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
 

When researchers are testing the validity of claims during their research, they may use either parametric methods (if 

they exist) or non-parametric methods if appropriate parametric methods do not exist. The Chi-square (x2) distribution 

plays an important role in both parametric and non-parametric methods and many of its most important applications 

are explored in this paper. This paper provides an excellent summation of the properties and capabilities of the very 

versatile x2 distribution, and many specific applications and suggestions for additional future applications.  

Keywords: Chi-square (x2) distribution and its most important properties, use of the x2 distribution as a test statistic, 

applying the x2 distribution to perform parametric tests on the population parameters σ2 and σ, testing the equality 

of three population variances, applying the x2 distribution to perform non-parametric tests on frequencies, goodness 

of fit, independence, homogeneity 

Introduction 

Most of the statistical methods that people are familiar with are referred to as parametric statistics and the 

term is used to indicate the nature of the population from which the sample data set: 𝑥1, 𝑥2, 𝑥3,… , 𝑥𝑛 , which 

this paper is about to analyze, came from, for example when the empirical rule is used, this paper makes the 

assumption that the sample data came from a normal distribution. However, when this paper uses 

CHEBYCHEV’s inequality, namely: 

𝑃 𝑥 − 𝑘𝑠 ≤ 𝑋 ≤ 𝑥 + 𝑘𝑠  ≥ 1 −
1

𝑘2, for k > 1                     (1) 

which states that the probability that a random variable X is between k standard deviations of the mean (𝑥 ) is 

at least 1 −
1

𝑘2, the result is valid for all possible distributions of the random variable x. 

Such ―distribution-free‖ results, are called non-parametric statistics. In these nonparametric tests, the 

parameters of the distribution continue to be important. What is not important is the nature of the distribution of 

the population from which the sample came from. What is important is that these tests are valid whether the 

population distribution is normal, binomial, uniform, exponential, etc.. 
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When both parametric and non-parametric methods exist for the same application, it is natural to ask 

which test is preferable, the parametric, or nonparametric one. The answer is the parametric test, because a 

much larger sample (i.e. nonparametric methods are less efficient than parametric methods) is required for the 

non-parametric tests to achieve the same results (i.e. the same power).  

But there are many situations in which the form (or nature) of the population distribution is not well 

known and the nonparametric method is the only meaningful alternative. This is also the case when no 

parametric alternative exists. 

However, even though the computations on nonparametric statistics are usually less complicated than 

those for parametric statistics, the calculations for many nonparametric statistics can become very tedious, 

when the samples are large. 

Another disadvantage for most nonparametric methods is the fact that the null hypothesis (H0) being tested 

is less precise than that in the parametric methods, and the conclusions drawn may be somewhat vague. But, 

even with these drawbacks, nonparametric statistics are very useful, and it is important to know when and 

where they can be used, and the conclusions which can be drawn from their application. 

The Chi-square (x
2
) distribution can and is used as both a parametric and non-parametric tool, as shown 

below: 

(1) The parametric applications of the Chi-square (x
2
) distribution include the following tests: 

a. testing the hypothesis that the variance of a population is equal to a claimed value (e.g., H0: σ
2
 = 25 vs. 

H1: σ
2
 ≠ 25); 

b. testing the hypothesis that the standard deviation of a population is equal to a claimed value (e.g., H0: σ 

= 10 vs. H1: σ ≠ 10); 

c. testing the hypothesis that the variances of three or more populations are equal (e.g., H0: σ1
2
 = σ2

2
 = σ3

2
 

= … = σk
2
 vs. H1: The k variances are not all equal). 

(2) The most important non-parametric applications of the Chi-square (x
2
) include the following tests: 

a. tests on frequencies—are the frequencies of classes consistent with expectations? 

 tests on the frequencies of two classes; 

 tests on the frequencies of more than two classes. 

b. tests on the independence of two or more characteristics of the same population (contingency 

tables)—Are two characteristics of the elements of a population independent of each other? 

c. tests on homogeneity—are two or more Independent random samples drawn from the same population? 

d. tests on goodness of fit—does a population under investigation follow a specific probability model (i.e. 

uniform, normal, exponential, etc.)?  

 Is it a uniform distribution? 

 Is it a normal distribution? 

Before proceeding with the discussion of these applications, a brief literature review, the research methods 

used and the research results obtained are stated. 

