shortest distance between two points 
on a sphere (Aiello & Cardamone, 2008). Within each pair of firms i and j, the distance between them (dij) is 
computed by considering the distance between the administrative capital of the provinces where the firms 
operate. Given the distance (dij) between a pair of firms, an index of the geographical proximity is: 
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where is equal to one when dij = 0, that is when the firms i and j are in the same province, and it is zero when  
dij = max(dij), that is the distance between i and j equals the maximum distance in a given sample. 

Although the proximities based on the technological or geographic space are less likely to be contaminated 
by pecuniary externalities and common industry effects, evidence of its positive impact on productivity may 
still be unrelated to knowledge spillovers, but rather the result of spatially correlated technological 
opportunities. According to Griliches (1992), if new opportunities exogenously arise in a technological area, 
firms active in that area will increase their R&D spending and improve their productivity. This would 
erroneously show up a spillover effect.  
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Production Function Approach  
Various approaches have been adopted in the attempt to estimate the effect of spillovers. The most widely 

used has been to introduce a measure of potential pool of external knowledge into a standard production 
function framework (Griliches, 1979), either at the firm or at the more aggregate (industry, region, country) 
level, with the ultimate aim to assess the impact of accessible external R&D on total factor productivity (TFP).  

Formally we get: 
ititititittiit XLkC= lnY εγβββλα ++++++ lnlnlnln 321                   (10) 

where:  
ln is the natural logarithm;  
Lit is the employment of firm i at time t;  
Kit is the stock of R&D capital;  
Yit is the value-added of firm i at time t;  
Cit is the stock of physical capital;  
αi is the firm’s specific effect;  
λt is a set of time dummies;  
Xit is a vector of spillover components;  
γ is its associated vector of parameters;  
εit is the disturbance term.  
Estimation error imposed by the use of sales, instead of value-added if not available, as a proxy for output 

will be confined to the constant term if the charges are some fixed proportion of sales. This assumption will be 
valid in a panel data setting where a firm fixed-effects model is used. To the extent that variation in materials 
and energy fraction of sales is an industry or region fixed effect, this assumption should be reasonable in the 
cross-section through use of industry-and state-specific dummies. 

In order to construct the stock of R&D capital it is possible to use the perpetual inventory method 
(Griliches, 1979). This method assumes that the current state of knowledge is a result of present and the past 
R&D expenditures: 
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where Kit is the knowledge capital or the own R&D stock of firm i at time t. Rit is the R&D expenditures and 
1-∂ is the rate of depreciation of the knowledge capital. 

Regarding the value of the depreciation rate, most studies assume a depreciation rate of 15%. By assuming 
a log-log functional form of Cobb-Douglas production function, Griliches and Mairesse (1983, 1984) and Hall 
and Mairesse (1995) have experimented with different values of ∂ and they have found small changes if not at 
all in the estimated effects of R&D capital. 

The initial knowledge capital is constructed as in equation (11), and by assuming a growth rate of R&D 
equal to g: 
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Here also, a growth rate of 5% is usually assumed. Regarding the timing of R&D effects, it is to be 
expected that R&D activities do not have an immediate impact on firms’ economic performances. Evenson 
(1968) examines aggregate data for U.S. agriculture and concludes that the lag structure of R&D takes an 
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inverted V shape. He concludes that the peak weight from R&D flows is at five to eight year lags and little 
contribution is received from R&D expenditure at lags in excess of 10 to 16 years. But Wagner (1968) provides 
survey evidence that these lags are much shorter for industrial R&D, perhaps reflecting the more applied nature 
of private R&D expenditures. 

Terleckij (1974) suggested also an alternative method to construct the R&D stock of knowledge. This 
approach estimates the rate of returns to R&D instead of its elasticities. To this end, the firm’s own R&D 
capital is replaced by the firm’s R&D intensity measured as the ratio between the level of R&D expenditures 
and the firm’s output, i.e., net sales or added value. 

