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Abstract: This paper is a contribution to the discussion about the fall of the New York World Trade Center (WTC) towers in 2001. 
The differential equation of the collapse of a high building is derived by taking into account many influences. A computer simulation 
of the collapse of the WTC building is presented using two independent programs with parameter variations. The results of both, 
differential equation and computer simulation, are compared resulting correspondences. The authors consider certain probable 
parameters which would have lessened both the observable speed of the collapse and its extent, however uncertainty regarding 
the magnitudes of the parameters remains. 
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1. Introduction  

This paper deals with the fall of a high building. Its 
aim is not to investigate the cause of the fall as Bazant 
did in Ref. [1], but to examine the falling process itself. 
The paper is based on a final thesis put forward by 
Juranova [2] and introduces theory of the fall of a high 
building. The process of the fall is investigated from 
the point of view of the basic laws of mechanics and 
considers only the dynamics of the collapse in terms of 
speed and the extent of the fall. A differential equation 
of a high building collapse is derived and all major 
influences of the falling process are included. Results 
of both, the numerical solution of the differential 
equation and the computer simulation are presented for 
the various parameters along with the correspondence 
found between the approaches. The presented solution 
was also compared with a study by Kuttler [3] based on 
a discrete approach, which achieved a very positive 
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concordance. The paper is organized as follows: 
Section 2 presents the derivation of the differential 
equation of the fall of a high building; section 3 
introduces the solution of the differential equation 
derived in section 2; section 4 discusses the magnitudes 
of the parameters used in the differential equation 
presented above; section 5 puts forward a computer 
simulation of the fall of a high building and its 
comparison with the numerical solution of the 
differential equation; section 6 presents the study of K. 
Kuttler and its comparison with the solution of the 
above presented differential equation; in section 7, 
conclusions are stated. 

2. Derivation of a Differential Equation of 
the Fall of a High Building 

A simple scheme of a falling building is illustrated in 
Fig. 1. 

The authors assume that columns in the location 
between the coordinates ´x  and 0x  lose stability and 
a top part of the building above ´x  starts to fall and 
hits the still undamaged lower part of the building 
under the location 0x  with velocity 0v . The equation 
of dynamical equilibrium for the location x  is 
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Fig. 1  The scheme of falling building. 
 

0− − − − =N m C aG F F F F          (1) 

where: 
G is weight of a part of the building above 

the location x, for which equilibrium equation is 
formulated; 

NF is resistance put up by the columns against 
the collapse; 

mF  is resistance originated by impact of the falling 
part of the building into a motionless mass; 

CF  is a viscous damping; 

aF  is an inertial force of a falling mass. 
Following is a discussion of the individual parts of 

the equilibrium equation. 
 The weight of the building above the location x: 

β=G mg                  (2) 
where m  is the mass of the building above 
the location x , g is acceleration of gravity, β is portion 
of the total mass above the location x which pushes to a 
lower part of the building. Mass which falls outside of 
the building is subtracted. 

 The columns resistance: 
κ=NF mgs      (3) 

where s  is a rate of the ultimate force of columns to 
the current force in columns in the moment of 
the collapse, κ  is the factor of the ultimate force of 
columns which represents average column resistance 
during its deformation related to an ultimate force. 

Computation of column pressing was done using the 
method of controlled deformation in order to 
investigate this factor and receive its operational chart 
(See Fig. 2). Factor κ  is then the rate of the ultimate 
force to its median value. 

 The resistance of a motionless mass: 
It is inertial force of a still mass dm  accelerated in 

time dt  to the speed v  ( /=a dv dt ). The term 
/=a v dt  can be used for acceleration in the equation 

due to acceleration starting from zero up to the speed v. 
The force mF  can be then expressed in this way: 

m
vF dm a dm
dt

= ⋅ = ⋅           (4) 

When considering / ,v dx dt= Eq. (4) can be 
rewritten as follows: 

2
2μ= ⋅ =m

vF dm v
dx

   (5) 

where /μ = dm dx  is a line density of the building. 
 The viscous damping: 

α= ⋅ =cF C v m v     (6) 
where C  is a factor of  the viscous damping. The 
authors are considering Rayleigh damping here which 
depends on mass quantity α=C m  only. 

 The inertial force of a falling mass: 

β β β= ⋅ = =a
dv dvF m a m mv
dt dx

   (7) 

Again, only the inertial force of a mass which does 
not fall outside of the building is considered here. 

3. Differential Equation of the Building 
Collapse 

The following equation can be gotten by 
substituting relations derived above into Eq. (1): 

2 0β κ μ α β− − − − =
dvmg mgs v m v mv
dx

  (8) 

The authors divide the equation with speed v  and 
mass m  and adjust 

0

0βα− − − =
+

b v dv
v x x dx

      (9) 

where ( )β κ= −b g s . The relation ( )0μ + =x x m  is 
used when adjusting the equation. 

