
Journal of Materials Science and Engineering A 5 (1-2) (2015) 8-20 
doi: 10.17265/2161-6213/2015.1-2.002 

In-Situ Carbon Control in the Preparation of Precursors 
to Boron Carbide by a Non-Aqueous Solution Technique 

Joshua L. Watts1, 2*, Peter C.Talbot1,2, Jose A. Alarco1,2 and Ian D. R. Mackinnon1 

1. Institute for Future Environments, Queensland University of Technology, Brisbane 4001, Australia 

2. Science and Engineering Faculty, School of Chemistry, Queensland University of Technology, Brisbane 4001, Australia  

 
Abstract: Synthesis of high quality boron carbide (B4C) powders is achieved by carbothermal reduction of boron oxide (B2O3) from 
a condensed boric acid (H3BO3)/polyvinyl acetate (PVAc) product. Precursor solutions are prepared via free radical polymerisation 
of vinyl acetate (VA) monomer in methanol in the presence of dissolved H3BO3. A condensed product is then formed by flash 
evaporation under vacuum. As excess VA monomer is removed at the evaporation step, the polymerisation time is used to manage 
availability of carbon for reaction. This control of carbon facilitates dispersion of H3BO3 in solution due to the presence of residual 
VA monomer. B4C powders with very low residual carbon are formed at temperatures as low as 1,250 °C with a 4 hour residence 
time. 
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1. Introduction  

Boron carbide is used in a wide range of engineering 
applications due to a combination of properties 
including high hardness, a high resistance to chemical 
corrosion, a high melting point and a low specific 
weight. Boron carbide in many forms–as powders, 
sintered billets and coatings–is used as wear resistant 
refractories, as a coating for cutting tools, for ballistic 
applications such as armour plating and as a neutron 
absorber. Bulk industrial synthesis methods are 
commonly undertaken at high temperature, followed 
by milling and hot pressing and/or sintering to shape a 
product [1, 2]. However, the formation of excess free 
carbon during these synthesis methods is problematic 
[2, 3]. 

Although B4C can be synthesised by directly 
reacting elemental boron and carbon [4], this technique 
is rarely used due to the high costs of the purified 
elements. B4C is also made by a magnesiothermal 
reaction wherein magnesium metal is used to reduce 
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boron oxide for subsequent reaction with a carbon 
source. However, acid washing is required to remove 
magnesium contaminants [1]. The most widely used 
commercial technique for producing B4C is the 
reduction of H3BO3 with carbon black (referred to as 
the carbothermal method) at ~1,750 °C in electric arc 
furnaces [5].  

The overall reaction mechanism for the 
carbothermal process is: 

4H3BO3 + 7C → B4C + 6CO + 6H2O 
The commercial method for carbothermal reduction 

results in high amounts of residual carbon that 
adversely affect the properties of a final or formed 
product and thus further processing is required to 
remove this carbon. For example, the coarse-grained 
boron carbide powder requires intensive milling to 
generate a finer powder suitable for sintering; the 
intense milling also results in contamination from 
grinding media. Because of these issues, research is 
focused on alternative lower temperature synthesis 
methods that result in a fine powder with less residual 
carbon [3, 6-8]. The use of catalysts to remove residual 
carbon has been explored [9], but such methods result 
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techniques employed at each stage for reference. 
Analysis of generated polymers and polymer/H3BO3 
products was carried out on powders formed from 
solvent removal by a rotary evaporator. 

2.1 Starting Materials  

H3BO3 (99.5%), VA monomer (≥ 99%), and benzoyl 
peroxide (75%, remainder water) from Sigma-Aldrich, 
AR grade MeOH (99.8%) from Chem-Supply and 
basic alumina (90 active) from Merck were used as 
received. 