Since Cobb-Douglas specification is somewhat restrictive in that it requires the elasticity of substitution 
between factors to be unity, Aiello and Cardamone (2008) adopted a translog production function. This is a 
generalization of the Cobb-Douglas and allows to determine to what extent external technology is 
complementary to or a substitute for private inputs (i.e., labour, physical, human and technological capital). 
Indeed, we may consider the elasticity of substitution proposed by Morishima (1967), which is a measurement 
of how the s, k input ratio responds to a change in the kth price. Thus, two inputs are substitute (complements) 
when the Morishima elasticity (which is not symmetric) is positive (negative). 

Aiello and Cardamone (2008), for example, find that labour and physical capital, and labour and R&D 
spillovers are Morishima substitutes, while R&D capital and R&D spillovers are Morishima complements. 

Knowledge Approach 
Difficulties in measuring prices precisely and adjusting them for quality improvements make the 

production function approach not particularly suited to distinguish technological externalities from pecuniary 
externalities. 

For this reason, some authors have implemented the “knowledge production function” methodological 
framework introduced by Pakes and Griliches (1984). Within this framework research, efforts and knowledge 
spillovers are mapped into knowledge increments, most often proxied by patents. Since the production of 
innovation (patents) does not require intermediates inputs and is not evaluated using prices, but simply the 
quantity of innovations, it minimises the role of rent externalities. 

Patents are count data and occur in integers. These characteristics are known to generate bias in estimates 
of the log-linear models and motivate the estimation of alternative non-linear models. 

Regardless of the model chosen (linear versus non-linear), a concern in the estimation of equations resides 
in the complex structure of the individual effect, which is characterized by correlation across panels, hence by a 
residual variance-covariance matrix that is not longer block diagonal. If such correlation is ignored, inferences 
based on OLS or random effect estimation might then be mislead since estimated standard errors are biased 
downward. By contrast, fixed effect estimates are conditional on the individual effects which leaves the 
standard errors unaffected. Furthermore, fixed effects methods ensure consistency in the presence of correlation 
between the explanatory variables and the individual effects. For the above reason, fixed effect methods, 
although inefficient, are to be preferred. 

The basic model found in the literature to handle count data is the Poisson model, which has been 
extensively used to model patents as a function of R&D (Hall, Hausman, & Griliches, 1984). 

This model estimates the relationship between the arrival rate of patents and the independent variables. 
The dependent variable yit is assumed to have a Poisson distribution with parameter μit which, in turn, depends 
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on a set of exogenous variables xit according to a log-linear function: 
itiit xln βαμ +=                                     (13) 

where αi captures the individual effect. 
The fixed effects Poisson regression model allows for unrestricted heterogeneity across individuals, but 

requires the mean of counts for each individual to be equal to its variance, i.e., ititit yVyE μ== )()( . This is 
an undesired feature whenever there is an additional heterogeneity not accounted for by the model, when the 
data show evidence of overdispersion. Such problem might be dealt with by assuming that the variable yit has a 
negative binomial distribution (Hall, Hausman, & Griliches, 1984), which can be regarded as a generalisation 
of the Poisson distribution with an additional parameter allowing the variance to exceed the mean.  

In the Hall, Hausman and Griliches’s (1984) negative binomial model it is assumed that itity γ/ ~Poisson 
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to the following density function: 
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where Γ is the gamma function. Looking at the within-group effects only, this specification yields a negative 
binomial model for i-th individual with: 
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Under this model the ratio of the variance to the mean (dispersion) is constant within group and equal to 
(1+θi). 

Recent macroeconomic modelling has underlined the importance of knowledge spillovers, and 
externalities suggest that the equilibrium path of productivity growth may differ according to the extent of the 
diffusion of knowledge. In general endogenous, growth is guided by disembodied knowledge spillovers and the 
possibility to re-use existing knowledge may produce increasing returns and long run welfare effects. These 
knowledge driven macroeconomic models bring the attention to the different effects on growth rates of the 
different types of knowledge flows and push the empirical research to enquire in depth the processes of 
knowledge accumulation and decay and the different channels along which ideas may be transferred. 

In fact, recent works have shown the usefulness of patent citations for exploring knowledge flows across 
regions, countries and technologies3. In the patent documents citations are used by examiners and applicants to 
show the degree of novelty and inventive step of the claims of the patent. They are located in the patent text, 
usually by either the inventor’s attorneys or by patent office examiners and, once published, provide a legal 
delimitation of the scope of the property rights. Therefore citations identify the antecedents upon which the 
invention stands and, for this reason, they are increasingly used in economic research to gauge the intensity and 
geographical extent of knowledge spillovers and to measure the economic value of innovations.  

