

Comparison of Embodied Energy/CO₂ of Office Buildings in China and Japan

Noriyoshi Yokoo¹, Tatsuo Oka¹, Keizo Yokoyama², Takao Sawachi³ and Makoto Yamamoto⁴

1. Department of Design and Engineering for the Global Environment, Graduate School of Engineering, Utsunomiya University, Tochigi 321-8585, Japan

2. Department of Urban Design and Planning, Kogakuin University, Tokyo 163-8677, Japan

3. National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure, Transport and Tourism, Tsukuba 305-0802, Japan

505-0802, Japan

4. Research and Development Center, Shinryo Corporation, Tsukuba 300-4247, Japan

Abstract: The embodied energy/ CO_2 of buildings in China and Japan, which reflects the characteristic industrial efficiency of building materials, is described in this paper. The energy consumption and CO_2 intensities for the dominant materials used in buildings are derived from the energy consumption in factories, and the energy consumption to produce equipment is derived from IO (input/output) analysis in order to compare the embodied energy/ CO_2 for buildings between China and Japan based on the same estimation method. Although the energy consumption of structures in China is two to three times greater than in Japan, the interior finish and air conditioning equipment, for example, are simpler and smaller. As a result, the embodied energy/ CO_2 of office buildings in China is only 10% to 20% greater than that of Japanese office buildings. Thus, the embodied energy/ CO_2 of buildings depends on both industrial efficiencies and building design trends of the country.

Key words: Embodied energy, embodied CO₂, China, Japan, energy/CO₂ intensities.

1. Introduction

The accuracy of the evaluation of energy consumption and related CO_2 emissions associated with buildings has been increasing, and such evaluations are being applied in the design of more energy efficient building envelopes and systems. Thus, the weight of the energy consumption and CO_2 emissions due to building construction is increasing, so that methods used to estimate these factors will become increasingly important.

This paper demonstrates a method for comparing the embodied energy/ CO_2 of buildings in China and Japan. The difference in embodied energy/ CO_2 of buildings is also shown from the view point of industrial energy

efficiency, the quantity of materials used in the buildings, and the design of the buildings in the two countries.

Fig. 1 shows a rough estimation of the total CO_2 emissions in various countries, and the corresponding fractions of embodied CO_2 due to building construction and public works. This figure is based on the calculation result with world IO (input/output) data and CO_2 emissions [1, 2]. The shaded areas indicate the total global embodied CO_2 . In particular, the fraction of embodied energy is higher in developing countries and often exceeds the building operation energy. As shown in Fig. 1, the embodied CO_2 differs among countries depending on the building design, the CO_2 intensity of materials, and the quantity of materials used in the building.

Corresponding author: Noriyoshi Yokoo, Ph.D., associate professor, research fields: life cycle assessment, embodied energy/ CO_2 and energy efficiency of buildings. E-mail: yokoo@cc.utsunomiya-u.ac.jp.

Fig. 1 Rough estimation of CO_2 emissions in various countries and the corresponding fraction of embodied CO_2 in 2009 (based on our calculation result with Refs. [1, 2]). Whole world CO_2 : 28.7 billion t- CO_2 /year.

2. Input/Output Analysis

2.1 Input/Output Analysis

The embodied energy/CO₂ is obtained from the analysis of IO tables. The IO tables of Japan consist of 400 industrial sectors [3], and those of China consist of 30 industrial sectors [4, 5]. Therefore, energy intensities of fundamental building materials, including concrete, steel, wood, and glass are derived from the energy consumption in industrial sectors corresponding to the material and the quantity of the material, which are expressed in terms of MJ/kg or MJ/m³. Energy intensity of equipment, which is expressed in terms of MJ/Yen or MJ/Yuan, is derived from IO analysis. Generally, since materials that have high energy intensity have only a slight influence on other industrial sectors, calculating the energy/CO₂ intensity based on energy and the quantity of material consumed in the factory may be sufficiently accurate for estimation of embodied energy and CO₂ emissions. Since this calculation method is also applied to embodied energy/CO₂ in Japan, it becomes possible to compare the embodied energy/CO2 of buildings in China and Japan using the same methodology. The general domestic production X of each industrial sector can be calculated by Leontief inversion with final

demand $F_{(D)}$ as follows:

$$X = \{I - (I - M)A\}^{-1}\{(I - M)F_{(D)} + F_{(E)}\} (1)$$

where:

X: domestic output (Yen/year);

 $\{I - (I - M)A\}^{-1}$: Leontief competitive import-type inverse matrix (-);

I: unit matrix (-);

M: import coefficient diagonal matrix;

$$m_i = M_i / C_{i;}$$

m_i: import coefficient (-);

M_i: import price of *i* product (Yen/year);

C_i: domestic demand for *i* product (Yen/year);

A: activity (input coefficient) (-);

F(*p***): domestic final demand value (Yen/year);**

 $F_{(E)}$: export value (Yen/year).

