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It is a well known fact that studies on growth primarily take into account human populations, although currently, 

many scientific fields (biology, economics, etc.) also use growth models to reflect behaviours in diverse 

phenomena. These deterministic models are difficult to apply in real populations since, as we know, the volume of 

a human population depends intrinsically on a large number of other socio-economic variables, including changes 

in fertility patterns, improvements in living conditions, individual health factors which produce an increase or 

decrease in the number of years lived, the state of economic well-being, or changes in migratory fluxes. In this 

study, we have examined the stochastic Gompertz non-homogenous diffusion process, analysing its transition 

probability density function and conducting inferences on the parameters of the process through discrete sampling. 

All of the results are applied to the population of Andalusia with data disaggregated by sex during the period of 

1981 to 2002, taking purely demographic variables as exogenous factors: life expectancy at birth, foreign 

immigration to Andalusia and total fertility rate. 
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Introduction 

It becomes necessary to use frameworks in order to make provision for population adjustment, including 
diffusion processes, which are widely used in growth models (Suddhendu, 1988). The inclusion of exogenous 
factors in such models has a clear advantage, since they allow us to consider variables which influence population 
growth, which in turn allows for a clear improvement in the modelling of phenomena. In any case, this process 
proves to be an innovative way to establish or adjust population growth since normally, deterministic growth 
models are used (which are dependent to a large degree on population growth rates). As far as the Gompertz 
process is concerned, this model was introduced by Ricciardi (1977) who considered applications in the field of 
biology, and by Crow and Shimizu (1998). Later, Gutiérrez, Gutiérrez-Sánchez, Nafidi, Rom_an and Torres 
(2005) conducted inferences on the said process and examined discrete trajectories. In Ferrante (2000), 
continuous trajectories of the process were considered and applied to tumour growth. The non-homogenous case 
in the Gompertz process through the use of exogenous variables has been defined by Nafidi (1997) in a general 
context and has been applied more recently by Gutiérrez in dealing with the problem of inference by considering 
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discrete trajectories in the said process.  
We examine the non-homogenous univariate Gompertz process, which includes a series of exogenous 

variables within the trends. Initially, the likelihood function is obtained, which brings with it about the problem of 
the need for knowing the implicit expression of the functions related to the exogenous factors in order to be able 
to conduct inference about the parameters. For this reason, a specific case is considered, thus facilitating 
estimates on these parameters. Finally, an exhaustive study is conducted into the application of previous 
theoretical results. The Andalusian population is taken as an endogenous variable; the number of immigrants 
proceeding from foreign countries, life expectancy at birth and the synthetic indicator of fertility, taken in all 
cases for men and women (1981-2002), are used as exogenous variables. 

The Non-homogenous Gompertz Diffusion Process 

Characterisation 
Let }),({ 0 TtttX ≤≤  be a one-dimensional diffusion process, R-valued and with transition distribution 

function: 
( ) ( )xsXytXPsxtyP === )()(,,  

If we consider as infinitesimal moments (drift and diffusion coefficients) of the process respectively: 

)log()()(),( xxthxtgxta −= , 22),( xxtb σ=  
with h and g as two continuous and parametric functions, which, in other words, may depend on a certain number 
of parameters and σ > 0, we have the unidimensional Gompertz diffusion process with exogenous factors, with 
the following diffusion equations: 
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where p is the density of transition function. The transition distribution results: 
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with the above, we can deduce that the r-order conditional moments of the endogenous variable: 

( )

⎟⎟
⎠

⎞∫∫+

⎜⎜
⎝

⎛
+∫∫+∫==

∫

∫
−

−−−

t

s

dzzhdzzh

t

s

dzzhdzzhdzzhr

deer

dekreexrxsXtXE

s

t

s

tt

s

t

s

θσ

θθ

θ

θ

)(2)(222

)()()(

2

)()log(exp)()(
 

and by taking r = 1, we immediately obtain the first-order conditional moment (conditioned trend function, CTF): 
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Inference in the Model 
In order to find estimators of the process parameters, we use the maximum likelihood method and we 

consider discrete sampling, in other words, a realization of the same in the instants ( )nttt ,,, 10 K , 
( ) ( ) ( ) nn xtXxtXxtX === ,;; 1100 K  with the initial condition ( )[ ] 100 == xtXP . If we indicate: 
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the associated log-likelihood function will be: 

( )

( )[ ]∑
∫

∑∑ ∫

= −

==

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−−=

−

−−

−

−−

∫∫

∫∫

n

t

t

dzzhdzzh

nn t

t

dzzhdzzh

n

dee

mx

xdeennxxxL

t

t

t

t

t

t

1 )(2)(2

2

2

11

)(2)(22
10

1

11

1

11

log
2

1

loglog
2
1)log(

2
)2log(

2
),...,,)(log(

α

αα

α
α

α

α

α

θ

α

α

α

α

α

θ

α

α

α

θ
σ

θσπ

 