2.2 Polymers 

2.2.1 Synthesis 
50 g of VA was added to 20 g of MeOH and passed 

over a column of basic alumina to remove inhibitor. 
24.73 g of H3BO3 was then dissolved in 100 g of 
methanol and added slowly to the VA solution. 1.33 g 
of BzO (benzoyl peroxide) initiator compound was 
then added and dissolved. A viscous clear colourless 
solution was obtained. The solution was then bubbled 
with N2 for 30 min to remove O2 and then heated to 
65 °C under N2 atmosphere to initiate polymerisation. 
Separate polymerisation reactions were then held at 
65 °C for a range of times under N2 atmosphere. 
Polymerisation times of 1, 6 and 18 h are the focus of 
this paper as these times yielded relevant results. 

2.2.2 Characterisation 
The peak molecular weight (Mp), weight average 

molecular weight (Mw) and the PDI (polydispersity 
index) of synthesised polymer precursors were 
determined via GPC (gel permeation chromatography) 
using a Waters 2487 absorbance detector in series with 
a Waters 2414 refractive index detector. 
Chromatography treatment used three consecutive 

phenomenex, phenogel 5 μm columns (300 × 7.8 mm; 
104 Å, 103 Å, 50 Å) operating at 30 °C using 
tetrahydrofuran as eluent at a flow rate of 1 mL/min. 
These columns were preceded by a Phenomenex 5 μm 
Linear Mixed Bed guard column (50 × 7.8 mm). 
Polymer weights were determined by gravimetric 
analysis; H3BO3 was not added to the solution before 
polymerisation due to the azeotrope it forms with 
methanol which leads to loss of H3BO3 during solvent 
evaporation and hence errors in the final weight 
measurement of the polymer. After polymerisation and 
solvent removal using a rotary evaporator, the polymer 
was dried overnight in a vacuum oven at 100 °C and 
weighed. DSC (Differential scanning calorimetry) and 
TGA (thermogravimetric) data were collected 
simultaneously using a Netzsch STA-449F3 
instrument. 

2.3 PVAcB Powders 

2.3.1 Preparation  
PVAcB powders were formed by flash evaporation 

of solutions prepared as per section 2.2.1 under vacuum 
within 24 h of polymerisation. The dry PVAcB powder 
obtained was then ring milled for 10 s at 750 rpm. The 
PVAcB powder was then pre-treated at 450 °C or 
550 °C for 1 to 2 h under three different atmospheric 
conditions: (i) 3 L/m Ar flow (full Ar flow), (ii) Ar 
flow with 4 × 10-1 bar absolute pressure (partial 
vacuum) or (iii) 10-3 bar absolute pressure with no Ar 
flow (full vacuum), in order to determine optimum 
phase formation conditions. A summary of these 
pre-treatment conditions for the PVAcB powders is 
given in Table 1. The prefixes PV, A and V reflect the 
atmospheric conditions used (partial vacuum, full Ar 
flow and full vacuum, respectively). 

 

Table 1  Treatment conditions for condensed PVAcB powders at different polymerisation times.  
PRE-TREATMENT CONDITIONS 
(PV) = Ar flow, 4 × 10-1 bar 
(A) = 3 L/m Ar flow 
(V) = 10-3 bar 

Partial vacuum (PV) Full Ar flow (A) Full vacuum (V)
Polymerisation time Polymerisation time Poly time 

1 h 6 h 18 h 1 h 6 h 6 h 

Firing time and 
temperature 

1 h 450 oC     A6-1-450  
1 h 550 oC PV1-1-550 PV6-1-550 PV18-1-550  A6-1-550 V6-1-550 
2 h 550 oC    A1-2-550   
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signatures for residual carbon. This qualitative result is 
consistent with XRD data shown in Fig. 8. Similarly, 
the majority of grains analysed in sample PV6-1-550 
also show a low residual carbon signature using Raman 
spectroscopy. Sample PV18-1-550 shows a 
consistently high number of grains with high residual 
carbon content which is also reflected in the XRD 
pattern obtained on the bulk sample. 