Since it is possible to obtain the energy consumption and domestic production in each industrial sector, the energy intensity E_i (MJ/Yen) can be derived. The total ultimate energy consumption E_F with final influences by X can be expressed as follows:

$$\boldsymbol{E}_{F} = \sum_{i=1}^{n} \boldsymbol{X}_{i} \times \boldsymbol{E}_{i}$$
(2)

where:

n: number of industrial sectors in the country;

X_i: general domestic product in each industrial sector (Yen);

 E_F : total ultimate energy consumption (MJ).

2.2 Caloric Values and CO₂ Emission Factors

Table 1 shows the caloric values and CO_2 emission factors. The caloric values and CO_2 emission factors for electricity in Japan are much smaller than in China because nuclear power stations produce 34% of the total consumed electricity in Japan [6].

Ultimate energy consumption and CO_2 emission, which are referred to as the energy/ CO_2 intensity due to the final demand of 1,000 USD for each industrial sector, are shown in Table 2 for China and in Table 3 for Japan.

Fuel	Caloric value	CO ₂ emission	Weight (kg/L)
Coal	28.9 MJ/kg	2.5 kg-CO ₂ /kg	-
Coke	30.1 MJ/kg	3.3 kg-CO ₂ /kg	-
Crude oil	42.4 MJ/kg	2.9 kg-CO ₂ /kg	0.90
Gasoline	46.1 MJ/kg	3.1 kg-CO ₂ /kg	0.75
Kerosene	45.9 MJ/kg	3.1 kg-CO ₂ /kg	0.80
Light oil	46.0 MJ/kg	3.2 kg-CO ₂ /kg	0.83
Heavy oil	43.4 MJ/kg	3.0 kg-CO ₂ /kg	0.90
Natural gas	40.9 MJ/m ³	$2.0 \text{ kg-CO}_2/\text{m}^3$	-
Electricity (China)	10.9 MJ/kWh	1.0 kg-CO ₂ /kWh	-
Electricity (Japan)	5.8 MJ/kWh	0.4 kg-CO ₂ /kWh	-

Table 1 Caloffic values and CO_2 emission factors [7].	Table 1	Caloric values and CO ₂ emission factors [7].	
--	---------	--	--

Table 2Energy/CO2 intensity in China.

No.	Industrial sector	Energy inten	sity (MJ/1,000 USD) CO ₂ intensity (kg-CO ₂ /1,000 USD)
1	Agriculture	18,244	1,517
2	Coal mining and processing	72,456	6,278
3	Crude petroleum and natural gas products	82,382	6,032
4	Metal ore mining	28,685	2,468
5	Non-ferrous mineral mining	33,329	2,839
6	Manufacture of food and tobacco processing	24,268	2,055
7	Textile goods	31,851	2,701
8	Wearing apparel leather, furs, down, etc.	22,959	1,935
9	Sawmills and furniture	29,451	2,501
10	Paper and products, printing, etc.	36,827	3,158
11	Petroleum processing and coking	54,440	4,181
12	Chemicals	56,610	4,721
13	Nonmetal mineral products	63,416	5,437
14	Metals smelting and pressing	95,208	8,650
15	Metal products	49,698	4,405
16	Machinery and equipment	34,019	3,007
17	Transport equipment	38,787	3,395
18	Electric equipment and machinery	37,903	3,329
19	Electric and telecommunication equipment	18,078	1,549
20	Instruments, cultural and office machinery	18,050	1,577
21	Maintenance and repair of equipment	0	0
22	Other manufacturing products	44,057	3,806
23	Scrap and waste	0	0
24	Electricity, steam and hot water supply	89,851	7,761
25	Gas production and supply	214,762	18,368
26	Water production and supply	57,704	5,072
27	Construction	40,705	3,515
28	Transport and warehousing	48,917	3,746
29	Wholesale and retail trade	21,887	1,828
30	Services	22,470	1,876

