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The aim of this paper is to approach simultaneous interpreting adopting some connectionist models and conceptions 

and, thus, nurture interpreting modeling. Using neural networks stimulations, connectionism looks at the brain as a 

network of inter-connected nodes/units that substrate any intelligent ability or cognitive process through the 

propagation of activation. Neural networks, in connectionist models, acquire and learn diverse cognitive patterns 

through the strengthening and weakening of nodes associations. Drawing on this seminal framework, this paper is 

an attempt to account for interpreting and novice interpreters as neural networks. Throughout the matrix of 

argumentation, we suggest that the accumulation of a number of input units in novice interpreters’ neural nodes, as 

micro agents for processing informational units, and the building of the necessary knowledge associations among 

such nodes, through the strengthening and weakening principles, are prerequisites for being an interpreter. The 

establishment of a huge network of knowledge nodes enables the network to interpret in a given velocity. More to 

the point, such endeavor entails an extensive training on the propagation of a distributed neural activation in 

distributed circuits. Such neural circuits give emerge to the required neural associations echoing the declarative and 

procedural abilities crucial for interpreting as a quasi-automatic activity. 
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Introduction 

Connectionism is a new paradigm emerged in 1980’s to replace the very view that the mind processes 
information as symbols and combinatorial rules manipulated by computing operations. Using the concept 
“cognitive architecture” of neural connections, it proposes the implementation of neural networking models 
to account for diverse aspects of cognitive activities including language processing. In interpreting, the 
interpreter engages in a number of overlapped processes, and such processes lie in the heart of 
connectionism. These include the reception of the input, comprehension, and the activation of 
representation patterns necessary to produce a grammatically, syntactically, and semantically congruent 
output. Thus, linguistic behavior and the related cognitive processes constitute an overarching central point 
of both interpreting and connectionism, something which substantiates the adoption of what we view to be 
the implications and applications of connectionist networks for the domain of interpreting and translation. 
For accounting for the above-stated hypothesis, the paper is structurally designed as follows: The first short 
section draws a line on an overview about connectionist modeling of cognition. The second section is 
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intended to approach interpreting from connectionist lens; whereas, the third section discerns connectionist 
insights relevant for training future interpreters. 

Connectionist Modeling of Cognition 
Researchers in the paradigm of connectionism, also known the PDP (parallel distributed processing) 

(Rumelhart, Hinton, & McClelland, 1986) use the architecture of neural networks to model the neural 
interconnectedness and the way its networking results in emergent cognitive aspects. They analogized the 
human mind to a huge network of interconnected units. Hinton (1989) stated that “Each unit has a ‘state’ or 
‘activity level’ that is determined by the input received from other units in the network” (p. 186). PDP revolves 
around the centerpiece idea in neurology that the brain consists of billions of highly interconnected neurons (as 
synonymous to agents, units, and nodes) engaging in neural processes to generate cognitive products including 
language comprehension and production. An individual neuron is a micro- processor that calculates the sum of 
its received inputs. Exceeding a certain threshold, it generates an output, which is an input to other neurons (i.e., 
units) to which it is connected through synapses as neuro-connectors (Cilliers, 1988). 

Each synapse excites or inhibits the target neuron through the signals that come from a sensory organ, for 
example, and each synapse determines the strength of influence. Information is processed in parallel neural 
operations, and it is distributed to other parts of the brain (Cilliers, 1988, p. 16) in different cortical regions 
(Anderson, 2009). The synaptic connection between any two interconnected nodes has a value which can be 
either positive (excitatory) or negative (inhibitory) depending on the weight of their connections (Bechtel & 
Abrahamsen, 1991) during activation. Excitatory connections increase the activity of neural units; whereas, the 
inhibitory ones decrease it (Bechtel & Abrahamsen, 1991). 

It should be noted that inspirational insights of connectionism came from Minsky (1986) who deemed the 
cognitive system as a society composed of micro-agents capable of locally providing solutions to diverse 
problems. However, connectionists persistently refer to what is widely known as Hebb’s rule, which states that 
when two neurons fire together wire together. The neurons that get activated through neural signals in a 
simultaneous manner strengthen their synaptic connections. 