4. Discussion 

4.1 Polymerisation Characteristics 

Gravimetric analysis was employed to quantify the 
amount of polymer formed for polymerisation times of 
1, 6 and 18 h. A substantial increase in the final PVAc 
weight was observed between 1 and 6 h 
polymerisations. After 18 h, only a small amount of 
extra PVAc was formed. This outcome suggests that 
complete polymerisation occurs soon after 6 h. The 
18 h polymerisation condition was chosen to ensure 
polymerisation had gone to completion to maximise 
the amount of carbon formed. The increased carbon 
content with polymerisation time is also reflected in the 
XRD patterns of calcined PVAcB powders formed at 
different polymerisation times as shown in Fig. 7.  

With free radical polymerisation, the formation of 
high molecular weight polymer occurs immediately 
upon initiation, and under ideal conditions, the 
molecular weight of the polymer remains unchanged 
throughout the course of polymerisation [22]. GPC 
analysis of 1, 6 and 18 h polymerised PVAc shows 
decreased values for Mp and Mw with increased 
polymerisation time-contrary to expectation (Table 2). 
This effect may be due to gradual contamination of the 
system by O2 which results in radical pacification 
through the formation of peroxides [23]. 
Contamination from atmospheric oxygen may occur 
through the seals of the reaction vessel, especially at 
longer polymerisation time. GPC chromatograms of 1, 
6 and 18 h polymerised PVAc also show evidence of 
some low molecular weight species which suggests the 
presence of some residual VA monomer and PVAc 

oligomers.  
DSC and TGA characterisation was carried out on 

three samples: (a) pure H3BO3, (b) 1 h polymerised 
PVAc and (c) 1 h polymerised PVAc in the presence of 
H3BO3. DSC data show a peak at 225 °C that is not 
present in either the pure H3BO3 sample or the 1 hour 
PVAc sample, indicating that complexation between 
the H3BO3 and the polymer has occurred (Fig. 2). This 
mechanism is also suggested by the small hump 
observed in the TGA data shown in Fig. 3. TGA data 
was also used to identify the temperature required for 
pre-treatment of precursor condensates. As shown in 
Fig. 3, no further weight loss is observed above 500 °C. 
Thus, a temperature of 550 °C is considered a suitable 
pre-treatment temperature to ensure sufficient 
decomposition of the sample before calcination. 

4.2 PVAcB powder Composition and Morphology 

PVAcB powders calcined without pre-treatment 
predominantly contain residual carbon, exhibit 
minimal B4C and contain no H3BO3 (Fig. 9). 
Furthermore, PVAcB powder pre-treated at 450 °C 
exhibits a similar but less dramatic increase in residual 
carbon compared with PVAcB powder pre-treated at 
550 °C. This outcome suggests that the carbon matrix 
is not available to react optimally with boron under 
these conditions, and thus, results in loss of boron by 
volatilisation of gaseous boron-oxide species [24, 25]. 
This volatilisation is attributed to the presence of 
excess oxygen in the PVAc which reacts preferentially 
with the reducing CO gas atmosphere (Eq. (4)). After 
dehydration of H3BO3 in the PVAcB powder has 
occurred, the carbothermal reaction can be represented 
by: 

2B2O3 + 7C → B4C + 6CO      (1) 
The overall carbothermal process takes place in two 

stages, the first of which is the reduction of B2O3 by 
CO, followed by the reaction of elemental boron with 
carbon to form B4C as shown in Eqs. (2) and (3): 

B2O3 + 3CO → 2B + 3CO2      (2) 
 

4B + C → B4C            (3) 
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If excess oxygen is present in the precursor carbon 
matrix, reduction by CO will prefer reaction with the 
matrix leaving B2O3 unreduced: 

B2O3 + CO + O(matrix) → B2O3 + CO2   (4) 
By comparing Eqs. (2) and (4), it can be seen that the 

presence of excess oxygen within the carbon matrix 
greatly hinders the carbothermal reaction process and 
leads to boron volatilisation as the boron component is 
insufficiently reduced at high temperature. For this 
reason, a pre-treatment stage is utilised to remove 
residual oxygen from the polymer matrix before 
calcination.  

