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We propose a copula-GARCH framework to analyze the credit risk dependence structure between the European 

corporate and financial sectors. Empirical study is conducted on two representative iTraxx indices. In order to 

better capture the dynamic behavior of dependence we allow copula parameters to be time-varying by specifying 

them as a function of past values and standardized score of the copula log-likelihood. The results obtained indicate 

a time-varying dependence structure with statistically significant tail dependence coefficients supporting the 

existence of credit risk contagion effects. Goodness-of-fit tests are used to indicate which model is closest to the 

true conditional copula. Our findings provide further evidence supporting the interconnectivity of credit risk 

between corporates and financial institutions operating on the European market. 
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Introduction 

We propose a framework for credit risk contagion analysis based on a time varying copula-GARCH type 

of model that allows for separate specification of the dependence structure from the marginal distributions. The 

empirical part analyses the credit risk dependence pattern between European corporate and financial sectors, as 

reflected by the iTraxx Senior Financial and Crossover CDS indices. These indices are highly representative 

aggregated indicators of credit risk in their respective sectors. In addition to flexibility, this set-up facilitates the 

credit risk analysis at sector level as well as the description of the dependence structure that leverages total risk. 

The literature on copula modeling is growing by the day. For a thorough introduction to copulas we refer 

to Joe (1997) and Nelsen (2006), the two key text books on dependence modeling from a statistical perspective. 

McNeil, Frey, and Embrechts (2005) provided a sound implementation of copula models in the context of 

quantitative risk management while Embrechts, McNeil, and Straumann (2002) introduced the static 

representation of dependence via copulas. Patton (2006) laid down the foundation for multivariate financial 

time series applications of copulas and complements his research with a comprehensive empirical study in 

Patton (2012). Choroś, Ibragimov, and Permiakova (2010) presented an overview of copula estimation methods 

for time series data. Patton (2009) gave an overall survey of copula applications to time series. Genest, 
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Rémillard, and Beaudoin (2009) and Rémillard (2010) are two key references for copula Goodness-of-Fit tests. 

Sklar’s theorem provides the formal approach to separate a joint distribution into independent margins and 

a copula. For every -dimensional distribution ܨ with corresponding margins ܨ, there exists a copula ܥ 

such that: 

,ଵݕ൫ܨ … , ൯ݕ ൌ ܥ ቀܨଵሺݕଵሻ, … ,  ൯ቁ                                                              (1)ݕ൫ܨ

If ܨ is continuous then the probability integral transformation ܷ ൌ ሺܨ ܻሻ is unique and Unif ሺ0, 1ሻ 

distributed regardless of the original distribution of ܨ. Conversely: 

,ଵݑ൫ܥ … , ൯ݑ ൌ ܨ ቀܨଵ
ିଵሺݑଵሻ, … , ܨ

ିଵ൫ݑ൯ቁ                          (2) 

where ݑ ൌ ,ሻݕሺܨ ݅ ൌ 1, … ,  :times differentiable then the joint density is given by   isܨ If .

ܿ൫ݑଵ, … , ൯ݑ ൌ  
ቀிభ

షభሺ௨భሻ,…,ி
షభ൫௨൯ቁ

∏ ቀி
షభሺ௨ሻቁ

సభ

                            (3) 

The copula-GARCH class of models assumes certain parameters are time varying in an autoregressive 

manner and their distributions are conditional on past information. In the context of this analysis we are 

interested in modeling the cross sectional dependence between time series data and therefore we employ an 

adapted version of Sklar’s theorem introduced by Patton (2006). The distribution of ௧ܻ  conditional on 

