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Abstract: Two CaCO3-based materials (limestone and clamshells) and steel slag were used as mineral admixtures in cement to produce 
ternary blends and their influences on hydration and portlandite formation were analyzed. Additionally, mechanical properties were 
determined. These properties were determined using X-ray diffraction and scanning electron microscopic/energy dispersive X-ray 
analytical techniques as well as applying methods specified by EN (European Standards) and ASTM (American Standards for Testing 
and Materials). The portlandite (Ca(OH)2) content was considerably reduced from 36.9% of reference cement to between 13.79% and 
15.5%. With the water demand and setting times of the cements containing up to 10%, admixtures did not change significantly. The 
mechanical tests results showed that ternary blends produced 2-day strengths higher than that specified by EN 197-1 and that blends 
containing up to 20% admixtures can be used to produce both Class 32.5N and 42.5N cements. 
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1. Introduction 

Portland cement production has traditionally 

involved calcination of limestone and siliceous clay to 

produce clinker, which is then intergrounded with 

3%-5% gypsum. However, current trends in cement 

production involve the addition of 5% to 70% mineral 

admixtures in order to improve the technical properties 

and durability of cement especially in tropical humid 

zones and acidic medium.  

The presence of admixtures like fly ash, limestone, 

slag and pozzolana in Portland cement influences the 

rate and degree of cement hydration as well as the 

phase composition of hydrated cement paste. Their 

addition influences reactivity and may increase the 

hydration rate of clinker minerals and also improve the 

workability of cement, lower the heat of hydration and 

energy cost among others [1-3]. Admixture integration 

in cement could produce higher early strength due to 
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the filler effect of admixtures as a result of the 

increased surface area that leads to an initial 

accelerating effect on cement hydration and, in some 

instances, increases the resistance of the blended 

cement to acidic water attack [3-6]. Addition of 

CaCO3-based materials and slags reduces amount of 

clinker in cement, thus mitigating the effect of carbon 

gases emission during cement production.  

Secondly, the utilization of otherwise waste steel 

slag would prevent potential environmental pollution 

which may result from leaching of deleterious 

compounds into the soil.  

Several works by researchers have shown that 

CaCO3 powder chemically interact with the aluminate 

phases in cement to stabilize a carboaluminate phase at 

the expense of monosulfoaluminate during hydration 

of cement [2-5]. 

There is also a positive effect of limestone on the 

setting time and water demand of cement [3, 7]. 

Composition of steel slag makes it a good partial 

substitute in Portland cement but has the disadvantage 
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of longer setting time and lower early strength, which is 

attributable to the slow growth of calcium silicate 

hydrates gel when compared with ordinary Portland 

cement [6, 7]. However, these are compensated by the 

addition of other admixtures and usage of high-strength 

cement or high quality clinker with higher fineness.  

Most steel slag used by Tsakiridis et al. [8] and 

Kourounis [9] contains high CaO content ranging 

from 35% to 56% with high calcium silicates, which 

are very essential for cement hydration and strength 

development. Also, limestones of high CaO content, 

above 47%, are usually employed for clinker or 

cement replacement [3, 4]. However, steel slag 

containing very low Ca mineral phases content and 

limestone with relatively low CaO content are used in 

this study. This paper presents the influence of 

limestone, clamshells and steel slag on cement 

hydration, precipitation of portlandite (Ca(OH)2) in 

ternary cement blends. Their physical and mechanical 

properties were determined.  

2. Materials and Methods 

All the materials were obtained in Ghana, namely, 

OPC (CEM I Class 42.5N Portland cement) from 

Ghacem, a cement producing company, steel slag (S), a 

waste product obtained from Wahome Steel Company 

Ltd in Tema, limestone (L) used for cement production 

in Ghana and clamshells (Sh), obtained along the banks 

of the Volta River. The clamshells, steel slag and 

limestone were separately crushed and milled in a 

pulveriser, and then passed through a 75 µm BS (British 

Standard) sieve.  

The milled and sieved mineral admixtures (limestone, 

clamshells and steel slag) were blended with the OPC 

using various mix designs as shown in Table 1. The 

chemical composition of samples was determined by 

XRF (X-ray fluorescence) analysis using Spectro 

X-LAB 2000 equipment. The blended cement samples 

were used to produce cement pastes, mortar and concrete 

samples respectively for the study.  