Logically, in order to be able to minimise this function with regards to the unknown parameters, we need to 
know the form of the functions h and g, which is not always possible; so, we consider that the functions h and g to 

be β=)(th  and )()(
1

0 tgtg i

q

i
i∑

=

+= αα , where the exogenous variables )(tg i  are continuous functions in 

[ ]Tt ,0 . In this way, the stochastic differential equation which characterizes the process is: 
{ } )()()(log)()()()( tdwtxdttxtxtxtgtdx σβ +−=                        (1) 

On differentiating the log-likelihood in relation to a, σ2 and β, the following equations appear: 
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where ( ) ( )( )′= nx xxl log,,log 1
' K  and β

U β

∂

∂
 the matrix formed by those derived from the elements of βU  in 

relation to β. In this way, we obtain the maximum likelihood estimators of a and σ2: 
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with ( ) β
1

βββnβU, UUUUIH ˆˆˆˆˆ
−′′−=  idempotent symmetric matrix. The estimator of β is obtained by substituting 

equation (2) and equation (3) in the third likelihood equation, leaving the following expression: 
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Due to the fact that in equation (4), the functions )(tg j  appear, it is not possible to have an explicit 
estimator expression of β, since such functions may only be known as a result of discrete observations of the 
exogenous variables qjniyij ,...,1;,...,1; == . For this reason, exogenous factors are normally constructed from 
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observed values of the variables through polygonal functions: 
( )( )1,1,,1)( −−− −−+= ijijijij ttyyytg                             (5) 

thus, if we indicate 
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we can state: 
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Application to the Andalusian Population 

The collected variables (or exogenous factors) to adjust the non-homogenous model to the Andalusian 
population disaggregated by sex for the 1981-2002 period consist of foreign immigrants, life expectancy at birth 
(e0) or mean number of remaining years of life of new-born children, and a synthetic indicator of fertility, total 
fertility rate (TFR), or number of children per mother at a fertile age. The population by sex has been obtained 
from the Andalusian Institute of Statistics (Instituto de Estadística de Andalucía, IEA). The information on the 
number of foreign immigrants is provided by the National Institute of Statistics (Instituto Nacional de Estadística, 
INE) through the Residential Variations Statistics (it should be noted here that until the year 1983, disaggregation 
by sex is only estimated by the INE since, up until that time, the sex of immigrants was not recorded). The values 
for life expectancy at birth have been elaborated here through the construction of biannual mortality tables based 
on information provided by the IEA. In the following applications, the TFR indicator for both female and male 
populations has been used as an exogenous variable. It is true that the male TFR may be calculated, but this 
measurement is not frequently employed, and there is no significant variation between the indicator for males and 
for females. The female Andalusian population has been used as an endogenous variable and the number of 
foreign female immigrants, female life expectancy at birth and total fertility rate have been employed as 
exogenous variables. As has been previously mentioned, the period of observation is from 1981 to 2002, although 
the final two years have been reserved in order to carry out predictions and to test the goodness of the model. The 
exogenous factors have been constructed from the said observations, taking into account polygonal functions of 
the type (5). The β parameter is estimated by means of numeric procedures on equation (4) using the 
“Mathematica” software package; this value is used with equation (2) and equation (3) with the objective of 
obtaining the remaining estimated parameters. These estimates are shown in Table 1. 
 

Table 1  
Estimated Parameters 
Parameter Estimated value (women) Estimated value (men) 
β 0.0378191 0.0797127 
α0 – σ2/2 0.0507695 0.1031180 
α1 -0.0005712 -0.0029721 
α2 1.2287000 1.0394100 
α3 0.0066227 0.0271248 
σ2 2.91204 × 10-6 3.32719 × 10-6 
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With these values, the trend function and the conditioned trend of the process are estimated, which are 
graphically represented in Figure 1 and Figure 2. 
 

 
Figure 1. Estimated trend functions (women). 

 

 
Figure 2. Estimated trend functions (men). 

 

In relation to male Andalusian population, we again assume the number of foreign male immigrants, male 
life expectancy at birth and the total fertility rate as exogenous variables. The estimated parameters in the model 
are shown in Table 1 and the estimated trend functions in Figure 2. 
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Conclusions 

The conditioned trend function represents the population observations better than the non-conditioned trend 
function (NCTF). However, the use of the NCTF, while it does not register small fluctuations, is more 
advantageous in terms of making future population predictions because in obtaining the NCTF in one instant, it is 
not necessary to know the observed value of the previous instant. In order to do this, we only need to establish a 
series of hypotheses for the values of the exogenous variables. In fact, in any projection of population it is 
necessary to have previously carried out suppositions on the behaviour of the basic demographic indicators (life 
expectancy, TFR, migrations). In this way, a wide range of possibilities is opened, since the behaviour of the 
population at each age (or age intervals) and predictions made by age can be studied. From the absolute value of 
the conditioned trend function and the observed population, the errors committed in each year of observation 
have been calculated (%) as a coefficient of the difference between the observed population value and the 
estimated population value. The differences between the observed and estimated values in a small number of 
years reach 0.5% of the observed population (only in the year 2002, which is reserved for predictions, does it go 
beyond this percentage level). This is an indicator that this non-homogenous Gompertz model can acceptably 
represent population behaviour. 
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