௧࣠ିଵ ൌ ሼ ୪ܻ : l  ݐ െ 1ሽ is decomposed into its conditional margins and the corresponding conditional copula in 

the following way: 

|ݕሺܨ ௧࣠ିଵሻ ൌ |ଵݕଵሺܨ൛ܥ ௧࣠ିଵሻ, … , |ݕ൫ܨ ௧࣠ିଵ൯| ௧࣠ିଵൟ 

with 

ܻ௧| ௧࣠ିଵ  ڄሺܨ | ௧࣠ିଵሻ, ݅ ൌ 1, … ,  (4)                                                          

Fitting a copula on the unconditional probability integral transform will result in an unconditional copula 

model for the dependence. In a time series context however, it is necessary to condition on the available past 

information which first requires the specification of the margins and then the copula that joins the series 

cross-sectionally. If we define the probability integral transform ܷ௧ ൌ ሺܨ ܻ௧| ௧࣠ିଵሻ then the conditional copula 

of ௧ܻ| ௧࣠ିଵ is given by ௧ܷ| ௧࣠ିଵ  ڄሺܥ | ௧࣠ିଵሻ. It is important to note that both the margins and the copula have 

to be conditional on the same dataset. We use the standard ARMA-GARCH approach to model the univariate 

distributions by specifying the following general model for each series: 

ܻ௧ ൌ ሺߤ ௧ܻିଵሻ  ሺߪ ௧ܻିଵሻ߳௧                             (5) 

where ߳௧  ,ሺ0ܨ 1ሻ,  The conditional copula is fitted on the conditional distribution of the probability .ݐ

integral transform of the standardized residuals constructed as: 

Ԗො௧ ൌ
ି ఓሺషభሻ

ఙሺషభሻ
, ݅ ൌ 1, 2 … ,  (6)                            

The parametric form of ܨ has to be able to accommodate thicker than normal tails and possibly an 

asymmetric shape. For this analysis, we tested different forms of skewed distributions and choose the flexible 

and thoroughly studied Skew-t form of Lambert and Laurent (2001), for its suitability to our data set. 

Dependence Measures 

The literature on multivariate analysis provides a broad array of dependence measures (see Nelsen, 2006, 

Chapter 5) for an in-depth description. In this study we will focus on rank correlation and tail dependence for 
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their specific property of being scale invariant. Linear correlation plays an essential role in finance theory, 

however it is important to mention that this concept only applies in the context of multivariate elliptical 

distributions. A detailed discussion of the shortcomings of relying on linear correlation is given by 

Embrechts et al. (2002). One important property of copulas, namely that the dependence structure is invariant 

under increasing and continuous transformations of the margins, allows for the specification of the Spearman’s 

rank correlation directly as: 

ௌߩ ൌ ଵሺܨ൫ߩ ଵܻ௧ሻ, ଶሺܨ ଶܻ௧ሻ൯ 

ρොௌ ൌ  
ଵଶ

T
∑ ଵܷ௧ܷଶ௧

்
௧ୀଵ െ 3                                 (7) 

which is simply the linear correlation of the probability integral transforms. Hence for continuous random 

variables ߩௌ is the linear correlation of their unique copula. ߩௌ is constrained in ሾ0, 1ሿ with the boundaries 

being reached only if the variables are comonotonic or countermonotonic. Despite its appealing characteristics 

the rank correlation is only a scalar measure that gives an overall indication about the strength and sign of the 

dependence. 

The concept of tail dependence relates to the amount of dependence in the upper or lower quadrant tail of 

the distribution. The motivation for looking at these coefficients is that they provide measures of extremal 

dependence and we describe them in terms of limiting conditional probabilities as: 

ߣ ൌ lim՜
ሺ,ሻ


 and ߣ ൌ  lim՜ଵ

ଵିଶିሺ,ሻ

ଵି
                      (8) 

where ܥ is said to have upper tail dependence if ߣ א ሾ0, 1ሿ and lower tail dependence if ߣ א ሾ0, 1ሿ. If 

ߣ ൌ   then the copula is radially symmetric and if one coefficient is 0, then the copula is asymptoticallyߣ

independent in the respective tail. 