Analytical solution of the differential equation was 
found only when the influence of damping was 
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omitted: 

( ) ( ) ( )
2

0
0 1

2
2

β

β

−+
= + + ⋅

+
b x x

v x x x C      (10) 

To specify the constant 1C , the magnitude of the 
speed 0v  is needed. This is the speed of the mass 0m  
above 0x  falling into the undamaged part of 
the building. The authors start from the same 
differential equation where factor b is modified into 

( )0 0β κ= −b s g , whereas 0 1<s : 

( )
( ) ( )0 0

´
β

− − =
+

v x dv xb
v x x x dx

      (11) 

The solution will thus have a similar form. Boundary 
conditions ( )0 0=v  will be used for finding the 
magnitude of the integration constant. Then we are 
looking for ( ) ( )0´́v x v x= . After that the authors can 
return to a search of the integration constant 1C : 

( ) ( ) ( )
2

0 0
0 0 1

2
2

β

β

−+
= + + ⋅

+
b x x

v x x x C    (12) 

( )( ) ( )

( ) ( )

2
0 0 0

1 2

0

2 2

2β

β

β
−

+ − +
=

+ +

v x b x x
C

x x
   (13) 

The author will establish 1C  in (10) and obtain 
the solution of Eq. (9) without the influence of 
damping: 

( )

( )

( ) ( )( ) ( )

( ) ( )

0

22
0 0 0

0 2

0

2
2

2 2

2
β

β

β
β

β

−

−

+
+

+
= + − +

+ + ⋅
+ +

b x x

v x v x b x x
x x

x x

 (14) 

Then it can be found out that when the collapse of 
the building will stop by assuming the speed to be zero 

( ) 0=v x . A solution of this equation was not found in 
the closed form so the authors are going to return to 
treat Eq. (9) with a numerical method. The Euler 
implicit method of solving a differential equation was 
found to be the most suitable method. Its principle is 

( )( )1 ,+ = + ⋅i i i iv v h f x v x        (15) 

The following equation can be gotten: 

( ) ( ) ( )
( )1

1
1 1 0

α
β

+
+

+ +

⎛ ⎞
= + − −⎜ ⎟⎜ ⎟+⎝ ⎠

i
i i

i i

v xh bv x v x
v x x x

 (16) 

After deduction of the speed ( )1+iv x , the following 
relation will be gotten: 

( ) ( )
( ) ( )

( )( ) ( ) ( )( )

1
1 0

1 1 0 0

2

1 0 1 0 1 1 0 0

1
2

4

i
i

i i i i

i i i i i i

v x
h x x

hx v x x hx v x x

h x x bhx bhx hx v x x hx v x x

β β

α β α β

β β α β α β

+
+

+ +

+ + + +

=
+ +

⎧ ⎫− + − + +⎪ ⎪⋅⎨ ⎬
+ − + + − − + − + −⎪ ⎪⎩ ⎭

   (17) 

The speed ( )0v  will be computed in a similar way. 

It is also important to say that this equation will 
stand only if the following conditions are present: 

 When the mass is evenly spread out over the height 
of the building (appropriate for high-rise buildings); 

 When the critical strength of the columns 
(including their resistance) is proportional to the 
weight of the building above the respective columns. 

4. Discussion of the Magnitude of Damping, 
the Safety Factor s  and the Ultimate Force 
Ratio κ  

Before the authors began to seek a solution of 
the equation in a numerical way, they are going to 
clarify the magnitude of the damping α : 

2
2

ω ξ
α ω ξ= = =n

n
mC

m m
     (18) 

For the ratio of damping, the authors will consider 
the value 10-30% and the limiting value 0 that yields 
the damping ratios 0.147, 3.18, 0α α α= = = . Value 0 
will be considered in order to solve the collapse 
without the effect of damping. 

There is less certainty regarding the value of the 
parameter s . It is assumed to be around 2.5-3. 

The coefficient of the ultimate strength in columns 
κ  was computed from simulation of pressing of the 
columns by the method of controlled deformation. The 
pertinent numerical analyses were performed utilizing 
the RFEM program [4]. A deformed shape and 
pertinent response diagram is shown in Fig. 2. 
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Fig. 2  Response diagram and the deformed shape of a box column. It is clear from the graph that the value of the κ  
coefficient will be around 0.25. 
 