ATR-FTIR of unwashed pre-treated powders shows 
a transmittance spectrum that matches H3BO3 (Fig. 6). 
This spectrum shows no attributes for carbon despite 
being present in large quantities. Since the penetration 
depth of an IR signal is limited, the spectrum in Fig. 6 
suggests that H3BO3 forms as a homogeneous coating 
on the carbon matrix. This finding is contrary to earlier 
work on solution based methods [3, 6, 7, 8, 18] in 
which it is proposed that boron at this stage of 
processing is B2O3. Based on the ATR-FTIR data 
shown in Fig. 6, and the well-known hygroscopic 
nature of B2O3

 [26], the precursor, once exposed to air 
after pre-treatment, will rapidly reabsorb water to form 
H3BO3 as per the reaction shown in Eq. (5). The 
PVAcB powder XRD pattern shown in Fig. 5 matches 
the literature data for H3BO3 and supports this 
interpretation of the ATR-FTIR spectrum shown in  
Fig. 6. 

B2O3 + 3H2O → 2H3BO3          (5) 
SEM images of pre-treated PVAcB powder before 

washing (Fig. 4a and Fig. 4b) reveal a porous structure 
with pore sizes ranging from 100 nm up to 1 µm. The 
pore structure is very similar to that reported by 
Kakiage et al. [3] for condensed precursors. A typical 
SEM image of pre-treated PVAcB powder after 
washing can be seen in Fig. 4c. Comparison with the 
same area without washing (Fig. 4b) shows that the 
pores are of similar dimension. These images, as well 
as the ATR-FTIR results detailed above, show that the 

boron precursor is H3BO3 rather than B2O3, and 
appears to create a surface coating inside the pores of 
the carbon matrix. Fine strings of H3BO3 with 
diameters of less than ~10 nm are observed (see white 
arrow in Fig. 4b). This description of the reaction 
mechanism is different from that proposed by Kakiage 
et al. [3] who consider that pores in their precursor 
material are filled with B2O3. Equivalent SEM images 
of the polyvinyl alcohol/H3BO3 powder prepared by 
Kakiage et al. or analyses of the precursor powder 
before washing are not available for comparison.  

Unwashed pre-treated PVAcB powders also exhibit 
surface cracking of the carbon matrix. These surface 
cracks are attributed to water absorption by B2O3 after 
exposure to air which causes swelling as it hydrates to 
form H3BO3 (Eq. (5)). After washing with hot water, 
these cracks appear to ‘heal’ as they close on the 
surface, as highlighted by the red arrows in Fig. 4b and 
Fig. 4c. 

4.3 Treatment Atmosphere for PVAcB Powders 

The treatment atmosphere of PVAcB powders is 
found to have a significant effect on precursor 
composition, specifically carbon content, and hence 
different atmospheric treatment conditions were trialed 
and analysed to ascertain the optimum pre-treatment 
conditions to form near carbon-free B4C. 

4.3.1 Partial Vacuum 
Fig. 7 shows XRD traces of PV1-1-550, PV6-1-550 

and PV18-1-550 PVAcB powders after calcination at 
1,400 oC for 1 h under 3 L/m Ar flow. The carbon peak 
increases with increased polymerisation time. This 
trend shows that control of carbon content in PVAcB 
powder is achieved by variation of the polymerisation 
time. Heat treatment for a further 1 h at 1400 oC results 
in reaction completion for all samples as seen in Fig. 8. 
PV6-1-550 PVAcB powder calcines to nearly 
carbon-free B4C. This result indicates that 6 h is the 
optimum polymerisation time to generate sufficient 
PVAc to balance the requirements of the carbothermal 
reaction under partial vacuum conditions.  
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In contrast, PV1-1-550 PVAcB powder gives B4C 
with residual H3BO3 impurity because there is not 
enough carbon present for reaction under these 
conditions. In addition, an 18 h polymerisation time 
gives B4C with a large amount of residual carbon and 
no residual H3BO3. This outcome is due to the excess 
carbon present in the 18 h polymerised PVAcB powder. 
Fig. 11 shows XRD patterns for PV6-1-550 PVAcB 
powder calcined at 1,250 °C for 1, 2, 3 and 4 h under 3 L/m 
Ar flow. B4C starts to form after 1 h, and the reaction 
has gone to completion after 4 h. Minimal residual 
carbon and no H3BO3 is observed in the final B4C 
product after 4 h at 1,250 °C. 