Literature Review 

Because the objective of this paper is to establish the x
2
 as a well understood and properly used research 

tool, an exhaustive search was made to determine how other authors applied the x
2
 distribution to problem solving.  

Canal and Micciolo (2014) attempted to explain certain limitations of the goodness of fit test. Hwang and 



CHI-SQUARE DISTRIBUTION AS A RESEARCH TOOL 

 

690 

Wang (2008) proposed a Chi-square test for testing the hypothesis that a truncation distribution follows a 

parametric family. Lang and Iannario (2013) discussed a new approach for improving statistical tests of 

independence between two categorical variables R and C, where C is ordinal and R may or may not be ordinal. 

McHugh (2013) analyzed the Chi-square test of independence and its limitations. Xie (2014) used it in more 

complex parametric multiple testing methods. Berenson, Levine, and Krehbiel (2004) used the x
2
 for an 

independence test. Black (2004) used it for a goodness of fit and for some novel applications. Canavos (1984) 

used the moment generating function of the distribution in his discussion. Carlson and Thorne (1997) used it 

for a homogeneity test. Freund and Williams (1982) used it for a test of independence. McClave, Benson, and 

Sincich (2001) used it in contingency table analysis. Salvatore (1982) used it for tests of goodness of fit and 

independence. Vasilopoulos (2007) used it to test the equality of three or more variances. 

Research Methods 

A comparison was made of the way the cited authors applied the Chi-square distribution, a list was 

constructed of the many applications that have already been made, and ideas were sought for future 

applications. 

Reasearch Results 

After major applications of the x
2
 research tool were discussed and the procedures of their analysis were 

identified, five examples of the most important applications are solved completely, to make sure the methods 

are clearly understood. These examples are found in the following section, which follows.  

Discussion 

Before starting discussing both the parametric and non-parametric applications of the Chi-square (x
2
) 

distribution, this paper first discusses briefly the ―nature‖ of the x
2
 distribution and some of its most important 

characteristics, such as: the density function of the distribution, the shape, expected value and variance of the 

distribution, and the method of calculating probabilities using the chi-square (x
2
) table (because the density 

function is too complicated to allow the use of the closed-form (or analytical) method of integration). 

Chi-square (x
2
) Distribution and Some of Its Most Important Properties 

If Y = Z1
2
 + Z2

2
 + Z3

2
 + … + Zn

2
 = 

2

1

n

i
i

Z


 ,                     (2) 

where, Z1, Z2, Z3, …, Zn are all standard normal variables (i.e. μ = 0 and σ = 1), then, Y is said to be Chi-square 

distributed with degrees of freedom:  

Y = DOF = n                                       (3) 

If Y = x
2
,                                      (4) 

then Y has a density function; f(y) = f(x
2
) given by: 

2
-

1
2 2 2

2

2

2

( )
( )

2 [ ( )

n x

n
y x

n

x e
f



 



, 0 ≤ x
2
 < ∞,                        (5) 

where, Γ(n/2) = Tabulated gamma function, 
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1
2

0=

n

x
x e dx




 ,                                     (6) 

whose role is to keep the area, under the f(x
2
) function, from 0 to ∞, equal to 1 (as required by an axiom of 

probability) for all values of n (Canavos, 1984), 

Γ (½) =  𝜋                                     (7) 

Γ (2) = 1, Γ(1) = 1 and Γ(n + 1) = nΓ(n), for n > 0. 

Equation (5) represents an entire family of curves, one for each value of n. When plotted, for a given value 

of n, f(x
2
) is a positively skewed distribution, starting at x

2
 = 0 and going all the way to +∞, as shown below in 

Figure 1. 
 

  
Figure 1. Shape of density of function of x2.

 

 

The expected value = E(x
2
) = E(y), E(y

2
), and V(y) = V(x

2
) are given respectively by, 

E 𝑦 = E 𝜒2 =  𝑦f 𝑦 𝑑𝑦
∞

0
= DOF = 𝑛                        (8) 

E 𝑦2 = E  𝜒2 2 =  𝑦2f 𝑦 𝑑𝑦 = 2𝑛 + 𝑛2∞

0
                      (9) 

V 𝑦 = V 𝜒2 = E 𝑦2 −  E 𝑦  2 = 2 × DOF = 2𝑛                  (10) 

It is important to emphasize that the expected value of a x
2
 variable is equal to its degrees of freedom 

(DOF = n here), while its variance is equal to 2 × DOF = 2n. To find the probability that a x
2
 variable is 

between two values, x
2
 = a and x

2
 = b, it needs to integrate the x

2
 density function between these two values, as 

shown below (Figure 2). 
 

