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This paper provides the optimization of the two existing exchange rate volatility models: the GARCH model and 

the realized volatility model (RV). It shows that the nature of the GARCH controversy does not seem to focus upon 

the model structure but rather upon the distribution of the squared returns for which second order moments do not 

represent a sufficient statistic for the parameter estimation. The evidence is based on the daily and intra daily time 

series data: EUR/USD, USD/JPY, GBP/USD, and USD/CHF during the period from August 2, 2011 to December 1, 

2011, taken from Bloomberg. The empirical evidence supports the perception that the GARCH-based volatility 

models do not capture stylized facts associated with the squared exchange rate returns. The paper shows that both 

realized volatility and the GARCH volatility forecasts have a third and fourth cumulant different from zero. Its 

originality lies in the use of the higher order cumulant function to perform the ARMA parameter estimation, by 

solving the system of modified Yule-Walker difference equations where the autocorrelation function (ACF) is 

replaced by the third and/or fourth order cumulant function. It is shown that superior whitening and independence 

of residuals is achieved if HOC ARMA parameter estimation method is used.  

Keywords: exchange rate volatility, GARCH model, ARMA parameter estimation, higher order cumulant function, 

non-Gaussian time series, Yule-Walker difference equations 

Introduction 

The exchange rate volatility model assumes new importance in the framework of international trade due to 

two main reasons. Firstly, the introduction of the first Basel Accord, which sets minimum capital reserve 

requirements to be held by financial institutions proportional to their estimated risks, has further highlighted the 

significance of volatility. Secondly, volatility forecasts of a stock price are fundamental inputs for pricing 

derivatives as well as trading and hedging strategies. A basic mean variance analysis also requires estimates of 

the variance for the assets under consideration. Given these facts, the quest for precise forecasts appears to be 

still ongoing.  

Today there is no doubt that the theoretical model of classical economics, based on the efficient market 

hypothesis, cannot be confirmed by actual market data (Mandelbrot, 1963). This finding is confirmed by 

generations of researchers. Surprisingly, as it may seem, this result fails to immanently inspire a determined 

effort to develop a better theory.  

The availability of the high-frequency intraday data has made a modest impact on the modeling of daily 
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return volatility. It has become evident that standard volatility models used for forecasting at the daily level 

cannot readily accommodate the information in intraday data, and generally fail to capture the longer intraday 

volatility movements sufficiently well. As a result, making forecasts of daily volatility from daily return relying 

mostly on GARCH (Generalized Autoregressive Conditional Heteroskedasticity) volatility modeling remains a 

standard practice (Bollerslev, 1982).  

Indeed, there are many variants of ARCH/GARCH models which are developed to improve the 

out-of-sample volatility forecasting performance. These models have many strong proponents, who believe that 

these models are currently the best obtainable forecast estimators. However, most of the empirical studies on 

the subject in recent years have found no clear-cut results in improving forecasting performances of this class 

of GARCH models (Poon & Granger, 2003; Carrol & Kearvey, 2009). There are studies which confirm a very 

low coefficient of determination produced by GARCH models. For instance, Andersen et al. (2003) show 

theoretically that R2 for a GARCH (1, 1) model tends to 1/K, where K stands for the kurtosis of the distribution 

of stock returns. This means that the highest R2 for Gaussian returns achievable by GARCH models is bounded 

from above by 1/3. For the exchange rate returns, which have a non-Gaussian distribution, the kurtosis is 

usually much higher than three, which means that a volatility forecast performance is expected to be worse in 

practice. 

An examination of the relative performance of GARCH models versus simple rules in forecasting 

volatility is done by Silvey (2007). Although numerous studies have compared the forecasting abilities of 

historical variance and GARCH models, no clear winner has emerged. In a thorough review of 93 such studies, 

Poon and Granger (2003) report that only 22 of the studies conclude that historical volatility forecasts 

out-of-sample future volatility more accurately, while 17 studies find that GARCH models are more accurate. 

The Dow Jones Industrial Average (DJIA) composite daily data is used to test in- and out-of-sample forecasts, 

obtained by using GARCH, EGARCH, GRJ, and HS (historical volatility) models (Brooks, 1997). The R2 

achieved is around 25% for each of the models. 