B4C calcinations taken to completion that contain 
excess carbon (PV18-1-550 PVAcB powder calcined 
at 1,400 oC for 2 h in this example) exhibit regions of 
hollow spherical carbon shells attached to the surface 
of the B4C particles (Fig. 13b insert). The average 
particle size of these B4C powders (Fig. 13b) is also 
noticeably smaller compared with near carbon-free 
B4C powders owing to the increased H3BO3 dispersion 
that results from the extra carbon presence from the 
18 h polymerisation time. Free carbon is also observed 
as independent agglomerates throughout the sample. 

4.3.2 Full Ar Flow 
The presence of residual carbon in the XRD pattern 

of A6-1-550 in Fig. 10 is due to the absence of vacuum 
in the pre-treatment stage (Section 4.3.3). Because of 
this effect, the polymerisation time can be reduced 
significantly to achieve the required amount of carbon 
for optimum phase formation without residual H3BO3 
and minimal residual carbon under atmospheric 
pressure pre-treatment conditions. The reduced 
calcination time of A6-1-550 (1 h compared with 2 h 
for PV6-1-550 and V6-1-550) to reach complete B4C 
phase formation can be attributed to excess carbon that 
is present in the PVAcB powder. As reported 
previously [6, 7], homogeneity of the boron component 
within the precursor powder is increased by the 
presence of excess carbon. Although this effect is 
desirable, it is not practical as it results in excess carbon 

impurity in the final product. 
Fig. 12 shows XRD patterns of 1 h polymerisation 

PVAcB powder pre-treated at 550 oC for 2 h in full Ar 
flow (A1-2-550) after final calcination at 1,400 oC for 1 
and 2 h under 3 L/m Ar flow. After 1 h, a significant 
amount of B4C formation has occurred with carbon and 
H3BO3 phases still present. After 2 h, B4C phase 
formation has gone to completion. At 2 h calcination 
time, almost carbon-free B4C with no H3BO3 
component is achieved, indicating that a 1 h 
polymerisation time is optimum for PVAcB powders 
pre-treated under 3 L/min full Ar flow conditions. The 
increased calcination time required for A1-2-550 
PVAcB powder compared to A6-1-550 PVAcB 
powder (an extra 1 h at 1,400 oC) is due to the reduced 
amount of carbon in the PVAcB powder from a shorter 
polymerisation time (1 h). 

SEM images of near carbon-free B4C calcined from 
A1-2-550 PVAcB powder at 1,400 oC for 2 h show 
interconnected particles with sizes ranging from 
sub-micrometer to ~10 µm (Fig. 13a). Some rod-like 
structures are also dispersed throughout the 
agglomerates. Free carbon is not observed on the 
surface of the B4C grains nor as separate particles 
within the sample. These same observations are true for 
SEM images of near carbon-free B4C calcined from 
PV6-1-550 PVAcB powder.  