In order to determine whether a time varying conditional copula model is appropriate it is necessary to test 

for the presence of time-varying dependence. We focus on tests that look for changes in rank correlation. The 

simplest way to implement this tests is to break the data series at a specific point ݐ and test for H: ߩଵ ൌ  ଶߩ

where ߩଵ and ߩଶ are the rank coefficients computed for values below and above the break point ݐ. The 

shortcoming of this test is that the break point has to be specified in advance. In order to overcome this 

difficulty a more intricate test would be to search for the break point by constructing the following statistic: 

ܳ ൌ max௧ൣא௧ಽ,௧ೆ൧หߩଵ,௧ െ  ଶ,௧ห                                 (9)ߩ

where: 

ଵ,௧ߩ ൌ  
ଵଶ

୲
∑ ଵܷܷଶ െ 3 and ߩଶ,௧ ൌ

ଵଶ

்ି௧
∑ ଵܷܷଶ െ 3்

ୀ௧ାଵ
௧
ୀଵ                    (10) 

The significance of the test can be assessed by comparing ܳ against a critical value derived from a simple 

iid bootstrap. The interval ሾݐ,  ሿ has to be constructed in a way that ensures enough observations are left toݐ

estimate pre and post break point rank correlations. Instead of searching for discrete breaks in rank correlation 

the following test looks for autocorrelation in dependence: 

ଵܷ௧ܷଶ௧ ൌ ߙ  ∑ ߙ ଵܷ,௧ିܷଶ,௧ି

ୀଵ   ௧                         (11)ߝ

Under the null of a constant conditional copula ߙ ൌ 0, ݅   1. This hypothesis can be tested by using 

the Ljung-Box test statistic. 
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Estimation and Inference 

Estimation for copula models is usually performed via Maximum Likelihood (ML). One may attempt to 

estimate margins and copula in one single optimization, however splitting the modeling into two steps can yield 

more insight and allow for more detailed analysis of the different model components. 

Constant Copula 

Using parametric models for the conditional distributions and the copula completely specifies the 

log-likelihood function and the parameters can be estimated as: 

θIFM ൌ arg maxఏ log ࣦ ሺߠሻ                             (12) 

The canonical representation for the multivariate density function in equation (3) permits us to say that a 

statistical modeling problem for copulas could be decomposed into two steps: identification of the marginal 

distributions and specification of the appropriate copula function. This approach has been termed 

inference-functions for margins (IFM) and the parameters are estimated as in: 

ଵߠ ൌ arg max
ఏభ

  log ݂ሺ ܻ௧; ଵሻߠ



ୀଵ

்

௧ୀଵ

 

ଶߠ ൌ arg maxఏమ
∑ log ܿ൫ܨଵሺ ଵܻ௧; ,ଵሻߠ … , ሺܨ ଶܻ௧; ;ଵሻߠ ଶ൯்ߠ

௧ୀଵ                   (13) 

and ߠIFM ൌ ,ଵߠൣ  ଶ൧ is the parameter vector estimated in stages. In the following we will assume that theߠ

regularity conditions of Joe (1997) for parameter asymptotic distribution hold for the multivariate model as 

well as for all margins. Under these regularity conditions the ML estimator exists and it has the property of 

being asymptotically normal: 

√ܶ൫ߠIFM െ ൯ߠ ՜ ܰሺ0, IܸFMሻ for ܶ ՜ ∞                      (14) 

A critical point here is that asymptotic normality does not hold under model misspecification. This implies 

that the copula likelihood being maximized is not the true likelihood because it is influenced by parameter 

estimation error in the margins. The naive approach would just use the inverse Hessian of the copula likelihood 

as an estimate of the covariance matrix for the copula parameters. In order to incorporate the estimation error 

that propagates from the margins to the copula the following estimator should be used for the covariance 

matrix: 