 
Figure 2. Probability calculations of x2. 
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P[ a ≤  𝜒2  ≤  b ]  =  f 𝜒2 𝑑𝜒2𝑏

𝑎
                           (11) 

= [g(χ
2
)]  = g(b) – g(a)                              (12) 

if a function g(x
2
) can be found such that 

g’(x
2
) = f(x

2
)                                    (13) 

i.e. if the derivative of g(x
2
) is equal to f(x

2
), then the probability can be found by using equation (12). This 

―closed-form‖ or ―analytical‖ integration is possible only if f(x
2
) is a relatively ―simple‖ function (Black, 2004). 

But, since the density function of the x
2
 distribution, as given by equation (5) is a complicated equation, 

and the corresponding g(x
2
) function can not be found, the required integration will be performed using a x

2 

table. 

As can be seen from such a table, there is a different x
2
 density function for each DOF = df, and the shaded 

area represents the value of ―α‖ shown (α = 0.995, α = 0.990, α = 0.975, α = 0.950, α = 0.900, α = 0.100, α = 

0.050, α = 0.025, α = 0.010, α = 0.005). 

The table gives, at the intersection of the row (df) and column (α value), the value of the x
2
 variable (with 

the given DOF) which will make the area, under the f(x
2
) function, from this value to +∞, equal to the α of the 

column, for example, when df = 10 and α = 0.975, 𝜒10,   0.975
2  = 3.247 while,  

when df = 10 and α = 0.025, 𝜒10,   0.025
2 = 20.483                   (14) 

therefore, P[3.247 ≤ 𝜒𝑑𝑓=10
2  ≤ 20.483] = 0.95 (0.975-0.025). 

Note 1: If DOF and/or α change, the results of the integration will also change. 

Note 2: When n ≥ 30, probabilities can be calculated using the normal distribution with 

Expected value = n,                                (15) 

Standard deviation =  2𝑛 =  variance of 𝜒2                    (16) 

Note 3: For the parametric applications of the x
2
 distribution, this paper makes use of the fact that  

𝑠 2 = unbiased sample variance = 
1

𝑛−1
 (𝑥𝑖 − 𝑥 )2𝑛

𝑖=1                   (17) 

𝜒𝑛−1
2  = Chi-square with DOF = n  1. 

Specifically, it can show that 

(𝑛−1)𝑠 2

𝜎2 = 𝜒𝑛−1
2                                   (18) 

from which it can easily show that 

E 𝑠 2 = 𝜎2 (i.e. 𝑠 2 is an unbiased estimator of 𝜎2 )               (19) 

V 𝑠 2 = 2𝜎4/(𝑛 − 1)                              (20) 

Some of the Most Important Parametric Applications of the Chi-square Distribution 

As previously mentioned, these include: 

(1) testing the hypothesis that the variance of a population (𝜎2) is equal to a specified value (𝜎0
2) 

(Berenson et al., 2004); 

(2) testing the hypothesis that the standard deviation of a population (𝜎) is equal to a specified value (𝜎0); 

(3) testing the hypothesis that the variances of three or more populations are equal to each other. 

Now this paper can show how these three hypothesis tests are carried out and, for problems (1) and (2), it 

a

b
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can also construct confidence intervals (CIs) and show their equivalency to the hypothesis test solutions: 

(1) Testing that σ
2
 = σ0

2
, the following steps will be used: 

(a) H0: 𝜎2 = 𝜎0
2 vs. H1: 𝜎2 ≠ 𝜎0

2; 

(b) selecting the value of α (usually α = 0.05 or α = 0.01, or both); 

(c) the estimator for the parameter 𝜎2 is 𝑠 2 and, according to equation (18) 
(𝑛−1)𝑠 2

𝜎2 = 𝜒𝑛−1
2 ; 

 
Figure 3. Construction of Rejection Region of 𝝌

 2.
 

Note: The shaded area is the Rejection Region and the non-shaded area is the Acceptance Region. 
 