1 USD = 6.5 Yuan, 1 USD = 84 Yen.

No.	Industrial sector	Energy intens	sity (MJ/1,000 USD) CO ₂ intensity (kg-CO ₂ /1,000 USD)
1	Agriculture	2,932	210
2	Mining	3,775	269
3	Manufacture of food products	2,125	151
4	Textile goods	2,400	170
5	Pulp/paper product	4,422	319
6	Chemicals	6,176	434
7	Petroleum refinery and coal products	13,574	1,219
8	Ceramic, stone and clay products	5,992	453
9	Steel products	5,320	406
10	Non-ferrous metal products	3,136	221
11	Metal products	2,517	182
12	General industrial machinery	1,765	127
13	Electrical equipment	1,580	112
14	Transport equipment	2,044	146
15	Precision equipment	2,323	162
16	Other industrial machinery	3,437	237
17	Construction	1,997	146
18	Electricity/gas, steam/hot water supply	27,316	1,882
19	City water/waste disposal services	3,404	240
20	Wholesale/retail trade	1,046	74
21	Financial service/insurance	601	42
22	Real estate business	317	22
23	Transport	7,629	546
24	Telecommunication/broadcasting	935	66
25	Public administration	1,525	107
26	Education/research	1,465	103
27	Medical service/health/social welfare	2,044	143
28	Other public service	1,226	86
29	Business service	934	66
30	Personal service	1,870	131
31	Office supplies	3,169	226
32	Activities not elsewhere classified	1,932	138

Table 3Energy/CO2 intensity in Japan.

3. Calculation Results

3.1 Fraction of Embodied and Operation Energy and CO₂ Emissions of Buildings

Fig. 2 shows the calculation result of the fraction of ultimate embodied CO_2 due to the construction of buildings and civil engineering in China in 2000, as well as the CO_2 emissions due to operation of residential houses. In China, 18.1% of total CO_2 emissions are due to the construction of buildings, and 10.4% is due to the operation of residential houses. Thus, in China, the embodied CO_2 is greater than the CO_2 emissions required for operations.

Fig. 3 shows the fraction of CO₂ emissions in Japan [8]. In Japan, 5% and 14% of total CO₂ emissions are due to building construction and the operation of residential houses, respectively. Including civil engineering, 16% and 32% of total CO₂ emission are embodied CO₂ due to construction and building operation, respectively. Generally, embodied energy/CO2 tends to vary according to economic circumstances in the country more than operation embodied energy/CO₂. The energy due to construction in developing countries is greater than that in developed countries because the first step in the development of the country is the construction of

Fig. 3 Result of fraction of CO₂ emissions in Japan in 2000 [8].

buildings and public works.

3.2 Embodied Energy and Embodied CO₂ of Building Materials

The embodied energy/CO₂ of dominant building materials is derived from energy consumption in corresponding industrial sectors and the quantity of produced materials in both China and Japan. Tables 4 and 5 list the calculation results of the embodied energy/CO₂ in China and Japan, respectively. Table 6 shows the comparison of embodied energy/CO₂ of building materials between China and Japan. The efficiencies of manufacturing appear to influence the embodied energy/CO₂ of building materials.

The embodied energy/ CO_2 changes yearly according to the manufacturing efficiency of the country. Tables 7 and 8 show the intensities of the embodied energy/ CO_2 due to construction of various types of buildings and structures in Japan. The embodied energy/CO₂ per unit floor area of buildings in 1975 was 1.5 times greater than that in 2000, although, in 1975, buildings were simpler than they were in 2000. Tables 9 and 10 compare the energy/CO₂ intensities of building materials in 1975 and in 2000, where the energy consumption for the production of cement and crude steel have decreased by more than half. The energy consumption for building materials, which depends on the efficiency of factories, appears to decrease according to the level of development of the country, and the embodied energy can also be decreased. There are no similar data of 1975 in China. However, it is expected that the energy/CO₂ intensities of building materials in China would follow similar trend.

Table 4Result of embodied energy/CO2 of buildingmaterials in China.

Material	Embodied energy	CO ₂
Wood	1,267,412 kJ/m ³	114.7 kg-CO ₂ /m ³
Steel	41,058 MJ/t	4.03 t-CO ₂ /t
Cement	4,508 MJ/t	0.42 t-CO ₂ /t
Aluminum	42,380 MJ/t	3.91 t-CO ₂ /t
Brick	4,103 MJ/t	0.38 t-CO ₂ /t
Glass	13,707 MJ/t	1.27 t-CO ₂ /t

Table 5 Result of embodied energy/CO2 of buildingmaterials in Japan.

	-	
Material	Embodied energy	CO ₂
Wood	573,581 kJ/m ³	40.3 kg-CO ₂ /m ³
Steel	11,289 MJ/t	1.10 t-CO ₂ /t
Cement	2,044 MJ/t	0.18 t-CO ₂ /t
Aluminum	40,070 MJ/t	3.13 t-CO ₂ /t
Brick	3,409 MJ/t	0.25 t-CO ₂ /t
Glass	12,619 MJ/t	0.91 t-CO ₂ /t

Table 6Comparison of embodied energy/CO2betweenChina and Japan (calculated from Tables 4 and 5).