ܸIFM ൌ መିଵ൯ܣ൫ܤመିଵܣ
′
 

መܣ ൌ  
1
ܶ

 ௧ܪ

்

௧ୀଵ

 and ܤ ൌ  
1
ܶ

 ௧ݏ௧̂ݏ̂
′

்

௧ୀଵ

 

௧ݏ̂ ൌ ,ଵ௧ݏ̂ൣ  … , ,௧ݏ̂  ௧൧ݏ̂

௧ݏ̂ ൌ  
߲

ଵ,ߠ߲
log ݂൫ ܻ௧; ଵ,൯ߠ , ݅ ൌ 1,2, … ,  

௧ݏ̂ ൌ  
డ

డఏమ
log ܿ൫ܨଵ௧൫ ܻ௧; ,ଵ,ଵ൯ߠ … , ௧൫ܨ ܻ௧; ;ଵ,൯ߠ  ଶ൯                   (15)ߠ

Hessian ܪ௧ has to be adjusted with the partial derivatives of ࣦ with respect to margins and copula 

parameters to account for marginal parameter estimation error. 
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Time Varying Copula 

We considered the Generalized Autoregressive Score (GAS) model of Creal, Koopman, and Lucas (2013) 

to model the time-varying parameters for the copula of the standardized residuals. This framework describes 

the dynamic behavior of dependence by expressing the copula parameters as a function of lagged values and 

the standardized score of the copula log-likelihood. In order to ensure that the copula parameter remains within 

the limits of its support this approach requires the modeling of a transformed variable ௧݂ ൌ ݄ሺߠሻ as follows: 

௧݂ାଵ ൌ ߱  ௧߇ߙ
ିଵ ଶ⁄ ௧ݏ  ߚ ௧݂                               (16) 

where: 

௧ݏ ൌ  
߲

ߠ߲
log ܿሺ ଵܷ௧, ܷଶ௧;  ௧ሻߠ

௧߇ ൌ ௧ݏ௧ݏ௧ିଵ൫ܧ
′ ൯                                    (17) 

The future value of the transformed copula parameter is a function of a constant, its current value and the 

standardized score of the copula log-likelihood. The use of the score for updating ௧݂ାଵ is intuitive because it 

defines the steepest direction for improving the model local fit in terms of the likelihood at time t. This 

approach is based on the complete density of observations and provides the natural direction for updating the 

parameter. A convenient property of the GAS model is that it can be estimated via maximum likelihood. 

Goodness-of-Fit Tests 

Goodness-of-Fit (GoF) tests have become standard tools for summarizing model performance. We focus 

on in-sample Kolmogorov-Smirnov (KS) and Cramér-von Mises (CvM) tests to assess the copula performance. 

These are two of the most powerful tests available. In the multivariate case these tests rely on the empirical 

copula as the closest estimate of the true copula. Genest, Rémillard, and Beaudoin (2009) used a simulation 

study to compare a range of copula GoF tests and conclude that the most powerful is the CvM test applied to 

the Rosenblatt transforms of the original data. The Rosenblatt transform represents the multivariate version of 

the probability integral transformation, mapping the original data into a hypercube of mutually independent 

variables. In the bivariate case, if ܼଵ௧ ൌ ଵܷ௧, and ܼଶ௧ ݐ ൌ |ଶ|ଵ,௧ሺܷଶ௧ܥ ଵܷ௧;  ଶ|ଵ,௧  is the distributionܥ ሻ whereߠ

of ܷଶ௧ conditional on ଵܷ௧ , then ܼଵ௧  and ܼଶ௧  are iid and Unifሺ0,1ሻ  distributed. The advantage of this 

transformation is that if the copula is correctly specified then ܼ௧   ୧୬ୢୣ୮ which allows us to construct theܥ

tests as: 