The theoretical and empirical properties of realized volatility are derived in Andersen, Bollerslev, Diebold, 

and Labys’s (2003) foreign exchange data. Further empirical evidence is provided in Andreou, Pittis, and 

Spanos’s (2001) U.S. equities. Related research into the econometric properties of realized volatility includes 

Barndorff-Nielsen and Shephard (2002). The heterogeneous autoregressive model of realized volatility 

(HAR-RV), proposed by Corsi (2009) is shown to be very successful in outperforming several models, such as 

GARCH, AR, and ARFIMA models. 

This paper shows that the nature of this GARCH controversy does not seem to focus upon the model 

structure but rather upon the distribution of the squared returns for which second order moments do not 

represent a sufficient statistic for the parameter estimation. The empirical evidence supports the perception that 

the GARCH-based volatility models do not capture stylized facts associated with the squared exchange rate 

returns. The evidence is based on the daily and intra daily time series data: EUR/USD, USD/JPY, GBP/USD, 

and USD/CHF during the period from August 2, 2011 to December 1, 2011, taken from Bloomberg. The paper 

shows that both realized volatility and the GARCH volatility forecast have a third and fourth cumulants 

different from zero. Its originality lies in the use of the higher order cumulant function to perform the ARMA 

parameter estimation and further whiten the forecasting errors, which ultimately have much lower third and 

fourth order cumulants for 20-50 time lags. The paper also demonstrates the enhanced performance of the 

realized volatility forecasts, relative to GARCH volatility forecasts, which comes from the use of high 
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frequency returns. 

The organization of the paper is as follows: the second section briefly summarizes the literature findings 

and introduces the problem; the third section presents the GED/GARCH model results as well as RV model 

results and respective coefficients of determination; the fourth section compares cumulant functions of the 

volatility forecasting errors based on the HOC-GARCH model with ones obtained using the RV model and 

suggests the ARMA parameter estimation based on the higher order cumulant function. Ultimately, the last 

section provides a summary of the results and suggests further research directions. 

The Problem and the Model 

The statistical properties of exchange rate returns, common across a wide range of developed stock 

markets and time periods, are called stylized facts. The stylized statistical properties of asset returns of 

developed markets are analyzed empirically and subsequently summarized by Cont (2001). They include the 

following findings: The autocorrelations of asset returns are often insignificant, except for high frequency data 

(f ≃ 30 minutes or less); Heavy tails, with a finite tail index, which is higher than two and lower than five for 

most data sets studied; Gain/loss asymmetry: one observes large drawdown in stock prices and stock index 

values but not equally large upward movements; Aggregational gaussianity according to the Central Limit 

Theorem; Volatility clustering, namely, different measures of volatility display a positive autocorrelation over 

several days, which quantifies the fact that high-volatility events tend to cluster in time; Conditional heavy tails 

even after correcting the returns for the volatility clustering; Slow decay of autocorrelation in absolute or 

squared returns, i.e., non-stationarity; Leverage effect as most measures of the volatility of an asset are 

negatively correlated with the returns of that asset; Volume/volatility correlation, i.e., the trading volume is 

correlated with all measures of volatility. 

The facts that exchange rate returns are often characterized by volatility clustering—which means that 

periods of a high volatility are followed by periods of a high volatility and periods of a low volatility are 

followed by periods of a low volatility—implies that the past volatility could be used as a predictor of the 

volatility in the next period. As an indication of volatility clustering, squared returns often have significant 

autocorrelations and consequently can be modeled by using the well-known GARCH model. 

Let et denote a discrete time stationary stochastic process. The GARCH (p, q) process is given by the 

following set of equations (Bollerslev, 1982, pp. 42-56): 
t-1log( ) log( )t tr P P                                      (1) 

rt = x(k)g(k) + et                                      (2) 

et = vt√ht 

et/t-1 ≈ N(0, ht)                                        (3) 

ht = 0 + ∑ ௜ߙ
௣
ଵ e2

t-i+∑ െ݆ݐ݄݆ߚ
ݍ
1                                (4) 

where pt represents stock prices; et represents random returns; x(k) is a vector of explanatory variables; g(k) is a 

vector of multiple regression parameters; ht is the conditional volatility; i is autoregressive; and j is the 

moving average parameter as related to the squared stock market index residuals. 

