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Abstract: An alternative design technique of the evaluation of flexural buckling coefficient determined for fire situation is presented 
and widely discussed in the present paper. The proposed methodology is based on the Rankine-Merchant concept. An equivalent 
buckling coefficient is adopted as the objective measure of the reduction of member fire resistance. It is specified as a product of 
classical coefficient which deals only with buckling phenomenon and the ratio of the reduction of steel yield point at fire temperature. 
Some calculation formulae, differentiated in relation to model complexity, are recommended to reliably assess the value of searched 
coefficient. Obtained results are compared with adequate buckling factors resulting from typical standard analysis. Moreover, a 
quantitative comparison is shown here, in which the influence on conclusive resistance of some factors being the indirect effect of the 
consideration of imperfect structural members is examined in detail. 
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1. Introduction 

The Rankine-Merchant approach is widely used 

design technique, helpful for the prediction of real 

failure load, especially if the resistance of framed 

structures is assessed. It is based on the independent and 

separate analyses of the strength of considered member 

and its stability. Determination of the strength deals with 

the evaluation of squashing or yielding stresses, then 

pure plastic behaviour of structural element is taken into 

account in this case. On the other hand, for stability 

analysis, the pure elastic buckling load is looked for. 

Consequently, simple assumption about the way of the 

interaction between those two failure modes is made. 

The main advantage of such methodology is its 

simplicity. Furthermore, one can say that the results 

obtained by this approach seem to be sufficiently 

reliable because of its multiple experimental verification. 

Let us notice that the history of succesfull application of 

this formulation is significantly long. Based on the 

empirical formula given by W.J.M. Rankine in 1866 for 
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perfectly straight columns, W. Merchant in 1954 

developed a more generalized theory to determine the 

failure load factor of rigidly jointed frames, subjected to 

proportional loading. 

In classical analysis in which the Rankine-Merchant 

approach is considered, the failure load of load-bearing 

structure is estimated for proportionally increasing 

external loads but for members remaining at ambient 

temperature. Extending such examination to the case of 

fully developed fire requires incorporation to typical 

design procedure some thermal effects resulting 

directly from the appearance of significantly high 

temperature of structural steel. Detailed investigations 

in this field were recently carried out by the group of 

scientists from Nanyang University in Singapore. 

Particularly W. S. Toh, K. H. Tan and T. C. Fung in 

Ref. [1], C. Y. Tang, K. H. Tan and S. K. Ting in Ref. 

[2] and Z. H. Huang and K. H. Tan in Ref. [3] have 

made an attempt to propose the suitable interaction 

formulae, adapted to single steel columns subject to 

fire. Those formulae have been further generalized by 

C.Y. Tang and K.H. Tan in Ref. [4] and by W. S. Toh, 

K. H. Tan and T. C. Fung in Ref. [5] to enable their 

application to the whole steel framed structures heated 
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by fire. Moreover, the numerical studies about the 

accuracy of the proposed design methodology were 

undertaken by W. S. Toh, K. H. Tan and T. C. Fung in 

Ref. [6]. Besides those works the problem how to 

correctly estimate the rigid-plastic collapse load as well 

as the elastic critical load for steel framed structures for 

fire conditions has been studied also in Poland by W. 

Skowroński, even before the research conducted in 

Sigapore [7, 8]. 
The main aim of the present paper is making a 

quantitative comparison between the evaluations of 

failure loads which can be obtained by means of the 

application of Rankine-Merchant design procedure and 

corresponding results being the solution of traditional 

standard approach, recommended in PN-EN 1993-1-2 

[9]. Considering the fact that in such standard 

calculation technique member fire resistance is 

estimated owing to the specification of special flexural 

buckling coefficient  ifzfiyfi   ,,,,,min, ,min , 

analogous coefficient is defined by the author in 

relation to the methodology proposed by W. Merchant 

and generalized to the case of fully developed fire 

(symbol  Co   means here the temperature of 

analysed structural member). 