Connectionist modeling of cognition accounts for two types of representations: distributed and localist. 
Distributed representations are assumed to be vectors in a representational state space. Parallel distributed 
representations are processed in simultaneity by a number of associated nodes in a connectionist network of 
nodes (McClelland, Rumelhart, & The PDP Research Group, 1986). Whereas, in localist models, localist 
representations are envisioned to be encoded in individual neural nodes for representing the entire concept such 
as cat. However, this paper is intended to work out the common ground between interpreting and 
connectionism in general. It is beyond the paper’s scope of inquiry to provide details on the two 
above-mentioned types of representations on which there is an ongoing controversial debate. 

Approaching Interpreting From Connectionist Perspectives 
The Necessary Skills for Interpreting 

As a process of neural transferring of lexico-semantic units between two spoken languages, simultaneous 
interpreting occurs between two neural talking networks in the real time. Interpreters must provide a topnotch 
output to the target audience without lagging behind the speaker. Thus, simultaneous interpreting is a complex 
task that is very demanding in terms of language skills and memory capacity. Accordingly, the ultimate 
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objective of interpreting courses is to develop in trainees a bunch of the required perceptive and cognitive 
processing skills such as problem solving and analytic abilities crucial for being an interpreter. This requires 
constructing a huge neural network of associations reflecting a high level in conceptual, procedural, and 
declarative knowledge or, let us put it another way, a high level in neuro-linguistic plasticity to shift between 
two languages in a lexico-semantically symmetrical manner. By the end of training, novice interpreters are 
required to have been armed with diverse inter-complementary skills in order to be able to perform the three 
macro-processes involved in discourse mediation (Padilla, 1999): (1) analysis and understanding the source 
text or discourse; (2) translation or reformulation of the source text or discourse; and (3) production of the 
text or discourse in the target language. 

Among the recognized skills involved in simultaneous interpreting, which worth mentioning, are: (1) 
selective listening that requires concentration and attention to cope with velocity and mitigating perturbing 
elements; (2) understanding that necessarily requires predicting skills and speed of representation; (3) 
memorizing the information in SL (Source Language); (4) mental translation which includes editing; and (5) 
verbalization in the same rate of speech speed (see Kornakov, 2000, pp. 246-248).  

The Interpreter as a Networking Unit 
Language processing, as well as other cognitive forms, demands from agents to internalize an enormous 

number of units or exemplars (i.e., items, instances) for establishing a large network of knowledge. It is 
prerequisite to train the network on establishing different associative strengths between those units/nodes in tune 
with “the frequency and regularity effects of the input”, adjusting the activation values among the 
inter-connected units on the basis of stimuli frequency (Hulstijn, 2003, p. 418). Knowledge network in 
connectionism is taken to be neural, i.e., a result of neural connections inside the neural society existing in our 
mental system. On this basis, we suggest that an interpreter must develop his/her system’s networking through 
knowledge units the system receives from external sources in terms of internal prior conceptual, declarative, and 
procedural connections of knowledge network among his/her neurons. Without such connections maintained by 
neural agents communicating in the mental society, probably, the interpreter’s neural system cannot manage to 
segment the distribution and juxtaposition of sound units in chunks received from a talking unit.  

Adopting the notions of recurrent networks, the author of this paper suggests that an interpreter is 
hypothesized to be a unit among a network of interconnected units (i.e., the interpreter, speakers, listeners, or 
audience). Such unit is supposed to be well-trained phonologically, lexico-grammatically, morpho-syntactically, 
semantically, and pragmatically to process the message input (the talking unit’s output) and map it into a 
symmetrical output to the other nodes supposed to logically and emotionally be plugged into the net. The line 
of communication makes the activated neurons of all the plugged units interconnect and interact on the basis of 
their previous beliefs, knowledge network and the organizational map of the world matrix stored in neurons.  

Human Mirror Neurons System Hypothesis supports such conception in that specific neurons fire in 
inferior frontal cortex and superior partial lobe when someone performs an action. The same neurons fire again 
when humans see someone performing that action (Iacoboni et al., 1999). Suffice to say, one’s mirror neuron 
mirror system is connected to that of the sender to reflect his/her pattern of activity. This theorem supports the 
very idea that, in a communication encounter, the motor concept related to words is characterized by the 
transmission from one brain network to another through neuron mirrors system (Schippers et al., 2010). It is 
mentioning here that mirror neurons are also hypothesized to be responsible for self and others awareness 
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(Oberman & Ramachandran, 2009) and understanding their goals and intentions (Leonardo et al., 2005), etc. 
Since interpreting involves such awareness and understanding, mirror neurons theorems, we conjecture, might 
have brought about workable results for buttressing theorizing in the field of simultaneous interpreting where 
mirror neurons interact and stimulate each other. 