KS ൌ  max௧หܥோ൫ܼ௧; ൯ߠ െ መோሺܼ௧ሻหܥ  and CvM ൌ  ∑ ൛ܥோ൫ܼ௧; ൯ߠ െ መோሺܼ௧ሻൟܥ
ଶ்

௧ୀଵ           (18) 

where: 

;ோ൫ܼ௧ܥ ൯ߠ ൌ  ∏ ܼ௧

ୀଵ   and ܥመோሺݖሻ ൌ  

ଵ

்
∑ ∏ 1ሼܼ௧  ሽݖ


ୀଵ

்
௧ୀଵ                 (19) 

This set-up allows us to test whether the empirical copula, ܥመோሺݖሻ, is statistically different from the 

independence copula ܥோ. Critical values for these tests can be obtained via simulation. 

Implementation and Results 

The purpose of this study is to describe the time-varying dependence between the iTraxx Europe Senior 

Financial and Crossover CDS indices as a measure of contagion between the European corporate and financial 

sectors. In the first phase, we analyze the dependence pattern between the two series and test for evidence of 
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time-varying dependence. In a second phase, we fit both constant and time-varying copula-GARCH model and 

test for the statistical significance of the estimated parameters. One advantage of the copula-GARCH approach 

is the possibility to specify the model in stages. The marginal distributions are specified by an ARMA-GARCH 

model for each univariate time series and then a copula is estimated on the probability integral transforms of the 

standardized residuals. 

The Markiti-Traxx Europe Senior Financial index comprises 25 equally weighted CDSs on investment 

grade European financial entities whereas the MarkitiTraxx Europe Crossover index comprises 50 equally 

weighted CDSs on the most liquid sub-investment grade European corporate entities. Given the liquidity and 

actualized composition of the two indices we believe they are representative indicators of credit risk for their 

respective sectors. We proceed in analyzing the log-returns of the end-of-day quotations for the two indices 

with five years maturity. In order to construct a consistent time series we stitched together the log-returns of 

series 5 to series 19 creating a total of 1,880 observations spanning the time period from March 21, 2006 to 

June 17, 2013. The return series time span is long enough to include both pre and post crisis market conditions 

and therefore it is representative of the long run connection between the credit risk of financial and corporate 

sectors. All data were retrieved from the Bloomberg Database. 

Figure 1 depicts the levels of the two indices during the analyzed period. There is clearly more variability 

in the crossover index explained by its composition of sub-investment grade CDSs that react more vigorously 

to changing economic conditions. Although not as volatile, the financial index shows a steady upward trend 

indicating increasing risk in the financial sector. The support provided by the European authorities alleviated 

the risks for financial institutions and kept the index relatively stable at around 200bp for the past two years. 
 

 
Figure 1. iTraxx financial and crossover index levels (left panel). 

 

 
Figure 2. Daily returns of the two indices (right panel). 
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The summary statistics presented in Table 1 indicate that the returns of the two indices have fat tails and 

possibly skewed distributions. Both linear and rank correlation coefficients indicate that risks in the two sectors 

are dependent while the scatter plot in Figure 2 provides a visual interpretation of the direction and strength of 

dependence. This pattern is well-suited for elliptical as well as Archimedean copula classes. Starting from 2010, 

the correlation between the two indices has increased, providing an indication of possible credit risk contagion 

effects between the two sectors. 
 

Table 1 

Summary Statistics for the Returns of the iTraxx Financial and Crossover Indices 

Indicator Financial Crossover 

Mean 0.1083 -0.0348 

Std. dev. 4.7961 2.8720 

Skewness 0.3146 0.0488 

Kurtosis 10.7897 3.1590 

Corr. Pearson/Spearman 0.7804/0.7907 
 

Applying an ARMA-GARCH process to the return series of the two indices removes the temporal 

correlation but preserves the cross-sectional dependence. The order for the mean equation was determined by 

comparing the BIC for ARMA models of orders up to five. An AR(1) process was optimal for both series and 

this decision has also been confirmed by the partial autocorrelation function of the squared log-returns. Then, 