An equivalent ARMA representation of the GARCH (p, q) model is given by: 

et
2 = 0 + ∑ ሺ݅ߙ

௣
ଵ  + i)e

2
t-i + t − ∑ ௣ߚ 

ଵ jt-j                                        (5) 

where t = et
2 − ht and by definition, it has the characteristics of (i.i.d) white noise. ht is known as GARCH 
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volatility. In other words, the GARCH (p, q) volatility model is an Autoregressive Moving Average (ARMA) 

model in et
2 driven by white noise t. However, the validity of any statistical inference of such model depends 

on the underlying distribution of the returns.  

Most of the studies which use these ARCH and GARCH models document the existence of severe excess 

skewness and kurtosis in the residuals estimated from their equations. Many researchers attempt to identify the 

possible causes of and correct or account for the non-normality exhibited by the residuals estimated from 

GARCH models. In general, the literature attributes such non-normality to model misspecifications and outliers. 

Despite making theoretical and empirical advances, many of these studies still experience excess kurtosis in the 

GARCH residuals. 

In the case of exchange rate returns, this article argues that the second order moment of the associated 

probability density distribution is not a sufficient statistic for the ARMA parameter estimation. In fact, it is well 

known that for a non-Gaussian process, higher order moments exist and are different from zero. Namely, the 

hypothesis in this article is that higher order cumulants of GARCH forecasting errors contain the information 

necessary to capture heavy tails, volatility clustering, and long term dependence. More generally, the 

hypothesis which tested that the stylized facts can be captured by using the higher order cumulant function for 

the model parameter estimation.  

Empirical Analysis 

GARCH Model—Daily Data 

The evaluation and comparison of volatility models are made difficult by the fact that the conditional 

variance is unobservable. The first approach to getting round this problem, as explained above, is to substitute 

squared returns for the unobserved conditional variance. 

In this study the GED-GARCH model is used for exchange rate volatility. The empirical analysis is based 

on daily quotations of opening daily exchange rates for the following currency pairs: EUR/USD, USD/JPY, 

GBP/USD, and USD/CHF during the period from August 2, 2011 to December 1, 2011, taken from Bloomberg 

and from the OANDA online databases. The common sample of exchange rate descriptors is presented in 

Table 1. 
 

Table 1 

Sample Description for Squared Returns on Daily Exchange Rates  

 R2EUR/USD R2EUR/JPY R2USD/CHF R2GBP/USD 

Mean 0.0510 0.0614 0.1724 0.0235 

Median 0.0148 0.0163 0.0280 0.0106 

Maximum 0.6462 0.8801 3.8756 0.4532 

Minimum 0.0000 0.0000 0.0000 0.0000 

Std. Dev. 0.0904 0.1184 0.5174 0.0462 

Skewness 3.6131 4.1007 5.4974 6.8811 

Kurtosis 19.9532 24.6778 35.2496 63.2465 

Jarque-Bera 1,712.2990 2,708.3320 5,852.9730 19,254.3400 
 

Table 1 shows that all the variables are non-Gaussian (according to the skewness, kurtosis, and the 

Jarque-Bera test for normality). The best significant models found for the squared returns using E-views for 
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GED distribution, together with the respective coefficients of determination, are presented in Table 2. 
 

Table 2 

GARCH-ARMA Parameter Estimates 

Parmeters 　1 　      R2

R2EUR/USD  Coeff -0.445 -0.818 -0.709 0.613 0.797 0.843  0.144 

 St. error 0.181 0.049 0.178 0.135 0.033 0.146   

R2EUR/JPY Coeff  0.457  0.228 -0.885 0.165 0.311 0.349 

 St. error  0.086  0.085 0.095 0.085 0.064  

R2USD/CHF Coeff -0.333 0.258  0.927    0.274 

 St. error 0.112 0.105  0.057     

R2GBP/USD Coeff -0.087 0.840   -0.981   0.067 

 St. error 0.050 0.055   0.023    
 

It can be seen from the Table 2 that the maximum coefficient of determination achieved is 34%. This 

confirms a low explanatory power of the GARCH model in the case of daily exchange rate volatility. More 

importantly, the GARCH forecasting errors show persistent higher order central moments. This type of findings 

is summarized in Table 3. 
 