The use of patent citations as an index of knowledge flow has been validated by a survey of inventors 
(Jaffe & Trajtenberg, 1999, for the USPTO) and corroborates substantial evidence on the type and nature of 
knowledge spillovers (Maurseth & Verspagen, 2002). Moreover patent citations are correlated with the value of 
patents and, in particular, recent work has shown that patent citations increase the market value of firms (Hall, 
Lotti, & Mairesse, 2006) and that the number of citations is correlated with the reported value of the inventors 
                                                        
3 See Peri (2005) for a relevant empirical analysis of regional knowledge flows by patent citations. 
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and with the payment of patent renewal fees (Haroff et al., 1999). 
If patent citations are an important track of knowledge spillovers and if forward citations are an important 

indicator of the economic value of innovative activity, the timing of the flow of citations and, in particular the 
citation-lag distribution, becomes extremely relevant. This is because the citation-lag distribution indicates for 
how long new technical knowledge spills over (identifying therefore a process of knowledge diffusion and 
obsolescence) and the time is needed to observe a sufficient number of forward citations and, consequently, to 
evaluate the importance of the invention.  

Absorptive Capacity: Definition and Measurement Issues  
The traditional definition of absorptive capacity is in Cohen and Levinthal’s seminal paper (1989): It is the 

ability to recognize the value of new information, assimilate it, and apply it to commercial ends. For this reason, 
the absorptive capacity depends crucially on prior related knowledge. The authors make the investment in R&D 
the fundamental element in their model of development of the absorptive capacity. The particular characteristic 
of this issue is its cumulativeness, in the sense that a firm has to invest on a constant basis in it. 

Beyond the investment in R&D to develop own absorptive capacity, other researchers have enriched its 
definition to analyse an organization’s absorptive capacity. According to Zahra and George (2002), it is a set of 
organizational routines and processes by which firms acquire, assimilate, transform and exploit knowledge to 
produce a dynamic organizational capability. In particular, the authors distinguish two notions of absorptive 
capacity: the potential and the realized one. 

The former consists in the firms’ ability to identify and assimilate externally generated knowledge. Zahra 
and George (2002) consider the number of years of experience of the R&D department and the amount of R&D 
investment as signals of firms’ knowledge acquisition activity, while the number of cross-firm patent citations, 
the number of citations made in a firm’s publication to research implemented in other firms, as signals of the 
assimilation activity. 

The latter consists in the firm’s ability to combine existing knowledge and the newly acquired knowledge. 
The number of new product ideas and the number of new research projects may be treated as possible signals of 
firm’s transformation activity. The realized absorptive capacity is also the firm’s ability to apply the new 
assimilated knowledge in profitable products and services. The number of patents and the length of product 
development cycle could be signals of the firm’s exploitation activity. 

To measure the absorptive capacity of a firm, there exist different ways in the econometric models. In the 
production function approach context, the authors assume that the elasticity of output (or value added) to 
national or foreign stock of spillovers depends on the chosen measure of absorptive capacity, which generally is 
represented by own R&D capital. The positive effect of the interaction between own R&D capital and the 
spillover pool term indicates the firm’s ability to absorb new ideas from outside, while its negative effect gives 
evidence of necessity to invest more in own R&D. Indeed, in this last case, a firm with low innovation rate 
cannot use other firms’ new ideas and the competitive effect leads to a negative effect of the spillover pool. In 
the knowledge production function approach context, the researchers use information about self citations to 
takes into account the magnitudes of the absorptive capacity. A self citation indicates that a firm did some 
research in the past and that it has now generated a new idea building upon previous research in the same or in 
a related technology field. As such, self citations are a clear indication of accumulation of knowledge internal 
to the firm. The higher the average number of self citations in a sector, the more firms innovating within such 
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sector build upon internal knowledge in generating new ideas. If the absorptive capacity argument is correct, 
then such firms should also display a higher ability to understand and exploit external knowledge. A way to 
formalise this is to allow the elasticity of innovation (patents) to spillover pools to depend on the chosen 
measure of the absorptive capacity. In this case the aim is to assess whether the elasticity is indeed higher the 
more firms have been engaged into R&D activities in the same or related technological areas. Also in this case, 
we consider the interaction term between self citations and the spillover pool in the econometric model. 