(d) constructing a rejection region (RR), using the x
2
 table with DOF = n  1; in particular, obtain from the 

x
2
 table, the values: 𝜒𝑛−1

2  
𝛼

2
 and 𝜒𝑛−1

2  1 −
𝛼

2
  and construct the RR\Acceptance Region (AR) as shown 

above in Figure 3; 

(e) calculating the value of the test statistic  

x
2

 = 
(𝑛−1)𝑠 2

𝜎2                                     (21) 

(f) comparing x
2

 to the RR (Salvatore, 1982): 

 If x
2

 falls inside the RR, reject the validity of H0; 

 If x
2

 falls outside the RR, do not reject the validity of H0; 

 If H0: 𝜎2 = 𝜎0
2 is rejected, it concludes that 𝜎2 ≠ 𝜎0

2; 

 If H0: 𝜎2 = 𝜎0
2 is not rejected, it concludes that 𝜎2 = 𝜎0

2. 

(2) Testing that 𝜎 = 𝜎0, the following steps will be used. 

(a) H0: 𝜎 = 𝜎0 vs. H1: 𝜎 ≠ 𝜎0; 

(b) selecting the value of α (usually α = 0.05 or α = 0.01, or both); 

(c) the estimator of σ is 𝑠  but authors do not know the sampling distribution of 𝑠 . 

To solve the problem, H0 and H1 are reformulated in terms of 𝜎2 are reformulated (σ
2
 = (σ)

2
, or σ = 

 𝜎2), because its estimator 𝑠 2 is known to 𝜒𝑛−1
2 . 

That is, authors change H0: 𝜎 = 𝜎0 vs. H1: 𝜎 ≠ 𝜎0 to H0: 𝜎2 = 𝜎0
2 vs. H1: 𝜎2 ≠ 𝜎0

2, and then follow 

the procedure shown in problem (1) above. 

A(1 – α) confidence interval for 𝜎2 is obtained from 
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P  
(𝑛−1)𝑠 2

𝜒𝑛−1
2 ,   𝛼/2

≤ 𝜎2 ≤
(𝑛−1)𝑠 2

𝜒𝑛−1
2 ,   1−

𝛼

2

 = 1 − 𝛼                       (22) 

while a 1 – α confidence interval for 𝜎 is obtained from: 

P   
(𝑛−1)𝑠 2

𝜒𝑛−1
2 ,   𝛼/2

≤ 𝜎 ≤  
(𝑛−1)𝑠 2

𝜒𝑛−1
2 ,   1−

𝛼

2

 = 1 − 𝛼                      (23) 

by taking square roots of the quantities inside the brackets of equation (22). 

The equivalency between the hypothesis test solution and confidence interval solution is as follows (Chou, 

1992): 

If the hypothesized value 𝜎0
2 falls inside the limits of equation (22), the hypothesis H0: 𝜎2 = 𝜎0

2 is not 

rejected. Also, if the hypothesized value 𝜎0 falls inside the limits of equation (23), the hypothesis H0: 𝜎 = 𝜎0 

is not rejected. 

If the hypothesized value 𝜎0
2 falls outside of the limits of equation (22), the hypothesis H0: 𝜎2 = 𝜎0

2 is 

rejected. Also, if the hypothesized value 𝜎0 falls outside the limits of equation (23), the hypothesis H0: 𝜎 =

𝜎0 is rejected. 

For this equivalency to exist, the two tests must be similar; i.e. a two-sided hypothesis test solution must 

be compared only to a two-sided confidence interval solution.  

It is well known that to test the equality of two population variances (i.e. H0: σ1
2 = 𝜎2

2 vs. H1: σ1
2 ≠ 𝜎2

2), 

the following will be used.  

The normal distribution, if 𝑛1 ≥ 30 and 𝑛2 ≥ 30 (and preferably 𝑛1 ≥ 100 and 𝑛2 ≥ 100) by testing 

H0: ∆𝜎2 = 𝜎1
2 − 𝜎2

2 = 0 𝑣𝑠. H1: ∆𝜎2 ≠ 0                        (24) 

whose estimator, 

∆𝑠 2 = 𝑠 1
2 − 𝑠 2

2                                   (25) 

is normally distributed with 

𝐸 ∆𝑠 2 = ∆𝜎2 = 0                                  (26) 

𝜎 ∆𝑠 2 =  
2𝑠 1

4

𝑛1−1
+

2𝑠 2
4

𝑛2−1
                                 (27) 

in which the value of the test statistic 𝑍∗ =
∆𝑠 2−0

𝜎(∆𝑠 2)
 (28) is compared to the RR of ±𝑍𝛼/2 (29). 