2. Standard Flexural Buckling Coefficient 
for Fire Situation 

The design fire resistance of uniformly heated and 

axially compressed steel member, assessed regarding 

to the elastic-plastic buckling instability failure mode, 

is usually determined [9] by means of the following 

formula: 

fiM

y
yfiRdfib

f
AkN

,

,,min,,,, 
           (1) 

where,  2m A — area of member cross-section, 

 MPayf — steel yield point established at ambient 

temperature (it is assumed that this is the room 

temperature Co20 ), yyy ffk  ,,  — ratio of the 

reduction of steel yield point in fire (its values for 

particular steel temperatures are given in [9], fiM ,  — 

partial safety factor specified especially for fire 

situation (it is recommended to use )0,1, fiM . 

In such equation the flexural buckling coefficient 

depends on the actual steel temperature  : 

2

max,
2
max,max,

,min,

1









fi        (2) 

where, 






 

2

max,max,max, 15,0    and 
yf

235
65,0  (3) 

Moreover, the non-dimensional (normalized) 

slenderness   is also a function of this temperature 

according to the relation: 


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,

,
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k

k
                 (4) 

where,  — analogous non-dimensional member 

slenderness but calculated for the case of ambient 

temperature, EEkE  , — ratio of the reduction of 

Young modulus at fire temperature (its values 

determined for particular steel temperatures are also 

given in Ref. [9]. 

Let all notice that the imperfection factor   

corresponding to fire situation does not depend on the 

shape of member cross-section so only one type of a 

buckling curve is then specified. This is a fundamental 

difference in relation to classical calculations, made for 

members remaining at ambient temperature, in which 

various buckling curves (a, b, c and d) are defined. The 

concept of the specification of a single buckling curve 

when fire conditions are considered is widely verified 

by experiments. It is significantly important that such 

“fire” buckling curve gives evaluations of the 

coefficients xfi which are much more conservative than 

suitable assessments of the coefficients x, determined 

for the case of room temperature. Such relation is well 

noticeable in Fig. 1, in which the comparison is made 

between the coefficients     established for 

particular buckling curves specified for persistent 

design situation (without any considerations about fire 

threat) and the analogous coefficients   20,20, fifi   

calculated for fire situation, but when Co20 , i.e., 

for fire starting-point (at that time   ). 
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Fig. 1  Relations     and   20,20, fifi  . 
 

In Fig. 2 the influence of fire temperature   on 

reduction of design member fire resistance RdfibN ,,,   is 

shown in detail. Let all notice that, basing on Eq. (1), 

the following proportion is satisfied: 

20,

,

,20,,

,,,

fi

yfi

Rdfib

Rdfib k

N

N


                  (5) 

hence: 
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,
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 
            (6) 

Consequently, if the product   ,, yfifi k  means 

the equivalent flexural buckling coefficient for fire 

situation then its value can be a good measure of the 

reduction which is looked for. Its dependence on 

non-dimensional slenderness   (not on the adequate 

slenderness  ) is presented in Fig. 2 for chosen 

values of steel temperature  . 

3. Specification of Buckling Coefficient for 
Fire Conditions with Respect to 
Rankine-Merchant Approach 

In general the interaction formula resulting from the 

Rankine-Merchant design concept has the following 

form (if 0,1, fiM  then fiRMRdfiRM NN ,,,  ): 

      fielfiplfiRM NNN ,,,

111
            (7) 

where, fiplN ,  is the rigid-plastic collapse load, fielN ,  is 

the elastic critical load, fiRMN ,  is the conclusive 

Rankine-Merchant load. 

The buckling coefficient  ,fi  is the measure of the 

reduction of conclusive member resistance in relation 

to its pure plastic carrying capacity, so: 
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Basing of such definition one can rearrange Eq. (7) 

to the form: 
2
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where, eL  is the buckling length of considered 

member, I  is the moment of inertia whereas i  is the 

radius of gyration, both calculated for the member 

cross section. 