In a similar vein to that of mirror neurons hypothesis, multi-agent connectionist model of inter-personal 
communications suggests that many recurrent networks communicate in straight lines with each other. The 
individual recurrent network of individual inter-connected units “stimulates the process of information uptake, 
integration and memorization within individual agents”. Each agent’s recurrent network contains an 
auto-associative recurrent network. Communication is controlled by trust weights (Overwalle & Heylighen, 
2006, pp. 606, 608). Trust in multi-agent talking nets is “determined by the consistency with the receiving 
agents existing beliefs, and results” (Overwalle & Heylighen, 2006, pp. 606, 608). The concept “trust weight”, 
in this context, is synonymous with changes occurring during communication process in terms of connection 
between individual networks. These weights trigger selective propagation and thus lead to the filtering out of 
irrelevant information. In such context, communicators implement, as Overwalle and Heylighen noted, Grice’s 
(1975) maxims of quality and quantity. 

Recall that inter-connected agents are pragmatically conscious and aware of the requirements of 
communication set forth by Grice (i.e., quality, quantity, relevance, and manner). Connectionist vehicle theory 
of consciousness makes clear that representation in the brain networks is a conscious experience of the very 
states (such as the activation of representations patterns that constitute the brain concurrent response to 
prevailing conditions); the communicating brains are intentional about something (Opie, 1998, p. 128). For an 
interpreter to work out the coherence of the received message, he/she shall be cooperative and participative 
within the network so as to reach the intentionality and aboutness activated in the mental unit of the speaker as 
a talking net. Such cooperation is tantamount to neural trust weight. However, as the next section will show, 
such level demands from novice interpreters/students a lot of training on the network of knowledge in two 
languages and exercise in a given frequency on the basis of trials and errors. As such, they come to 
familiarize their neural cells with the morpho-syntactic and conceptual units used in conferences and other 
interpreting situations and settings. 

Interpreters Training and Connectionism 
Interpreter’s Neural Networking and Environment 

Interpreting students necessarily come to translation classes with linguistic lexico-grammatical 
elements/nodes mirroring the neural interactions and associations in their neural dynamic systems. 
Presumptively, they have a given command in the structure (i.e., lexical system impending semantic system) 
and meaning (semantic system of lexical units) of two languages or more. Their neural associations represent 
their bilingual fluency and their conceptual network, which they would refine in the new environment for 
becoming future interpreters. Cilliers (1988) drew a line on such adaptability of the mental system of 
networking nodes stating: “A complex dynamic system has to develop its internal structure and has the ability 
to adapt that structure in order to cope with the changes taking place in the environment” (p. 12), which is the 
classroom in our case. He further explained such dialectical relationship between the environment matrix and 
the brain networks permeating such matrix in that the brain as a complex system can develop a complex 
structure. This latter develops its structure from fairly unstructured beginnings through changing the 
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distribution of elements composing the system. This occurs under influence of both the external environment 
and the history of the system, because the system is plastic (Cilliers, 1988, p. 16).  

The dialectical relationship between the internal structure of the student’s networking system and the 
environment within which he/she develops that structure might best be understood in the light of the didactic 
triangle of the three axes: student, knowledge, and professor (Lee-Jahnke, 2005). The triad elements result in 
three processes that, the author views, are necessary for constructing neural networks crucial for 
quasi-automatic interpreting task. These are: (1) learning process—occurs between student and knowledge; (2) 
training process—takes place between professor and student; and (3) teaching process—occurs between 
professor and knowledge (Lee-Jahnke, 2005, p. 361). 

Recurrent Networks in Interpreting Classroom 
The author contends that the concept “recurrent network” in connectionism is workable for describing the 

interaction of those three above-mentioned elements. Cognition in recurrent models is not limited to specific 
neurons nor to the individual mind as a sum of its associations, but it involves interactions between 
interconnected brains in a network of abstract ties. While levy (1997) used the concept “collective intelligence” 
to designate the multi-agent networking, Hutchins (1995) referred to it as a “distributed cognition”. 