For all other values of n1 and n2, H0 and H1 are formulated as: 

H0:
𝜎1

2

𝜎2
2 = 1 𝑣𝑠. H1 : 

𝜎1
2

𝜎2
2 ≠ 1.                               (30) 

The estimator of 
𝜎1

2

𝜎2
2 is 

𝑠 1
2

𝑠 2
2 which is distributed as 𝐹𝑛2−1

𝑛1−1
.  

The test is implemented by comparing the value of the test statistic 

𝐹∗ =
𝑠 1

2

𝑠 2
2                                        (31) 

against the rejection/acceptance regions which are defined by 

𝐹𝑛2−1
𝑛1−1

(
𝛼

2
)                                      (32) 

𝐹𝑛2−1
𝑛1−1

 1 −
𝛼

2
 =

1

𝐹𝑛1−1
𝑛2−1

(
𝛼

2
)
 .                               (33) 
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To test the more general case that the variances of k (k ≥ 3) populations are equal, the Barlett test for 

homogeneity of variance is used and the pairs of hypotheses are tested: H0: 𝜎1
2 = 𝜎2

2 = 𝜎3
2 = ⋯ = 𝜎𝑘

2 𝑣𝑠. H1 

(34), at least two variances differ (Vasilopoulos, 2007). 

To complete testing this pair of hypotheses, the following will be done: obtaining independent samples of 

sizes n1, n2,…, nk from the k populations; calculating the k unbiased sample variances 𝑠 1
2, 𝑠 2

2, 𝑠 3
2, … , 𝑠 𝑘

2, from 

the k independent samples; calculating the Barlett test statistic B from 

B =
  (𝑛 𝑖−1)𝑘

𝑖=1  𝑙𝑛 
 (𝑛𝑖−1)𝑠 𝑖

2𝑘
𝑖=1

 (𝑛𝑖−1)𝑘
𝑖=1

 −   𝑛 𝑖−1 𝑙𝑛𝑠 𝑖
2𝑘

𝑖=1  

1+
1

3(𝑘−1)
  

1

(𝑛𝑖−1)
 −

1

 (𝑛1−1)𝑘
𝑖=1

𝑘
𝑖=1  

                       (35) 

 B =
  𝑛1−1 + 𝑛2−1 + 𝑛3−1 +⋯+(𝑛𝑘−1) 𝑙𝑛 

 𝑛1−1 𝑠 1
2+ 𝑛2−1 𝑠 2

2+⋯+(𝑛𝑘−1)𝑠 𝑘
2

 𝑛1−1 + 𝑛2−1 + 𝑛3−1 +⋯+(𝑛𝑘−1)
 

1+
1

3(𝑘−1)
 

1

𝑛1−1
+

1

𝑛2−1
+⋯+

1

𝑛𝑘−1 
 −

1

 𝑛1−1 + 𝑛2−1 +⋯+(𝑛𝑘−1)
 

 

−
  𝑛1−1 𝑙𝑛𝑠 1

2+ 𝑛2−1 𝑙𝑛𝑠 2
2+ 𝑛3−1 𝑙𝑛𝑠 3

2+⋯+(𝑛𝑘−1)𝑙𝑛𝑠 𝑘
2 

1+
1

3(𝑘−1)
 

1

𝑛1−1
+

1

𝑛2−1
+⋯+

1

𝑛𝑘−1
 −

1

 𝑛1−1 + 𝑛2−1 +⋯+(𝑛𝑘−1)
 
.                     (36) 

The test statistic B under the H0 hypothesis of equal variances has a sampling distribution which is 

Chi-square with DOF = k  1, or B =  𝜒𝑘−1
2 . 

The rejection region, for a given ―α‖ value, consists of the upper tail of the x
2
 distribution (i.e.  𝜒𝑘−1

2 (𝛼)). 

The decision rule is: Do not reject H0 if B ≤  𝜒𝑘−1
2 (𝛼) and reject H0 if B >  𝜒𝑘−1

2 (𝛼). 