The value of buckling coefficient is then found as a 

simple reciprocal: 
12

, 1







    fi                (10) 

Let us notice that the assessment of buckling factor 

 ,fi , obtained from Eq. (10), cannot be precise enough 

because the model of perfectly straight column was 

adopted to the calculation of elastic critical load. To 

receive its better evaluations at least the influence of 

geometrical imperfection should be additionally taken 

into cosideration. If the initial deflection of the column 

is assumed with its greatest value equal e in the middle 

of the column height, then the interaction M-N must be 
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Fig. 2  Relations   

  ,, fifi . 
 

studied as the effect of such imperfection. Let the 

simplest formula describing this interaction be adopted 

to the analysis: 

1
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where, plW  is the plastic section modulus. It can be 

written in another form:  
1
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Finally, substituting this formula to Eq. (9) in a place 

of the factor previously equal 1.0, the new equation for 

the assessment of flexural buckling coefficient  ,fi  

may be proposed: 
1
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It is noteworthy that adaptation to the analysis of 

slightly different interaction M-N formula, giving 

much better approximation of obtained values to 

experimental results, described for   2,0,, AfkN yypl   

in a form: 

1
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leads to analogous correction of considered buckling 

coefficient. It is now calculated by the equation: 
1

2
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If the imperfect column is examined in the study 

then application of classical Euler formula for the 

assessment of ,elN  critical load is not fully correct. 

More precise design technique is proposed to be used 

in [6]. Let the analysed column be simply supported 

with a pinned-roller joint at its top. Moreover, let this 

column be eccentrically-loaded with the parameter   

being a measure of such eccentricity. In addition, the 

initial deflection of the member is also assumed with 

the value e  in the middle of the column height (see 

Fig. 3). By solving a second-order linear differential 

equation the following dependence is obtained: 

 1sec  e                 (16) 

in which: 
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The value 2
,

2
, eEel LEIkN    is in this formula the 

idealised Euler load. Substituting Eq. (17) to Eq. (16), 

after the rearrangement, the real value of ,elN  can be 

expressed:  
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Fig. 3  Model of eccentrically-loaded column (according to 
[6]). 
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So, basing on Eq. (18) the authors have the 

following proportion: 

2
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which leads to more precise evaluation of buckling 

coefficient  ,fi : 
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4. Quantitative Analysis of Obtained 
Buckling Coefficients 

The comparison presented in this chapter deals with 

the equivalent buckling coefficients   ,,, fiyfi k . 

This factor can be considered as an objective measure 

of the reduction of member fire resistance because it 

includes not only the influence of buckling 

phenomenon but also the decreasing of material yield 

point at high temperature of constructional steel. At the 

beginning two kinds of coefficients 
 ,fi  are 

compared in Table 1, in relation to the temperature   

as well as to the non-dimensional slenderness   . 

First of those, marked by the symbol EN (which is the 

abbreviation of the word “euronorm”), is calculated by 

means of Eqs. (2) and (3), whereas the second, 

described as R-M (Rankine-Merchant), is the solution 

of Eq. (10). As the authors can see, evaluations of 

buckling coefficients made on the basis of the 

application of classical standard approach [9] are much 

more conservative than the other ones, being the result 

of using of Rankine-Merchant concept. However, as it 

has been said previously, formula (10) is not fully 

realistic. At that place the fact must be underlined that 

the parameter ky, = 1.0 only if  ≤ 400C but it is 

decreasing with increasing steel temperature for  > 

400C. This is the reason of significant quantitative 

difference between the coefficients calculated for 

lower and higher temperature , both for “EN” and for 

“R-M” buckling coefficients. 

To improve the accuracy of the assessment of such 

coefficients some initial geometrical imperfections 

were modelled and, as a result of this concept, the 

interaction M-N was additionally taken into 

consideration. Two types of interaction formulae were 

examined (Eqs. (11) and (14)). Consequently, two 

equations were proposed for calculation of buckling 

coefficients (Eqs. (13) and (15)). 
Let all see various buckling curves presented in Fig. 