4.3.3 Full Vacuum 
Full vacuum pre-treatment (1 × 10-3 bar absolute 

pressure, no Ar flow) was carried out at 550,oC for 1 h 
on 6 h polymerised PVAcB powder (V6-1-550) for 
comparison with 6 h polymerised PVAcB powder 
pre-treated with partial vacuum and full Ar flow 
conditions (PV6-1-550 and A6-1-550 respectively). 
Fig. 10 shows a comparison of the XRD patterns 
collected for these three precursor materials taken to 
B4C phase formation completion. Product calcined 
from V6-1-550 PVAcB powder shows no residual 
carbon and a residual H3BO3 component. Product 
formed from PV6-1-550 PVAcB powder shows no 
residual components. Product from A6-1-550 PVAcB 
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powder shows a residual carbon component. From 
these results, it can be concluded that applying vacuum 
to the pre-treatment stage removes extra carbon from 
the PVAcB powder and the amount removed is 
dependent on vacuum conditions. This effect can be 
accounted for by the low vapour pressure of residual 
monomer at higher temperature resulting in removal of 
the monomer and other short chain polymer moieties. 
The presence of these short chain polymer fragments is 
confirmed via GPC analysis (Section 4.1). 

4.4 Residual Carbon 

As shown earlier, the polymerisation time is 
optimized to minimize the residual carbon content via 
appropriate balance of reactants for subsequent 
carbothermal reaction. Raman spectra shown in Fig. 14 
provide useful insight on the influence of 
polymerisation time and the form of carbon in the final 
B4C product. As mentioned previously, independent 
carbon agglomerates, attached to the B4C grains or as 
independent particles, are not observed in SEM images 
of near carbon-free B4C samples (calcined from 
PV6-1-550 and A1-2-550 PVAcB powder), yet a small 
amount of carbon is detected via XRD analysis. Raman 
investigation reveals that this small amount of residual 
carbon is present on the surface of the B4C grains. 
Furthermore, the amount of carbon detected varies 
from grain to grain, but the typical amounts are within 
the ranges shown by the peak intensities in Fig. 14. 

In the case of B4C calcined from PV1-1-550 PVAcB 
powder (1 h polymerisation), low amounts of B4C and 
no residual carbon or H3BO3 is observed after 
calcination (compare XRD intensities in Fig. 8) due to 
poor homogeneity of the boron and carbon components 
in the precursor as well as the proclivity of B2O3 to 
readily volatilize. Despite this, the Raman spectra show 
that small amounts of residual carbon are still present 
on the surface of the B4C grains. B4C calcined from 
PV18-1-550 PVAcB powder shows increased carbon 
content which is consistent with XRD and other data 
shown previously and is due to an increased 

polymerisation time. 
As noted in Section 3.4.2, Raman spectra can 

provide useful qualitative indications of sample 
stoichiometry [19]. Near carbon-free B4C calcined 
from PV6-1-550 PVAcB powder shows a consistent 
intensity of the peaks at 270 cm-1 and 320 cm-1 over all 
Raman spectra obtained from all grains. This outcome, 
examples of which are shown in Fig. 14, indicates that 
the quality–or stoichiometry–of the B4C structure 
formed by this synthesis is consistent across all 
individual grains. However, the Raman spectra for B4C 
samples calcined from both PV18-1-550 and 
PV1-1-550 PVAcB powder show significant variations 
in the intensities of peaks at 270 cm-1 and 320 cm-1 for 
different grains. Thus, the stoichiometry of B4C 
powder containing residual impurities is variable 
within the sample, while near carbon-free B4C powder 
shows consistency in structural carbon content and 
hence overall stoichiometry throughout the entire 
sample.  

5. Conclusions 

By polymerising VA monomer in the presence of 
dissolved H3BO3 in methanol, the amount of carbon 
available for reaction in PVAcB powders can be 
controlled via the polymerisation time. Increased 
dispersion of the precursor phase is enhanced by the 
presence of excess carbon as unreacted VA monomer 
in solution. This feature affords excellent homogeneity 
of the reactants without requirement for excess carbon 
in the PVAcB powder. Using this technique, near 
carbon-free B4C powders are formed after 2 h at 
1,400 oC as well as after four hours at 1,250 oC without 
the need for carbon removal from the PVAcB powder 
via pyrolysis in air. 
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