5. Computer Simulation 

For the computer simulation of the fall of a high 
building, the RFEM and FyDiK programs were used. 
Both programs use the explicit method. The RFEM is a 
finite element program whereas the FyDiK uses an 
inverse approach, mass points connected by 
elastoplastic springs. The differences between the 
results of both programs were small. Figs. 3-4 show the 
resulting deformation of the building after the fall has 
stopped. For the chosen parameters, which the authors 
believe could be probable, the fall of the building 
would stop after falling cca 80 m. The main numerical 
results of the computer simulation and its comparison 
with the solution of the differential equation is 
presented in Table 1. 

6. A Study by Professor Kenneth Kuttler and 
Its Comparison with the Above Presented 
Solution of the Differential Equation 

In 2006, professor Kuttler of Birgham Young 
University also carried out a study of the WTC collapse 
[3]. In his study, he considers only the impact of the 
falling mass onto the motionless mass as if the floors 
were floating in the air unsupported by columns. The 
collapse itself is slowed only by the crash of falling 
floors onto the motionless mass (hitting the lower 
floors). 

 
Fig. 3  Deformed building from RFEM (α = 0.5; s = 3). 
 

  
Fig. 4  Deformed building from FyDiK (α = 0.5; s = 3). 
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Table 1  Times and extends of the fall for various parameters. 

s (-) α The theory with falling 
away of a mass x (m) RFEM x (m) FyDiK x (m) The theory with falling 

away of a mass t (s) RFEM t (s) FyDiK t (s)

2.0 0.147 330 331.0 278.7 25.8 15.7 19.0 
2.0 3.18 330 18.2 63.2 357.1 7.4 31.5 
3.0 0 330 259.8 287.1 36.1 17.9 20.4 
3.0 0.147 330 324.5 304.2 103.0 28.6 33.1 
3.0 0.5 330 79.6 72.3 330.5 12.1 28.1 
3.0 1.06 330 64.6 66.5 707.3 15.9 37.4 
3.2 0.147 36.5 69.0 6.0 29.0 12.5 76.0 
 

His solution is based on the law of the conservation 
of inertia and is discrete: 

( )

2

3 1 2
2 2

22
1 1

2 1 1 11 2 22 2 2 2

1 1 1 11 2 1 2
2 1

celk

n

k k k

j j

h ht
gh

gh gh

h

kj gh j gh
k k k

= − −

= =

= +
⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

+
⎛ ⎞⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

∑
∑ ∑

 (19) 
As an example, the authors present a demonstration 

of Kuttler’s solution in comparison with this approach. 
A building of 411 m high with 110 stories is taken. h 
will be 411/110 = 3.74 m, g = 9.81 m/s2 and n = 110. 
From Eq. (19), it will be calculated that such a building 
would fall according to this approach for 14.96 s. 

In this approach, the authors have utilized the same 
assumptions as professor Kuttler, the differential 
equation taking the form: 

( )
( )

0

0− − =
+

v xg dv
v x x x dx

  (20) 

It is possible to arrive at a solution in this case in 
closed form. The authors will still take a quantity xA, 
which will be the place, where the fall will stop. 
Marginal conditions are clear, the speed is zero at the 
point of fall cessation. The result is 

( )
( )3 36

3

−
=

Ag x x
v x

x
   (21) 

It is possible to determine from this result the fall 
time by an integration such as: 

( )
2

3 3
0 0

6 63
6

= = = =∫ ∫
A Ax x

A A

AA

x xdx xt dx
v x x gx g x g

 (22) 

Provided considering the same input data as above, 
fall time is 15.85s. 

In fact the fall of the buildings took about 11 s (the 
time differs in various reports, it is the accuracy of the 
time span can be verified from video recordings). The 
material presented in this section is of course greatly 
oversimplified. In actuality the situation is more 
complex. Other more complicating influences may be 
present, for instance relating to column resistance, 
which might bring into being a substantial increase in 
fall time. Furthermore consideration should be given to 
the possibility that the fall could even cease before the 
whole building destructs. 

7. Conclusions 

It was possible to solve a differential equation of the 
building collapse in closed form only when 
the damping was omitted. Real damping must be 
a necessary element when the massive destruction of 
all the components of the building structure. Therefore 
this solution represents limit to the speed of the fall and 
the extent of the collapse. The general form of 
the differential equation was solved only in 
a numerical way. 

Two independent computer programs were used for 
the simulation, named RFEM [4] and FyDik (by P. 
Frantík). Despite the difference in the approaches both 
computer programs gave comparatively similar 
solutions. The difference between the solution of the 
differential equation and that of the computer 
simulation is greater. The differences have two sources. 
The first cause is the fact, that in the differential 
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equation it is assumed that the average resistance of the 
columns is the mean value from the diagram in Fig. 2. 
On the other hand the computer simulation works with 
a more general approximation of the column response 
diagram. In this case the computer simulation is better. 
The computer simulation however did not take into 
account the ratio β  assuming a unit value whereas 
the differential equation can assume an arbitrary value 
of this parameter. 
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