Empirical Evidence 
In Table 1, we summarize empirical findings of models considering different dimensions of knowledge 

spillovers: technological and geographic. 
 

Table 1 
Comparative Analysis Based on Technological or Geographic Proximity 

Study Data Model Estimation S.E. 

Jaffe (1986) 432 firms from 
NBER R&D  

OLS First-Diff 
3SLS 

Spillover effect 
0.628 (OLS) 
0.179 (First-Diff) 
0.509 (3SLS) 

 
0.11 
0.06 
0.10 

Orlando (2004) 515 US firms 
1972-1995 

Within, between 
groups 

Within 
GNTN: 0.010 
GNTd: 0.005 
GdTN: 0.011 
GdTd: 0.000 
Between 
GNTN: 0.032 
GNTd: 0.009 
GdTN: 0.030 
GdTd: 0.002 

 
0.004 
0.005 
0.001 
0.001 
 
0.007 
0.002 
0.003 
0.001 

Bottazzi and 
Peri (2003) 

86 European regions 
over 1977-1995 OLS 

Spillover 
0-300km: 0.025 
300-600km: -0.007 
600-900km: -0.004 
900-1,300km: -0.007 
1,300-2,000km: -0.018 

 
0.01 
0.01 
0.01 
0.01 
0.01 

Aiello and 
Cardamone (2008) 

1,203 Italian 
manufacturing firms 
over the period 
1998-2003 from 
Capitalia dataset 

Two steps: Probit 
and 3SLS 

(1) Symmetrical technological similarity: 0.27 
(2) Asymmetrical technological similarity: 0.13 
(3) Geographical proximity: 0.35 
(4) Asymmetrical technological and 

geographical proximity: 0.34 

0.008 
0.006 
0.009 
0.009 
 

Aldieri and 
Cincera (2009) 

808 International 
firms over 1988-1997 GMM-SYS Technological proximity: 0.61 

Geographic proximity: 0.41 
0.032 
0.023 

 

In particular, Jaffe (1986) introduces an interesting procedure to estimate spillover effects. Indeed, he 
constructs a technological space for the firms, and computes the proximity measure among them by the 
uncentered correlation coefficient, described in the previous section. In particular, he considers the number of 
patents as dependent variable and implements different econometric models, OLS, First-Differences and 
3 Stages-Least-Squares (3SLS). He finds a positive effect of spillover pool on the firm productivity. 

Orlando (2004) examines whether the geographic and technological distance attenuate inter-firm 
spillovers from innovative activity. The author distinguishes four spillover stocks: both geographically and 
technologically near firms (GNTN), geographically near and technologically distant firms (GNTd), geographically 
distant and technologically near firms (GdTN) and both geographically and technologically distant firms (GdTd). 
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Parameter estimates obtained in a production function framework indicate that spillovers are significant 
and important from geographically and technologically proximate R&D stocks. Results from the general 
analysis suggest that the importance of geographic proximity is conditional on technical relation between 
spillover sending and receiving units. Spillover from R&D outside a firm’s own narrowly defined industry 
group is increasing in geographic proximity. However, R&D spillovers from within a firm’s own industry are 
insensitive to distance. Conversely, evidence that technological similarity accentuates spillover is insensitive to 
distance between spillover sending and receiving units.  

In contrast, returns from the R&D of technologically distant firms are sensitive to geographic proximity to 
the spillover receiver. The finding that R&D spillovers are largest among firms in the same narrowly defined 
industry may support arguments in defence of increased concentration in particular industries. To the extent 
that dominant firms internalise a larger fraction of total returns to innovative activity they will invest in more of 
it. Among technologically similar firms, the partial spillover enhancing effect of geographic proximity is much 
less significant. A defence of mergers between firms in a particular geographic region therefore may not be 
justified by the internalisation of knowledge spillover argument.  