In the class environment, the processes of learning, training, and teaching are to be understood in 
terms of the recurrent multi-agent nets for the fact that it involves many agents/units communicate with 
each other once knowledge is activated: That is, it involves auto-associative nets that are students neural 
networks in addition to that of the teacher. Apparently, the teacher uses supervising procedures in 
propagating knowledge that might be activated by any unit, be it a teacher or a student. Then, each unit 
receives the activation from the external source outside the neural net. The activation, which reflects the 
term short term memory in connectionist theorizing, spreads automatically among the units of the net of 
recurrent networks, for they are interconnected in an auto-associative recurrent manner (Overwalle & 
Heylighen, 2006, pp. 606-608). Thus, agents learn from each other since their neuronal nodes are 
interconnected. We conjecture that all the three processes: Learning process, training process, and teaching 
process are interactively involved in such classroom recurrent networking.  

In activating knowledge in classroom, we shall be mindful that the target is the neural nodes network with 
an explicit aim of establishing associations between them in congruence with those maintained among chunks 
or stretches of knowledge under activation. Classroom didactic activities, from this connectionist lens, are 
constructive in their essence for they enable the interconnected units (i.e., students) to turn the quasi-randomly 
connected neurons into well constructed connections. The author pinpoints that the activation is distributed 
among the network of students through activating mirror neurons of the network. Mirror neurons make students 
observe their actions and performance and stimulate each other in a multi-agent learning process while they are 
armed with meta-cognitive skills in their meta-memory. Each student adopts his/her learned strategies to have 
self- regulation and self- monitoring (Flavell, 1976). 

Knowledge and Neural Networks 
Knowledge network organizing the world patterns is represented via the linguistic cohesive associations 

maintained among the syntactic units that implement the semantic system (Cilliers, 1988); our “conceptual 
categories give rise to linguistic categories, which enable us not only to communicate, but also to guide our 
understanding of the world” (Lee-Jahnke, 2005, p. 361). An interpreter’s mental system exists within the 
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network of knowledge; it neurally shapes its knowledge out of that network’s components through changing the 
values of weight. When we decode an input or speak an output, we reflect the level of our neural connectionism. 
Hinton (1989) stated this conception as follows: 

All the long-term knowledge in a connectionist network is encoded by where the connections are or by their weights, 
so learning consists of changing the weights or adding or removing connections. The short-term knowledge of the network 
is normally encoded by the states of the units, but some models also have fast-changing temporary weights or thresholds 
that can be used to encode temporary contexts or bindings. (p. 186) 

Pursuing such line of reasoning, the ultimate purpose behind activating knowledge network in 
classroom shall be the building of a high level of long-term neural plasticity necessary for performing the 
interpreting task. Knowledge network in its socio-economic and socio-cultural frame work consists of a 
number of component nodes/units including actors (i.e., individuals, groups, organizations, and relations 
between those actors within social networks, that can be characterized by form, content, and intensity). They 
also include resources (used by actors in relationships) in addition to institutional properties, i.e., structural 
and cultural dimensions such as control mechanisms, rules and norms, standard operation procedures and 
communication patterns (see Seufert, Krogh, & Bach, 1999). 

The interpreter’s neural network, following networks theory, has to echo the network of knowledge 
represented as exemplars (i.e., items, instances). These are institutional and socio-cultural nodes as large 
coherent input. Such input enables interpreters, as embodied agents, to interpret within the network of 
interconnected organizational and associative nodes constituting our micro and macro-cosmopolitan world 
(Cronin, 2006). They are required to construct a neuro-cognitive representation to those nodes and 
conceptual relationships among them, including enablement, part-whole conception, analogy, inheritance, as 
well as other knowledge patterns. 

Training, Constructivism, and Connectionism 
In his input hypothesis, Krashen (1985) postulated that learners are in need to a comprehensible input 

data to processes information, which is an equivalent in connectionism to exemplar nodes without which 
weight of trust cannot be achieved. Learners cannot process an input that contains linguistic features than 
their current knowledge (Krashen, 1985). Interpreting students have to accumulate a number of knowledge 
units to use them as prior knowledge input in their schemata that would enable them to process what 
Krashen (2003) terms “comprehensible input” into a congruent “comprehensible output”. The accumulation 
of a large network of interconnected neural units must be achieved in a piecemeal processor, using Shastri 
(1999) terms, “long-term potentiation”. In similar vein, recent studies (Tse et al., 2007, 2011), as McClelland 
(2013) pointed out, showed that neocortical circuits can rapidly acquire new neural associations that are 
consistent with prior knowledge. 