4. They are the solution of Eq. (13) for  = 400C. The 

influence of imperfection magnitude on the shape of 

corresponding buckling curve is shown here. The ratio 

(eA)/Wpl is the basic parameter differentiating the 

convexity of considered curves. Greater value of initial 

deflection e is always connected with greater influence 

of bending in relation to axial compression, so 

simultaneously equivalent buckling coefficient must be 

decreasing. Another dependence is explained in Fig. 5. 

Presented buckling curves result from using Eq. (15) in 

which the parameter (eA)/Wpl = 0.2 is assumed. As the  

 

Table 1  Comparison between “EN” and “R-M” equivalent buckling coefficients. 

 Co20  Co200  Co400  Co600   Co800  

  EN R-M EN R-M EN R-M EN R-M  EN R-M 

0 1.000 1.000 1.000 1.000 1.000 1.000 0.470 0.470  0.110 0.110 
0.2 0.881 0.962 0.875 0.957 0.860 0.946 0.402 0.443  0.096 0.105 
0.4 0.771 0.862 0.759 0.849 0.728 0.814 0.338 0.378  0.082 0.092 
0.6 0.661 0.735 0.644 0.714 0.598 0.660 0.275 0.304  0.069 0.076 
0.8 0.554 0.610 0.532 0.584 0.476 0.552 0.205 0.239  0.056 0.062 
1.0 0.456 0.500 0.432 0.474 0.374 0.412 0.170 0.187  0.045 0.050 
1.2 0.373 0.410 0.349 0.385 0.296 0.327 0.133 0.148  0.036 0.040 
1.4 0.306 0.338 0.284 0.315 0.237 0.263 0.106 0.118  0.029 0.032 
1.6 0.253 0.281 0.234 0.260 0.192 0.215 0.086 0.096  0.024 0.027 
1.8 0.212 0.236 0.195 0.217 0.159 0.178 0.071 0.079  0.020 0.022 
2.0 0.179 0.200 0.164 0.184 0.133 0.149 0.060 0.067  0.017 0.019 
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author can see, the equivalent buckling coefficient 

 ,fi  is much lower with higher steel temperature . 

Interesting effect can be observed based on the 

results presented in Table 2 for  = 400C. More 

precise description of the interaction M-N leads to less 

conservative values of equivalent buckling coefficients, 

especially if the normalized slenderness   is not high; 

however, difference between obtained outcomes is 

quite small. 

In the next table (Table 3) the evaluations of 

equivalent buckling coefficients are collected, obtained 

for  = 400C, owing to the application of Eq. (20) 

when  = 0.9. They are compared with the other ones, 

resulting from Eq. (15). As it is shown here the 

influence of  parameter is more significant, in 

particular for greater slenderness  .  
 

 
Fig. 4  Influence of initial imperfection e on equivalent buckling coefficient. 
 

 
Fig. 5  Influence of steel temperature on equivalent buckling coefficient. 
 

Table 2  Equivalent buckling coefficients, obtained for  = 400C, based on various formulae describing interaction M-N. 

  0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Eq. (13) 0.833 0.795 0.700 0.583 0.473 0.380 0.307 0.250 0.206 0.172 0.145 

Eq. (15) 0.849 0.810 0.711 0.591 0.478 0.384 0.309 0.251 0.207 0.172 0.145 
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Table 3  Values of equivalent buckling coefficients obtained for  = 400C, based on the application Eq. (20) when  = 0.9, in 

relation to the other ones, resulting from Eq. (15). 

  0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Eq. (15) 0.849 0.810 0.711 0.591 0.478 0.384 0.309 0.251 0.207 0.172 0.145 

Eq. (20)  if 9.0  0.849 0.801 0.685 0.552 0.434 0.340 0.269 0.216 0.176 0.145 0.121 
 

5. Summary and Conclusions 

The Rankine-Merchant approach to evaluation of 

real member resistance can be an interesting alternative 

in relation to classical standard methodology of such 

assessment, not only for the case of persistent design 

situation but also when accidental, fully-developed fire 

conditions are considered. In the present paper the 

equivalent flexural buckling coefficient 
 ,fi , which 

includes both influence of buckling phenomenon and 

the unfavourable effects of weakening of material 

properties being the result of high temperature, is 

adopted by the author as an objective measure of the 

reduction of examined resistance in fire. Some direct 

formulae are specified here to estimate the value of 

searched coefficient. They are different one from the 

other according to the ratio of their complexity, which 

corresponds with the various precision of 

determination of considered coefficient. 