Matarial	China/Japan		
Material	Energy	CO ₂	
Wood	2.2	2.8	
Steel	3.6	3.7	
Cement	2.2	2.3	
Aluminum	1.1	1.3	
Brick	1.2	1.5	
Glass	1.1	1.4	

These values are calculated as a division of a value of Japan by a value of China, e.g., 1,267,412 $(kJ/m^3)/573,581$ $(kJ/m^3) = 2.2$ (wood).

Table 7Embodied energy of buildings in 1975 and 2000 inJapan [9].

Veer	Energ	y (GJ/m ²)	Ratio
i eai	1975	2000	1975/2000
Wooden residential house	4.7	3.6	1.3
Non-wooden residential house	8.2	5.1	1.6
Wooden non-residential house	3.1	3.0	1.0
Non-wooden non-residential house	7.2	4.9	1.5

Table 8 Embodied CO₂ of buildings in 1975 and 2000 in Japan [9].

Year	C (kg-C	O_2 $O_2/m^2)$	Ratio
	1975	2000	1975/2000
Wooden residential house	390	300	1.3
Non-wooden residential house	595	420	1.4
Wooden non-residential house	260	260	1.0
Non-wooden non-residential house	690	435	1.6

Table 9 Embodied energy of building materials in 1975and 2000 in Japan [9].

Year	Er	nergy (GJ)	Ratio
	1975	2000	1975/2000
Log (GJ/m ³)	1.0	0.9	1.2
Cement (GJ/t)	5.0	1.6	3.2
Crude steel (GJ/t)	22.7	9.0	2.5

Table 10 Embodied CO_2 of building materials in 1975 and 2000 in Japan [9].

Veer	CO	Ratio	
rear	1975	2000	1975/2000
Log (GJ/m ³)	91	58	1.6
Cement (GJ/t)	345	120	2.9
Crude Steel (GJ/t)	1,770	780	2.3

Table 11Floor areas of office buildings in China andJapan.

Office No.	Floor area (m ²)	
Office A in China	947	
Office B in China	1,513	
Office C in China	2,130	
Office D in China	1,019	
Office E in Japan	1,145	

4. Embodied Energy/CO₂ of Office Buildings in China and Japan

4.1 Calculation Methods

The calculation method is as follows:

• The energy intensities and CO₂ intensities shown in Tables 4 and 5 are used for the dominant building materials;

• The energy intensities and CO₂ intensities in Tables 2 and 3 are used for other materials and equipments;

• The energy/CO₂ for margin and transport from gate to site is obtained by IO analysis.

4.2 Buildings

The embodied energy/ CO_2 of four office buildings in China and one office building in Japan are calculated. The corresponding floor areas are shown in Table 11.

The structures of these office buildings are reinforced concrete. The plans of Office A in China and Office E in Japan are shown in Figs.4 and 5, respectively. The offices in China are located in northeast China and Office E is located in Tokyo.

Table 12 shows the quantities of materials per unit floor area used in Office A in China and Office E in Japan, where the quantity of steel used for Office E in Japan is three times greater than that for Office E in China because earthquake countermeasures must be taken in Japan. Offices in Japan use concrete, whereas bricks are widely used in China. Since double glazing is common in northern China, the use of glass is more extensive in China than in Japan.

4.3 Embodied Energy and CO₂ of Buildings

Tables 13 and 14 show the embodied energy/CO₂ classified by construction work in Office A in China and office E in Japan. The embodied energy/CO₂ for the skeleton of Office A is three times greater than that for office E, where the skeleton is constructed from concrete, brick, and steel. The embodied energy/CO₂ for the foundation, the skeleton, and finish elements are greater in China, and embodied energy/CO₂ for other elements, especially HVAC, electrical, and sanitary elements, are lower for office A in China, because equipment used in offices in China is simpler than that used in Japan. One reason for this is the use of district

heating systems in China and less demand for cooling. Figs. 6 and 7 show embodied energy/CO₂ of Offices A-E

Fig. 4 Floor plan of Office A in China (units in mm).

Fig. 5 Floor plan of Office E in Japan (units in mm).

Table 12Quantity of building materials per unit floor areain offices in China and Japan.

	-	
Materials	China	Japan
Concrete (m ³)	0.554	0.676
Steel (kg)	31.8	89.8
Wood (m ²)	0.019	0.111
Brick (kg)	0.662	-
Glass (m ³)	0.275	0.183

 Table 13
 Embodied energy classified by building element.