The network associations are neutrally established through what Lakoff (1999) postulated to be the aspects 
of conceptual structures as embodied neural properties: image schemas, frame semantics, conceptual metaphor, 
radial categories, basic-level categories, and mental spaces within which we organize knowledge reflecting the 
world. He stated that these conceptual systems emerge within the mind as embodied results of neural 
representations. On this basis, the learning networks training for being interpreters engage in subjective projects 
using selective propagation caused by trust weights principle. The subjective neural associations conception 
supports the constructivist approach of learning that: 
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… The learner is building an internal representation of knowledge, a personal interpretation of experience. This 
representation is constantly open to change, its structure and linkages forming the foundation to which other knowledge 
structures are appended. Learning is an active process in which meaning is developed on the basis of experience… 
Conceptual growth comes from the sharing of multiple perspectives and simultaneous changing of our internal 
representations in response to those perspectives as well as through cumulative experience. (Bednar, Cunningham, Duffy, 
& Perry, 1991, p. 21) 

There are three inter-complementary meta-cognitive elements that a student is supposed to have 
constructed in his/her mental network: (1) Metacognitive knowledge which has to do with an agent’s 
knowledge about his and others cognitive process; (2) Metacognitive regulation that is tantamount to 
controlling the process of learning; and (3) Metacognitive experiences which is related to the current endeavor 
(Flavell, 1979). Resting on connectionism, such metacognitive parameters in metacognitive memory, one might 
assume, are emergent states. 

Interpreting as an Emergent State Proportional to Training 
Taking for granted the premise that any cognitive behavior is the emergence of global states in a network 

of interconnected elements (McClelland, 2010) going under transformations due to the internal history of the 
system and its environment, interpreting behavior would logically be deemed an emergent global phenomenon. 
To make it clear, in proto-emergenism model, mental agents aggregate in mental conspiracies in memory 
representations of items to produce emergent category representations corresponding to individual items or 
experiences (i.e., exemplars in exemplar models by Medin and Shaffer, 1978) as McClelland noticed (2010). In 
such conception, the world is inseparable from the neural structures embodying the neural global states within 
which neural assemblies compete with each other to design conscious phenomena such as those related to 
interpreting. In distributed connections models, cognitive nodes contain units that stand for individual things 
(McClelland, 2010), including conceptual properties if we follow Shastri (1999). Building on Hopefield, 
Rumelhart, Hinton, and McClelland (1986) used the concept schemata to refer to those emergent states of 
neural networks. The aggregate co-occurrence statistics of properties of many schemata rooms in the neural 
system are represented by the connection weights (see McClelland, 2010, pp. 756-758).  

Training should place major focus on neuro-linguistic factors for preparing efficient interpreters “taking 
into account the fact that a major part of the work depends on the self-training of the students” (Kornakov, 2000, 
p. 248) in constant connection with other networks (i.e., other students) to stimulate interpreting situations. 
Neuro-linguistic interactive training enables students to strengthen the ties between their cognitive nodes in a 
sophisticated neural architecture reflecting the conceptual categories and common patterns needed for interpreting 
as a neutral-chemically emergent state. Ellis (2002) pointed out that the acquisition of common patterns and 
categories is driven by the principle of frequency. Interpreters acquire the common patterns through practice and 
experience that would expose them to large input. Rosch, Mervis, Gray, Johnson, and Boyes-Braem (1976,     
pp. 382-493) noted that experience refines one’s capacity to categorize the world into structured categories.  

Practice and Neuro-plasticity 
Practice is of vital importance for establishing the interpreter’s network capable of mediating messages in 

the spot. It teaches “neurons to fire and hire together” and makes Hebb’s assemblies in local and distributed 
circuits. Everything we do modifies our brains physically thanks to neuro-plasticity. Anderson (2009) argued 
that creativity has to do with neuro-plasticity, with mobilizing different motor and cognitive representations of 
memory. This includes the capacity to switch in a flexible manner from an experience to another when 
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analyzing information. Neuro-plasticity enables interpreters to make associations easily simply because in their 
mental systems, a large number of neurons have been recruited through learning and practice to perform the 
interpreting task. In the context of learning, Anderson (2009, p. 21) gleaned to the conclusion that students with 
higher networks perform better than those with weak connection. 