Table 3 

Sample Description for GARCH Volatility Foresting Errors-Residuals 

 RES R2EUR/USD RES R2EUR/JPY RES R2USD/CHF RES R2GBP/USD 

Mean 0.0020 0.0035 -0.0001 -0.0012 

Median -0.0063 -0.0247 -0.0604 -0.0095 

Maximum 0.5246 0.5782 3.8621 0.4002 

Minimum -0.1175 -0.1322 -0.8913 -0.0484 

Std. Dev. 0.0866 0.0960 0.4443 0.0449 

Skewness 2.6552 2.4278 6.0506 6.1856 

Kurtosis 14.6592 12.8590 51.0660 55.0894 

Jarque-Bera 813.8517 598.8521 12,181.5500 14,212.3300 
 

Realised Volatility and High Frequency Data 

Realised volatility, defined as the sum of intraday, 30 min squared returns, provides a more accurate 

estimate of the latent process that defines volatility than is given by daily squared returns. 

RVt = ∑ ௧,௜ݎ
ଶ   ସ଼

ଵ                                                          (6) 

The theoretical and empirical properties of realized volatility are derived in Andersen, Bollerslev, Diebold, 

and Labys (2001) for foreign exchange. They find that realised volatility distribution is nearly Gaussian. 

Further empirical evidence is provided in Andersen, Bollerslev, Diebold, and Ebens (2001) for U.S. equities. A 

statistical description of the realised volatility is presented in Table 4, while ARMA parameters re-presented in 

Table 5. 

The results in Table 5 show extremely high coefficient determination for all exchange rates. However, it is 

to be stressed out that the roots of the characteristic equations are close to the init cycle. That indicates nearly 

non stationary realised volatilities. 

In addition to that problem, there is a problem regarding “calling upon the Central Limit Theorem to 

justify the use of normal distribution from intraday data because the summation involves only a finite number 
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of terms which does not go to infinity” (Andreou, Pittis, & Spanos, 2001). Further, it is also concluded that 

averaging is inappropriate because it creates spurious autocorrelation. Therefore, the obtained coefficient of 

determination must be taken with caution. Incredibly as it may seem, this problem is underestimated in 

Andersen, Bollerslev, Diebold, and Labys (2003). 

Nevertheless, it is interesting to look at the properties of RV forecasting errors. Those errors are neither 

independent nor identically distributed and, more importantly, they are not close to normality. To substantiate 

this claim, a statistical description of RV residuals is given in Table 6, from which one can notice a clear 

departure from normality. 
 

Table 4 

Sample Description of the Realised Volatility  

 RVEU/JPY RVEUR/USD RVGBP/USD RVUSD/CHF 

Mean 4.1235 1.6485 1.1999 4.5388 

Median 2.5589 1.6192 0.7523 4.3668 

Std. Dev. 2.4636 0.2164 1.0883 1.1326 

Skewness 0.6304 0.4156 1.9691 0.2415 

Kurtosis 1.6333 2.5644 4.9427 2.1198 

Jarque-Bera 12.10095 3.081881 67.49416 3.528255 
 

Table 5 

RV-ARMA Parameters  

GARCH/ARMA models  　     R2

RVEUR/USD Coeff 0.87591   0.262   0.8467 

 St. error 0.05499   0.112    

RVEUR/JPY Coeff 0.97012      0.8635 

 St. error 0.01079       

RVUSD/CHF Coeff. 0.96525      0.9242 

 St. error 0.03016       

RVGBP/USD Coeff. 0.98309   0.753   0.8684 

 St. error 0.03540   0.075    
 

Table 6 

Realised Volatility—Residual Sample Description  
 RESRVEUR/JPY RESRVEUR/USD RESRVGBP/USD RESRVUSD/CHF 
Mean 0.0252 -0.0008 0.0028 0.0006 
Median -0.0259 -0.0030 -0.0245 -0.0014 
Maximum 4.3297 0.2997 1.4482 1.6542 
Minimum -0.6288 -0.3566 -0.3928 -1.6458 
Std. Dev. 0.4967 0.0848 0.1949 0.3183 
Skewness 7.9633 -0.3635 5.1396 -0.3032 
Kurtosis 69.6834 7.7022 38.4516 19.5623 
Jarque-Bera 16,255.3100 78.2944 4,711.8880 949.9314 

 

On the other hand, the fact that RV residuals are not independent is revealed in the autocorrelation 

functions (AC) of the residuals, which are presented in Figure 1. 