The standard consistency, setting times and 

soundness of the cement pastes were obtained using 

standard methods specified by EN (European 

Standards) 196 [10], whilst the water permeability of 

the concrete samples was determined using ASTM 

(American Standards for Testing and Materials) C 642 

[11]. The morphology of the hydrated cement samples 

was investigated by means of SEM (scanning electron 

microscopy) using Zeiss SEM analyser. The cement 

hydrates were characterized by XRD (X-ray diffraction) 

with a Philips PW 1830 X-ray diffractometer. The 

compressive strengths of the cement mortar cubes and 

concrete cubes were tested at 3, 7, 28, 90 and 365 days 

according to EN specifications [12]. The various mix 

designs employed in the moulding of mortar and 

concrete specimens for the compressive strength tests 

are given in Table 2. The mixes were used to achieve 

compressive strengths between 32.5 MPa and 42.5 

MPa for the mortar cubes, and 20 MPa for the concrete 

specimen at 28 days. 

3. Results and Discussion 

3.1 Chemical and Mineralogical Compositions of 

Samples 

As shown in Table 3, the main components of 

limestone are CaO (42%), SiO2 (17.3%) and Fe2O3 

(4.5%), whilst clam shells have 52.4% CaO. Steel slag 
 

Table 1  Mix designs of blended cements.  

Sample 
Composition by mass (%) 

OPC Limestone Clam shells Steel slag 

OPC 100 - - - 

5L5S 90 5 -  5 

5Sh5S 90 - 5 5 

10L5S 85 10 -  5 

10Sh5S 85 10 -  10 

10L10S 80 10 -  10 

10Sh10S 80 - 10 10 
 

Table 2  Mortar and concrete mix design details.  

Mix proportion by mass 

w/c 
Cubes 

Cement Crushed 
aggregate Blend Sand 

Mortar  1 3 - 0.5 

Concrete 1 2 4 0.55 
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Table 4  Mechanical properties of cement samples.  

Sample 
Water 
permeability 
(%) 

Water demand 
(%) 

Setting time (min) 
Compressive strength (MPa) 

Days 

Initial Final  2 7 28 90 

OPC 4.42 26.0 120 210  22.6 31.7 43.2 43.5 

5Sh5S 4.12 25.6 106 162  16.5 24.3 41.0 41.4 

5L5S 4.22 26.2 106 159  19.5 23.5 40.9 42.2 

10Sh5S 3.96 31.8 165 245  14.6 20.3 40.5 40.8 

10L5S 4.21 31.2 162 234  14.2 20.8 39.2 39.0 

10L10S 4.25 30.6 163 242  13.9 18.3 37.5 40.1 

10Sh10S 4.31 31.5 162 241  13.4 16.9 39.1 40.4 
 

 
Fig. 4  Strength development of cement samples.  
 

Table 5  Properties of concrete samples.  

Sample  Slump (mm)  
Compressive 
strength (MPa) 

OPC 75 25.4 

5Sh5S 74 24.0 

5L5S 77 24.3 

10L5S 76 22.6 

5L10S 75 21.7 

10L10S 77 21.2 

10Sh10S 76 21.4 
 

obtained for all cement blends were more than 75 min 

and less than 10 h, respectively, as stipulated by EN 

197-1 [15].  

Generally, the 2-day and 7-day compressive 

strengths of all the blended cement mortars (Fig. 4) 

were higher than the standard minimum value of 10 

MPa and 16 MPa, respectively, stipulated by EN 

standards [15]. At 28 days, samples with 10% 

admixture content recorded strengths between    

40.9 MPa and 43.0 MPa and those with 15% to 20% 

admixture content produced between 37.5 MPa and 

40.5 MPa. These strengths ranged between 86.5% and 

99.5% of the reference cement, more than 75% 

stipulated by ASTM C 618 [16]. The strengths with 20% 

replacement were always lower and this is attributed to 

the filler effect which was surpassed by the dilution 

effect and reduction of active clinker minerals needed 

to obtain early high strength. It was observed that 

strengths obtained from samples containing 10% of 

both slag and limestone (10L10S) ranged between 87% 

and 91.5% of the control as compared to 75% and 80% 

obtained by Korounis [9] and Altun [17].  

The 28-day compressive strengths of the concrete 

samples obtained were higher than the targeted value of 

20 MPa and the slump values showed the blended 

samples were more workable than the OPC (Table 5) . 

These results compared favourably with the ASTM [16] 

specification, which stipulates minimum 28-day 

strength of 75% of the reference.  

4. Conclusions 

The study has shown that the presence of a 

combination of limestone/clam shells and steel slag 

filler provided unique cement qualities such as low 

Ca(OH)2 content, enhanced ettringite formation and 

improved impermeability of concrete. The blended 

cement produced higher early strengths specified by 

EN 197-1 and ternary cement blends containing up to 

10% and 20% of both limestone/clamshells and steel 

slag satisfy specifications of Class 42.5 and 32.5N 

cements, respectively. Increasing the admixture 
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content from binary to ternary blend improved the 

resistance to sulphate and seawater attack.  
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