we used the squared residuals from the mean equation to test for conditional heteroscedasticity. The Ljung-Box 

test applied on the first 12 squared log-returns revealed p-values very close to zero which motivates the 

introduction of a conditional variance equation. Empirical studies have shown that asset returns may have fat 

tails and skewed distributions. To handle these characteristics, we used the skewed version of the Student-t 

distribution proposed by Lambert and Laurent (2001), for its suitability to ARCH processes. Therefore, in the 

framework described by equation (4), we filtered the data by fitting an AR(1)-GARCH(1,1)-Skew-t model on 

each series in order to remove the autocorrelation and construct the standardized residuals as in equation (6). In 

addition to autoregressive models we tested for cross-correlation by regressing one series on up to five lags of 

the other series but the coefficients came out not significant, at 5% level. This finding together with the shape 

of the scatter plot in Figure 2 is a strong indication that the two series are not linearly correlated but dependent. 

The copula chosen to describe the tail dependence must provide non-zero tail dependence in the specific 

tail on which is to be used. According to Capéràa, Fougéres, and Genest (2000), the Gumbel copula is also an 

extreme value copula and Archimedean copulas that belong to a domain of attraction are necessarily in the 

domain of attraction of the Gumbel copula. Given its properties, the Gumbel copula is a natural choice 

regarding tail dependence estimation. Table 2 presents the tail dependence coefficients determined according to 

equation (8) by fitting the Gumbel copula to the probability integral transforms of the standardized residuals. 

Confidence intervals (CI) are determined using an iid bootstrap simulation. Even though the upper and lower 

tail dependence coefficients are different, with CI overlapping, the p-value for H: ߣ ൌ   is 0.4416. The firstߣ

conclusion stemming from the results presented in Table 2 is that we fail to reject the null of symmetric 

dependence. In addition, none of the confidence interval include zero which leads us to the second conclusion 

that both tail dependence coefficients are statistically significant. The economic interpretation of these two 

conclusions is that extreme credit events in one sector cannot occur without affecting the other. That is, the 
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credit risks of the two sectors are linked regardless of the direction, providing statistical evidence that supports 

the existence of contagion effects. 
 

Table 2 

Estimates of Tail Dependence Using Gumbel Copula 

Estimate/Confidence interval Lower tail dependence Upper tail dependence 

 0.3325 0.4346 ߣ

90% CI [0.3368, 0.5514] [0.2151, 0.4298] 
 

Our reason for looking at rank correlation is because it provides information on the sign of the dependence 

and provides valuable indication on which types of copulas to use. The rank correlation of standardized 

residuals, calculated according to equation (7), is 0.7779 and using a simple iid bootstrap we computed a 90% 

CI of [0.7597, 0.7952]. Unlike elliptical copulas, Archimedean copulas can only capture positive dependence 

and having a statistically significant positive rank correlation justifies the application of these copulas. 

Under the assumption of constant dependence we use four copulas to model the full dependence structure. 

The Gaussian copula has become the standard tool in dependence modeling and we use it as a benchmark. The 

Student-t copula is motivated by the shape of the scatter plot of returns and its ability to capture tail dependence 

in both tails. The Gumbel and Clayton copulas are representative for the Archimedean class and provide 

asymmetric contour diagrams. Given the larger lower tail dependence parameter the Gumbel copula was used 

in the rotated form. In the multi-stage copula-GARCH framework copula estimation is straightforward because 

the optimization is performed over one or two parameters. Given the large sample of our data set we relied on 

multi-stage IFM estimation. Table 3 presents the log-likelihood, parameter estimates and standard errors for the 

constant copulas of the standardized residuals. The Student-t copula performed best as indicated by the largest 

log-likelihood value. This finding has two explanations. First, the characteristics of this copula are closest to the 

pattern exhibited by our data set and in particular it can capture both lower and upper tail dependency. Second, 