The results in Tables 3 and 6 further imply that neither of the methods, based on the second order 

moments, produces Gaussian residuals. Thus, high kurtosis and skewness demonstrate existence of the 
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information contained in the centred higher order cumulants. However, this article tests the hypothesis that the 

higher order cumulant function (HOCF) persists to be different from zero, and therefore contains significant 

information in the GARCH forecasting errors, which has not been extracted by the standard parameter 

estimation method. 

 

Figure 1. Realised volatility—Residual autocorrelation functions. 

GARCH and RV Modelling Using Higher Order Cumulants 

The leptokurtosis in the financial data is attributed to both volatility clustering and conditional 

non-normality (Bai, Russell, & Tiao, 2001). A less restrictive GARCH model in which innovations are allowed 

to be non-normally distributed is introduced. It is shown that their GARCH specification can generate the 

excess kurtosis observed in most of the financial data and state that for heavy-tailed errors, the asymptotic 

distributions of quasi-maximum likelihood parameter estimators in ARCH and GARCH models are non-normal, 

and are particularly difficult to estimate using standard parametric methods. 

In this article the following system of equations is used to calculate the third and the fourth cumulants: 

C3
x(1,2) = (∑(x(t)  (t + 1)  (t + 2))/n                           (7) 

C4
x(1,2,3) = (∑(x(t)  (t + 1)  (t + 2)  (t + 3))/n                        (8) 

where n is a number of observations and where the second-order cumulant C2
x () is just the autocorrelation 

function of the time series xt. The zero lag cumulant of order 3 C3
x (0, 0) normalized by x

3 has the skewness 3
x; 

C4
x (0, 0, 0) normalized by x

4 is known as kurtosis 4
x. An example of the third and fourth order cumulant 

functions is presented in Figure 2. 

It is well known that heteroskedasticity of returns, rt, implies (even more) heteroskedasticity in the squared 

returns r2
t. So, parameters are estimated inefficiently and the usual standard errors are misleading. This article 

proposes the use of the HOC-based ARMA parameter estimation, which was suggested as a method of digital 

signal processing (Giannakis & Delopoulos, 1995), but remained almost dormant for three decades. 

The efficient AR parameter estimates can be obtained by solving the system of modified Yule Walker 

difference equation: 

∑ ݌ ݅ߙ
1 C4(k-i, k-l, k-m) = -C4(k, k-l, k-m)           k ≥ l≥ m ≥ q + 1    (9) 

The efficient MA parameter estimation can be performed by applying one of the algorithms, proposed by 

Swami; Q-slice algorithm (Swami & Mendel, 1989), for instance. Q–slice algorithm uses autoregressive 

residuals calculated after estimating the AR parameters from equation (9). Following up, the impulse response 
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parameters I of the pure MA model of xt model are then estimated using cumulants: 

xt = ∑  ஶ
ଵ jvt-j                                           i = 1, 2…∞          (10) 

　j = (∑ ݌ 
1  i C3(q-i,j))  (∑ ݌ 

1 i C3(q-i, 0))       j = 1, 2…q      (11) 

After applying the HOC-GARCH parameter estimation, residuals are calculated and analyzed in terms of 

the third and the fourth order cumulants. The fourth order cumulant function is presented in Figure 3. 
 

 
Figure 2. Fourth order cumulant function of EUR/USD squared returns. 

 

 
Figure 3. Fourth order cumulant function for FX model residuals. 

 

The analysis of residual third and fourth order cumulants of different lags presented in Figures 2, 3, and 4 

demonstrates that the HOC-GARCH estimation method is better at capturing empirical regularities found in the 

squared exchange rate returns and leaves residuals nearly independent.  

Similar results are obtained using RV volatility. An example of the fourth order cumulant minimization is 

presented in Figure 5. 

-5.00E-04

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

4.50E-03

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

cum4r2eursd cum4r2eurjpy cum4r2gbpusd

-2.00E-04

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

cum4r2reseurusd cum4r2reseurjpy cum4r2gbpusd



E

 

 

It has b

than 35% o

ARMA/GAR

exchange ra

stationary. 

information 

third and fo

squared retu

parameter e

finding a su

skewness, an

EXCHANGE R

Figure 4. F

Figur

been demonstr

f the exchang

RCH parame

ate variance. 