Bottazzi and Peri (2003) estimate the effect of research externalities across geographic space, in 
generating innovation. They do so, using R&D and patent data on 86 European regions over 1977-1995. They 
claim that new knowledge, when codified, is available to everybody and therefore is a public good which 
influences the potential for new ideas everywhere in the world. However, new ideas which are not perfectly 
codified are embodied in people. Thus, they estimate the elasticity of innovation to R&D and they find it to be 
positive and significantly different from 0 only for R&D done within 300 km of distance from a region. Its 
magnitude, though, is quite small: Doubling R&D in a region would increase by 2%-3% the patenting activity 
in another region within 300 km of distance. The small size and the short range of these effects is consistent 
with the idea that such spillovers are the result of diffusion of non-codified knowledge between people who 
have frequent interactions. There is reason to claim that in Europe people commute and interact quite 
frequently within regions, while much less so if a longer trip is required. Moreover, they commute and interact 
more within than across countries and therefore a small border effect on these spillovers is detected. The range 
of these spillovers could very well be that of frequent face-to-face interactions, while the rest of knowledge 
flows is codified format and is not sensitive to the distance. 

Aiello and Cardamone (2008) consider and compare different measurement methods of external 
technology to understand whether the role of R&D spillovers is sensitive to the method used to weight the 
flows of innovation across firms. They assume that the greater the similarity between two firms in terms of size 
and R&D efforts, the more they will absorb each other’s technology. To overcome the problem that the 
similarity index produces a symmetric weighting scheme, the authors consider an asymmetric transformation of 
the uncentered correlation (see 2.2 for a description of their procedure). Econometrically, they use two steps: in 
the first step, they run the selection model that leads the firms to invest, or not, in R&D. In the second step, they 
estimate a translog production function with the 3SLS method. Data are from Capitalia and are relative to a 
balanced panel data of 1,203 manufacturing firms over the period 1998-2003. They find that the output 
elasticity with respect to R&D spillovers is always positive and significant. The geographical proximity is 
relevant in determining the result that the regressions based only on the asymmetric index of technological 
similarity underestimate the impact of R&D spillovers. 

Aldieri and Cincera (2009) investigate the extent to which R&D spillover effects are intensified by both 
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geographic and technological proximities between spillover generating and receiving firms. In particular, for 
the technological proximity, the authors use the distances of firms into a technological space constructed on the 
basis of the distribution of firms’ patents across technological fields. In order to identify the geographical 
distance between the firms, the authors use the Haversine formula. From the empirical results of the 
GMM-SYS estimated model, we get that both the geographic and technological based R&D spillovers stocks 
have an important and positive impact on the productivity growth of firms. 

In Table 2, we consider the models trying to quantify the magnitude of the absorptive capacity of the 
firms. 
 

Table 2  
Comparative Analysis on Absorptive Capacity 

Study Data Model Estimation S.E. 
Griffith, Redding and  
Van Reenen (2003) 

1801 US firms over 
1974-1990 Within groups 1.00 0.34 

Grunfeld (2002) 105 firms in Norway 
1989-1996 Fixed-effect model Domestic spillovers: -0.6513 

Foreign spillovers: 0.8554 
0.22 
0.26 

Mancusi (2008) 
Patent citations data on 
14 OECD countries over 
1978-2003 

Negative Binomial 
model 

Leaders 
National spillovers: 0.05 
International spillovers: -0.13 

Followers 
National spillovers: -0.16 
International spillovers: 0.29 

 
0.14 
0.11 
 
0.11 
0.05 

Aldieri and Cincera 
(2009) 

808 International firms 
over 1988-1997 GMM-SYS Technological proximity interaction: 0.14 

Geographic proximity interaction: 0.11 
0.013 
0.013 

 

Griffith, Redding and Van Reenen (2003) start from a structural model of endogenous growth following 
Aghion, Howitt (1992), then they provide microeconomic foundations for the reduced-form equations for total 
factor productivity growth frequently estimated empirically using industry-level data. They think that R&D 
efforts affect both innovation and the assimilation of others’ discoveries (absorptive capacity). Indeed, the 
theoretical model identifies three key sources of productivity growth: R&D-induced innovation, technology 
transfer, R&D-based absorptive capacity. While microeconometric literature on R&D and productivity 
concentrates on the first, the empirical literature on productivity convergence focuses on the second. The 
authors find that all three sets of considerations are statistically and economically important, and confirm a key 
empirical prediction of the theory that an interaction term between R&D and distance from the technological 
frontier should have a positive effect on productivity growth. 