it has two parameters benefiting from the flexibility of a parameter that controls exactly the thickness in the 

tails. Even though the Gaussian copula cannot capture tail dependence it provided the second best fit. This is an 

indication that tail events have a low weight in setting the strength of the dependence. The rotated Gumbel 

copula performed close to the benchmark set by the Gaussian. This stems from the fact that our data set has 

both lower and upper tail dependency and this copula can only properly describe one tail at a time. Clayton 

copula proved inappropriate for this data set. The naive standard errors are significantly lower than the correct 

multi-stage IFM errors giving a false impression of consistency. This is because the naive method ignores the 

parameter estimation error in the marginal distributions. 
 

Table 3 

Parameter Estimates and Standard Errors for Constant Copula Models 

  
Log  ߠ ࣦ

Standard errors 

 Naive IFM 

Gaussian 899.7 0.7848 0.0071 0.0193 

Student-t 0.0152 0.0082 0.7951 948.9 ߠ 

y-1  0.1821 0.0261 0.1221 

Rotated Gumbel 889.1 2.2773 0.0433 0.1044 

Clayton 727.8 1.7982 0.0604 0.1737 
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Figure 3 presents a time series plot of a 60-day rolling rank correlation for the standardized residuals 

together with 90% bootstrap point-wise CI. This graph shows that the rank correlation was significantly lower 

in the period before the crisis. Since the beginning of 2008 this indicator hovered around 0.8, confirming the 

strength of the link between the credit risks of the two sectors. Having such a different pattern of correlation 

between the pre and post crisis periods gives us a reason to believe that the conditional dependence structure 

may also vary through time. 

In addition to the visual interpretation it is important to test for the presence of time-varying dependence 

and therefore we applied the two break tests and the ARCH test. The p-values for the break tests and for the Q 

test in equation (9) are presented on the left side of Table 4. Using the information provided by Figure 3 we 

have chosen three break points at ݐ ܶ⁄ א ሼ0.2, 0.5, 0.8ሽ  which correspond to the dates {2007-09-31, 

2009-11-03, 2011-11-29}. The p-values reject the null hypothesis of a constant rank correlation and provide 

statistical proof of a possible break point at the end of September 2007. On the right side, Table 4 presents the 

p-values of the Ljung-Box statistic calculated for the ARCH test in equation (11). Given the very low p-values 

at any lag we can reject the null of constant conditional copula. These results together with the conclusions 

drawn from Figure 3 provide the prerequisites for using a time varying copula model. 
 

 
Figure 3. Sixty-day rolling window rank correlation. 

 

Table 4 

Results for Time Varying Dependence Tests 

 Break test ARCH test 

 0.2 0.5 0.8 Anywhere AR(1) AR(5) AR(10) 

p-value 0.0015 0.2234 0.6177 0 0 0.0031 0.0058 
 

We considered the Student-t GAS and rotated Gumbel GAS copulas to model the time-varying copula 

parameters. To ensure the copula parameter remains within the accepted range we adopted the transformations 

proposed by Patton (2012). For the Gumbel copula the function ߠ௧ ൌ 1  exp ሺ ௧݂ሻ is used to ensure the parameter 

remains greater than 1. In the Student-t copula case, the degree of freedom parameter is kept constant and the 

correlation parameter is transformed as in ߠ௧ ൌ  ൫1 െ expሺെ ௧݂ሻ൯ ൫1  expሺെ ௧݂ሻ൯ ൗ to ensure it lies ininterval 

ሺെ1, 1ሻ. The parameter estimates for these two models together with their standard errors are presented in Table 5. 
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Table 5 