GARCH and

to forecast vo

ourth order c

urns. It is show

estimation is u

ufficient stati

nd kurtosis of

RATE VOLA

Fourth order cum

re 5. Fourth ord

rated througho

ge rate volatil

ter estimation

However RV

d RV residua

olatility. Thus

cumulants in 

wn that super

used. Further 

istic for ARM

f the exchange

ATILITY FOR

mulants of USD

der cumulants: R

Co

out this empir

lity, a purpose

n method. Th

V model para

als have reve

s, the paper in

order to capt

rior whitening

academic res

MA parameter

e rate volatilit

RECASTING U

/CHF squared re

Realized volatilit

onclusions

rical analysis 

e which is be

he realised vo

ameters are cl

aled that the

ntroduces the A

ture more inf

g and indepen

search studies

r estimation, 

ty. 

 

USING HIGH

eturns and HOC

ty of GBPUSD a

that GARCH-

tter served th

latility model

lose to the u

ey, in fact, d

ARMA param

formation abo

ndence of resid

s in this area 

which goes 

HER ORDER 

C-GARCH resid

and HOC residu

-type models 

hrough the use

l explains mo

nit circle and

do not captur

meter estimati

out empirical

duals is achie

should focus

beyond the c

CUMULANT

duals. 

uals. 

do not explain

e of the HOC

ore than 80% 

d therefore po

re all the nec

on method ba

l regularities 

ved if HOC A

s on the prob

covariance fun

T  541

 

 

n more 

C-based 

of the 

ossibly 

cessary 

ased on 

of FX 

ARMA 

lem of 

nction, 



EXCHANGE RATE VOLATILITY FORECASTING USING HIGHER ORDER CUMULANT  

 

542 

References 
Andersen, T. G., Bollerslev, T., Diebold, F. X., & Ebens, H. (2001). The distribution of stock return volatility. Journal of 

Financial Economics, 61, 43-76. 
Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2001). The distribution of exchange rate volatility. Journal of the 

American Statistical Association, 96, 42-55. 
Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica, 

71, 579-625. 
Andreou, E., Pittis, N., & Spanos, A. (2001). On modeling speculative process: The empirical literature. Journal of Economic 

Survey, 15(2), 187-220. 
Bai, X., Russell, J. R., & Tiao, G. C. (2003). Kurtosis of GARCH and stochastic volatility models with non-normality innovations. 

Journal of Econometrics, 114, 349-360. 
Barndorff-Nielsen, O. E., & Shepherd, N. (2002). Econometric analysis of realized volatility and its use in estimating stochastic 

volatility models. Journal of the Royal Statistical Society B, 64, 253-280. 
Bollerslev, T. (1982). Generalized autoregressive conditional heteroskedasticity. In R. Engle (Ed.), ARCH selected readings (pp. 

42-60). Oxford: Oxford UP. 
Brooks, C. (1997). GARCH modeling in finance: A review of the software options. Economic Journal, 107, 1271-1276. 
Carrol, R., & Kearvey, C. (2009). GARCH modeling of stock market volatility. In G. Gregoriou (Ed.), Stock market volatility (pp. 

71-90). London: Chapman Hall/CRC Press. 
Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1, 223-236. 
Corsi, A. (2009). Simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2), 

174-196. 
Giannakis, B. G., & Delopoulos, A. (1995). Cumulant–based autocorrelation estimation of non-Gaussian linear process. Signal 

Processing, 47, 1-17. 
Giannakis, B. G., & Mendel, M. M. (1990). Cumulant-based order determination of non-Gaussian acoustics. Speech and Signal 

Processing, 38(8), 1411-1423. 
Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business, 36(4), 394-419.  
Poon, H., & Granger, C. (2003). Forecasting volatility in financial markets: A review. Journal of Economic Literature, 41, 

478-539. 
Porat, B., & Friendlander, B. (1988). Performance analysis of parameter estimation algorithms based on higher order Moment. 

International Journal of Adaptive Control and Signal Processing, 3(3), 191-229. 
Silvey, T. (2007). An investigation of the relative performance of GARCH models versus simple rules in forecasting volatility. In 

J. Knight, & S. Satchel (Eds.), Forecasting volatility in the financial markets (pp. 101-130). Elsevier Finance, Quantitative 
Finance Series, Oxford. 

Swami, A., & Mendel, J. (1989). Closed form estimation of MA coefficients using autocorrelations and third—Order cumulants. 
Speech and Signal Processing, 37(11), 1794-1797.  