In Grunfeld (2002) the absorptive capacity of an industry, measured in terms of its R&D intensity, helps to 
take advantage of the R&D content flowing to the industry through imports. Thus, the study gives support to 
the importance of learning ability in the search of international R&D spillovers. This is not the case however 
for domestic R&D spillovers. He argues that industries with a high R&D intensity often operate close to the 
technological frontier and find only productive spillovers from firms or industries that are equally advanced or 
even closer to the technological frontier. If such firms or industries are located abroad, there is little to learn 
from domestic sources. 

Mancusi (2008) uses patent applications at the European Patent Office (EPO) and their citations from 
1978 to 2003. The analyses explore applications at the EPO by firms located in 14 OECD countries. She 
implements an econometric model based on knowledge production function approach to pick up the absorptive 
capacity of the firms. In so doing, she considers the interaction between the self citations and the spillover pools 
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terms, that is the national and the international stock of spillovers, computed taking into account the patent 
citations data. The empirical results show that absorptive capacity increases the elasticity of a laggard country’s 
innovation to international spillovers (the so called “followers”), while its marginal effect is negligible for 
countries at the technological frontier (the so defined “leaders”). 

Aldieri and Cincera (2009) also control for the firm’s ability to identify, assimilate and absorb the external 
knowledge stock. Including the firms’ own R&D stock, the spillover variables and the interaction between the 
two simultaneously in a Cobb-Douglas production function, the authors find a complementarity effect between 
own R&D and both sources of R&D spillovers.  

Schmidt (2010) show that R&D activities may not be useful to influence the firms’ absorptive capacity. 
This depends on the type of knowledge the firms have to exploit. In particular, the author empirically explore 
the effect of R&D activities, human resources and knowledge management, and the organization of knowledge 
sharing within a firm on the absorptive capacity of firms for three types of knowledge: absorptive capacity of 
knowledge from a firm’s own industry, knowledge from other industries and knowledge from research 
institutions. He finds that R&D intensity does not significantly affect absorptive capacity for intra- and 
inter-industry knowledge. 

Conclusions 
This work has provided an assessment of the recent literature on the knowledge spillovers and the 

absorptive capacity of the firms. 
We have described the main econometric techniques to construct knowledge spillover pool, and then we 

have showed their empirical evidence. To this end, we have considered two possible dimensions: technological 
or geographic. If the concept of a technological space is very attractive, its measure is not direct and the choice 
of a distance metric can affect the nature of results. There is also the question of heterogeneity in the 
technological space. Moreover, given the positioning of firms into the technological space, we cannot know to 
what extent two firms benefit from spillovers given the possible existence of asymmetrical information flows. 
The timing of spillover effects should also be considered. Because of lags in the diffusion of knowledge, 
spillover effects are probably not immediate. 

The references to earlier patent documents and scientific papers contained in patent documents can be 
used to infer spillovers arising from the knowledge described in the cited patent to the knowledge in the citing 
patent4. But also the use of patents to measure the knowledge flows is sensible to drawbacks, as discussed in 
Caloghirou, Constantelan and Vonortas (2006). First, they only provide indirect measure of the flows of 
knowledge. Indeed, in patent citations case, for example, the cited patent may not have contributed to the 
innovation, with the citation only included to build the patent claim or it may have only been added by the 
patent examiner. Second, they cannot evaluate tacit and embodied knowledge. Finally, they fail to capture the 
complexity of knowledge flows, which can follow a range of alternative paths in response to the strategic 
activities of different firms. Then, we conclude that a further empirical analysis is needed to pick out the 
asymmetrical flows, their dynamic trend and a direct measure of their absorptive capacity. 

 

                                                        
4 See Hall, Jaffe and Trajtenberg (2001) for an explanation in using the patent citations data. 
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