Work	Office A in China (MJ/m ²)	Office E in Japan (MJ/m ²)	Ratio (A/E)
Foundation	377	350	1.08
Skeleton	5,089	1,756	2.90
Interior finish	416	1,494	0.28
Finish work	1,583	865	1.83
HVAC*	142	1,195	0.12
Electric work	89	384	0.23
Sanitary	110	412	0.27
Transport, trade	672	932	0.72
Total	8,478	7,388	1.15

*Heating, ventilation and air conditioning.

	=	•	
Work	Office A in China	Office E in Japan	Ratio
	$(kg-CO_2/m^2)$	$(kg-CO_2/m^2)$	A/E
Foundation	35	27	1.31
Skeleton	471	154	3.05
Interior finish	35	111	0.32
Finish work	139	63	2.21
HVAC	12	86	0.14
Electric work	8	27	0.29
Sanitary	9	31	0.31
Transport, trade	52	67	0.77
Total	761	566	1.35

Fig. 6 Embodied energy of office buildings in China and Japan.

Fig. 7 Embodied CO_2 of office buildings in China and Japan.

in China and Japan. The embodied energy/ CO_2 per unit floor area of Offices A-D in China is almost the same and the fraction for the skeleton is dominant.

The embodied energy/CO2 of equipment installation

Table 14 Embodied CO₂ classified by building element.

is almost the same as for the skeleton in Office E in Japan. This is because equipment installation is more complicated in Japan because of the need for cooling systems and complicated ceiling system with lighting etc.. These results for embodied energy/CO₂ in China and Japan show that embodied energy/CO₂ due to building construction depends on both industrial efficiency and building design.

5. Conclusions

This paper describes embodied energy/CO₂ due to building construction in China and Japan using the same calculation method.

The energy and CO₂ intensities of industrial sectors are obtained by IO analysis.

The embodied energy/CO₂ of dominant building materials is obtained from the energy consumption and the quantity of material produced.

The embodied energy/CO₂ of office buildings is shown and compared between China and Japan.

The embodied energy/ CO_2 due to building construction depends on both the industrial efficiency and the building design of the country such as earthquake resistance and so on.

Generally, it is effective to reduce embodied energy/CO₂ by using low embodied energy/CO₂ materials as well as reducing the quantity of materials used in buildings [10]. However, prolongation of building life-span is significant important and effective measure to reduce annual embodied energy/CO₂ even if embodied energy/CO₂ is slightly increased at present time.

Acknowledgments

The present study was supported in part by the IEA/EBC/Annex57 Committee of Japan, organized

through the IBEC (Institute for Building Environment and Energy Conservation).

References

- Boden, T., Marland, G., and Andres, B. 2013. "National CO₂ Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring: 1751-2010." Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, USA. Accessed October 1, 2013. http://cdiac.ornl.gov/ftp/ndp030/nation.1751 2010.ems.
- [2] Timmer, M. 2012. "The World Input—Output Database (WIOD): Contents, Sources and Methods." Accessed October 1, 2013. http://www.wiod.org/.
- [3] Management and Coordination Agency, Government of Japan. 2004. 2000 Input-Output Tables. Data report.
- [4] National Bureau of Statistics of China. 2002. China Statistical Yearbook (2000). Beijing: National Bureau of Statistics of China.
- [5] Institution of Developing Economics, Japan External Trade Organization. 2003. *Multi-regional Input-Output for China 2000.* Japan: Institution of Developing Economics, Japan External Trade Organization.
- [6] The Energy Conservation Center. 2013. *EDMC (Energy Data and Modeling Center) Handbook of Energy & Economic Statistics in Japan.* Japan: The Energy Conservation Center.
- [7] Ministry of the Environment. 2003. The Guideline of Calculation Method for Greenhouse Gas Emission. Japan: Ministry of the Environment.
- [8] Yokoyama, K., Yokoo, N., and Oka, T. 2005. "Energy/CO₂ Intensities Based on 2000 Input/Output Table and Evaluation of Building." *Journal of Environmental Engineering, Architectural Institute of Japan* 589: 75-82.
- [9] Kawazu, Y., Yokoo, N., Oka, T., and Ishikuro, H. 2008. "A Study on the Transition of Materials about the Energy Consumption and CO₂ Emission Associated with Building Construction." *Journal of Environmental Engineering, Architectural Institute of Japan* 73 (629): 931-8.
- [10] Suzuki, M., Oka, T., and Okada, K. 1995. "The Estimation of Energy Consumption and CO₂ Emission Due to Housing Construction in Japan." *Energy and Buildings* 22: 165-9.