Parameter Estimates and Standard Errors for Time Varying Copula Models 

 Log ࣦ Parameters 
Standard errors 

Naive IFM 

Gumbel 
GAS 

971.1 ߱ 0.0017 0.0008 0.0123 

 0.4544 0.0137 0.0582 ߙ 

 0.1201 0.0019 0.9944 ߚ 

Student-t 
GAS 

1047.6 ߱ 0.0099 0.0014 0.2401 

 0.5469 0.0094 0.0531 ߙ 

 0.3346 0.0001 0.9957 ߚ 

 ଵ 0.0866 0.0158 0.0525ିߥ 
 

According to our priori-expectations the log-likelihoods for the time-varying copulas are significantly 

greater than the ones for constant copulas. This indicates that the GAS models are better at describing the 

dependence than their constant counterparts. The ߚ parameter in equation (16) is very close to 1 which 

indicates a high temporal dependence in copula parameters. Even though the ߙ parameter is low, it is 

statistically significant, which indicates that the future copula parameters are dependent on past information as 

described by the score of copula likelihood function. The degrees of freedom parameter of the Student-t copula 

is greater in the time-varying model than in the constant model. This result is consistent with previous findings 

in volatility literature. As in the constant case, the naive standard errors are smaller than the IFM errors that 

correctly include the parameter estimation error in the margins. This finding is also in line with theoretical 

guidelines. 

The results outlined above allow us to conclude that the credit risk dependence is indeed significant and 

time-varying. We may conclude that the statistical models employed provide sufficient evidence in support of 

the existence of credit risk contagion between the corporate and financial sectors, at European level. 

In the absence of parameter estimation error GoF test statistics follow some known distribution. However, 

known parametric distributions are not applicable here because KS and CvM depend on ߠ, that is they are 

affected by estimation error both in marginal distributions and copula. This is the reason why simulation 

represents the most suitable method for determining p-values for KS and CvM tests. The following simulation 

procedure is straight forward and involves sampling and estimation of both margins and copula: (1) estimate 

the model on the original data to obtain ߠ and compute the GoF statistics; (2) simulate a sample of length ܶ 

from the model using the estimated parameter ߠ; (3) re-estimate the model on the sample data to obtain ߠ 

and compute the GoFn statistics; and (4) repeat steps (2)-(3), ܰ times and compute the p-values as: ே ൌ
∑ 1ሼGoF  GoFሽே

ୀଵ /ܰ. 

Following this simulation procedure we generated the p-values for the GoF tests computed on the 

Rosenblatt transform of the original data. The results are presented in Table 6. Low p-values are evidence 

against the null that the tested copula is the true unknown copula. Student-t and Gumbel copulas pass the test 

both in the constant and time-varying set-up. This result comes in support of the permanent character of the 

connection between the credit risk of the two sectors. The validity of both the time-varying and constant copula 

models indicates that even though the degree of dependence varies in time it has been statistically significant 

throughout the analyzed period. Therefore, we may conclude that GoF tests provide conclusive evidence 

supporting credit risk contagion between the two sectors. 
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Table 6 

p-values for Goodness-of-Fit Tests of Both Constant and Time-Varying Copula Models 

 Constant Time varying 

 Normal Student-t Gumbel Clayton Gumbel GAS Student-t GAS 

KS 0.02 0.15 0.38 0.08 0.22 0.18 

CvM 0.03 0.21 0.16 0.09 0.18 0.23 

Conclusions 

We propose a multi-stage time-varying copula-GARCH model to describe the credit risk dependence 

between corporate and financial sectors at European level. The analysis indicates a symmetric dependence 

structure with statistically significant tail dependence parameters. We bring arguments supporting the 

time-varying dependence and model this pattern with the Student-t and Gumbel GAS models. The statistical 

significance of our results allows us to conclude that credit risk dependence exists which supports the 

hypothesis of credit risk contagion. The GoF tests indicate that both time-varying and constant conditional 

copula models are able to capture the credit risk dependence. The Student-t and Gumbel copula models, 

validated by the GoF tests, provide conclusive evidence supporting the contagion effects between the corporate 

and financial sectors. 
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