Similarly, representing the recruitment learning framework, Shastri (1999, p. 1) referred to the process of 
learning to be based on the ‘quasi-randomly’ connected networks of neural nodes. In the mental architecture, 
there are two kinds of neural nodes: recruited and non-recruited cells. The recruited ones “have acquired a 
distinct meaning of functionality by virtue of their strong interconnections to other recruited nodes or 
sonsori-motor nodes” (Shastri, 1999, p. 1). Whereas, the free nodes have weak association with other free or 
recruited nodes or sensory-motor nodes, waiting to be recruited for participating in neural activity by 
representing new items or concepts. Shastri (1999) provided an illustration how those are recruited function, 
stating that “when a novel concept Y is a conjunct of existing concept x1 and x2 in long term memory” by 
means of recruiting the free nodes that receive connection weight “from both x1 and x2” (p. 1); a number of 
nodes get recruitment through the process of strengthening the synaptic weight. The node that “receives a large 
number of links can potentially participate in a large number of functional circuits” (Shastri, 1999, p. 7). The 
recruitment process makes transformation in the quasi-random network of nodes into structures of nodes to 
perform some specific functionalities. This framework might have certain applicability for training 
simultaneous interpreters in that it offers a roadmap to envision an interpreter as a network of recruited units. 
Hence, the more recruited cells in bilingualism and conceptual, declarative and procedural systems the mental 
society of an interpreter contains, the more effective he/she is. 

Controlled and Automatic Processing in Interpreting 
We assume that an automatic processing in interpreting necessarily requires recruiting a large number of 

neural interconnections we have discussed throughout our argumentation. In drawing a line on the controlled 
and automatic processing, Nikolic (1999, p. 7) demonstrated that prolonged training on doing something leads 
to the quasi-automatic processing. It enables one to overcome the capacity limits of WM (Working Memory) in 
terms of the items that it can hold, the number of stimuli that one can trigger in addition to that of categories in 
absolute judgments when processing becomes automatic (Miller & Campbell, 1953, for the size of WM 7 +/- 2 
for controlled processing), automatic processing requires shorter time reaction to processed material (Nikolic, 
1998, p. 8). P. Padilla, Bajo, Cañas, and F. Padilla (1995) demonstrated that professional interpreters showed 
higher WM capacity span contrary to students. That high capacity permits interpreters to meet the demands of 
interpreting simultaneously, avoiding articulatory suppressing effect (Padilla, 1995, p. 208). To illustrate the 
dialectical overlap between controlled and non-controlled processing, Nikolic (1999) enunciated that: 
“Controlled processing can control the automatic processes. Controlled processes can trigger automatic ones, 
shut them off or retrieve them into consciousness when the situation requires it (i.e., novel situations)” (p. 9). 
Hulstijn (2003) explained the dual usage of capacity saying that fluent reading and listening are automatic at 
what he saw to be “lower levels of word cognition” (p. 419) and sentence parsing. The capacity is left free to 
focus attention on the higher information levels relating to semantics and content (Harrington, 2001; Rost, 
2002). Interpreters, as listeners are exposed to concatenated speech and they are required to distinguish between 
the borderlines, that is, between interconnected local units in local networks. Through being exposed to 
extensive training, the mental network can distinguish the segments of speech easily and rapidly. 
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Conclusions 

Connectionist modeling of cognitive processing is a promising field that is replete with implications and 
applications for many fields. Interpreting and translation might benefit from such field in a scientific manner on 
the basis of experiments. Throughout the lines of argumentation, we attempted to provide a connectionist 
framework for modeling interpreting that demands, above all, the building of a huge network of nodes through 
learning, training and experience. We tried to bridge the distance between connectionism and neural networks, 
as a paradigm, and interpreting in particular and translation in general. Thus, the paper provides a new scope of 
research in connectionist models, which might propel inquiry in interpreting that has always been a challenging 
subject matter in both theory and practice.  
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