The quantitative comparison between the obtained 

outcomes leads to the conclusion that the coefficients 

calculated basing on the application of the standard 

approach are, as a rule, more conservative than 

adequate factors, being a results of using of 

Rankine-Merchant concept. Equivalent buckling 

coefficients, resulting from the simplest formula 

proposed in this article (Eq. (10)), would be able to be 

compared with the standard ones if typical multiple 

buckling curves, specified for calculations made at 

room temperature, were taken into account also in fire 

situation (Fig. 1). The concept that only a simple and 

very strong buckling curve is recommended in such 

case allows to include structural analysis made for fire 

situation not only the model uncertainty but also a great 

random variability of the parameters of potential fire. 

Besides that such simplification gives evaluations of 

searched coefficients which are safe in general. This 

statement is widely verified by experiments. On the 

other hand, all influences which are the effects of 

randomness of basic parameters describing a fire could 

be taken into consideration in another calculation phase, 

for example with the specification of suitable partial 

safety factors and/or with the adoption of accurate 

regula of load combination. 

Using of Rankine-Merchant design approach gives 

the opportunity to judge the importance of various 

factors being the result of the analysis of members 

which are not perfect in statical sense. All those effects 

can be modelled owing to the application of the 

equivalent imperfection concept. Such imperfections 

can be adopted exemplarily as the initial member 

deflection or as the load eccentricity. As one can see in 

the presented paper the importance of those effects is 

frequently very significant. Let all notice that such 

imperfections are also considered in classical standard 

evaluations of suitable buckling coefficients, in which 

the Perry-Robertson design model is used, but their 

effects cannot be extracted in such simple and 

illustrative way because the formal structure of 

adequate calculation formula (see Eq. (2)) is more 

involved. 

References 

[1] W. S. Toh, K. H. Tan and T. C. Fung, Compressive 
resistance of steel columns in fire: Rankine approach, 
Journal of Structural Engineering 126 (3) (2000) 398–404. 

[2] C. Y. Tang, K. H. Tan and S. K. Ting, Basis and 
application of a simple interaction formula for steel 
columns under fire conditions, Journal of Structural 
Engineering 127 (10) (2001) 1206–1213. 

[3] Z. F. Huang and K. H. Tan, Rankine approach for fire 
resistance of axially-restrained steel column, in: 
Proceedings of 4th International Conference on 
Performance-Based Codes and Fire Safety Design 
Methods, Melbourne, Australia, 2002, pp. 225–234. 



Rankine-Merchant Approach to Specification of Flexural Buckling Coefficient for fire Situation 

  

1309

[4] C. Y. Tang and K. H. Tan, Basis and applications of 
simple application formula for steel frames under fire 
conditions, Journal of Structural Engineering 127 (10) 
(2001) 1214–1220. 

[5] W. S. Toh, K. H Tan and T. C. Fung, Strength and 

stability of steel frames in fire: Rankine approach, Journal 

of Structural Engineering 127 (4) (2001) 461–469. 

[6] W. S. Toh, K. H. Tan and T. C. Fung, Rankine approach 

for steel columns in fire: Numerical studies, Journal of 

Constructional Steel Research 59 (2003) 315–334. 

[7] W. Skowroński, Plastic load capacity and stability of 

frames in fire, Engineering Structures 19 (9) (1997) 

764–771. 

[8] W. Skowroński, Fire Safety of Metal Structures, Theory 

and Design Criteria, PWN, Warsaw, Poland 2004. 

[9] EN 1993-1-2, Design of Steel Structures—Part 1-2: 

General Rules, Structural Fire Design, 2005.

 

 