Suppose this paper wants to test the equality of the variances of three populations, it means that it wants to 

test the hypotheses H0: 𝜎1
2 = 𝜎2

2 = 𝜎3
2 𝑣𝑠. H1: The three variances are not all equal. 

Assume that random sampling from the three populations produced the results: 

Population 1: 𝑛1 = 16 and 𝑠 1
2 = 10; 

Population 2: 𝑛2 = 21 and 𝑠 2
2 = 7; 

Population 3: 𝑛3 = 26 and 𝑠 3
2 = 4; 

Then is H0 rejected or not rejected, based on this sample information, when α = 0.1, α = 0.05, α = 0.025, α 

= 0.01, α = 0.005. 

The solutions will be got in Table 1. 
 

Table 1 

Partial Calculation of the Barlett Test Statistic B 

Population 𝑛𝑖  𝑛𝑖 − 1 𝑠 𝑖
2 (𝑛𝑖 − 1)𝑠 𝑖

2 𝑙𝑛𝑠 𝑖
2 (𝑛𝑖 − 1)𝑙𝑛𝑠 𝑖

2 

1 16 15 10 150 2.302585 34.538776 

2 21 20 7 140 1.945910 38.918203 

3 26 25 4 100 1.386294 34.657359 

    𝑛𝑖 − 1 = 60

3

𝑖=1

    𝑛𝑖 − 1 𝑠 𝑖
2 = 390

3

𝑖=1

    𝑛𝑖 − 1 𝑙𝑛𝑠 𝑖
2 = 108.114

3

𝑖=1
 

 

 
1

𝑛 𝑖−1
=

1

15
+

1

20
+

1

25
=

20+15+12

300
=

47

300
= 0.156667𝑘

𝑖=1   

              𝑙𝑛  
  𝑛 𝑖−1 𝑠 𝑖

2𝑘
𝑖=1

  𝑛 𝑖−1 𝑘
𝑖=1

 = 𝑙𝑛  
  𝑛 𝑖−1 𝑠 1

23
𝑖=1

  𝑛 𝑖−1 3
𝑖=1

 = 𝑙𝑛  
390

60
 = ln 6.5 = 1.87180.  

Then, substituting the above quantities into equation (35), it can be obtained 
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        B =
60 1.87180 −108.114

1+
1

3 3−1 
 

47

300
−

1

60
 

=
112.308−108.114

1+
1

6
 

47

300
−

5

300
 

=
4.19413

1+
1

6
 

42

300
 

=
4.19413

1+0.02333
=

4.19413

1.02333
= 4.0985  

since, k = 3, 𝜒𝑘−1
2  𝛼 = 𝜒2

2(𝛼) = 4.605, if α = 0.10; 𝜒𝑘−1
2  𝛼  = 5.991 if α = 0.05; 𝜒𝑘−1

2  𝛼  = 7.378 if α = 

0.025; 𝜒𝑘−1
2  𝛼  = 9.210 if α = 0.01; 𝜒𝑘−1

2  𝛼  = 10.597 if α = 0.005. 

Since, B = 4.0985 < 𝜒2
2(𝛼), for all of these alpha values, H0 is not rejected and it concludes that the 

three population variances are equal, or 𝜎1
2 = 𝜎2

2 = 𝜎3
2. 

Some of the Most Important Non-parametric Applications of the Chi-square Distribution 

The most important non-parametric applications of the Chi-Square (x
2
) include the following tests: Tests 

on frequencies, tests on the frequency of two classes, tests on the frequency of more than two classes, tests on 

goodness of fit (Hwang & Wang, 2008), for the uniform distribution, for the normal distribution, tests on 

independence—contingency tables (McHugh, 2013), and tests on homogeneity—are two or more independent 

random samples drawn from the same population? 

This paper proceeds to briefly discuss how each of these tests is implemented, using the Chi-square 

distribution, after some general comments which apply to all of these tests. 

To perform any one of these test, the general procedure below (Canal & Micciolo, 2014) is as follows: 

formulate H0 under which expected (or theoretical) frequencies are determined, analyze sample data to 

establish observed frequencies, and compare the two sets of frequencies by forming corresponding differences. 

Specify, on the basis of these differences, a decision criterion to determine whether the observed 

frequencies differ (or do not differ) significantly from the expected frequencies is given. 

If the differences are small and can be attributed to chance variation in random sampling, H0 is not rejected. 

But if the differences are large and cannot be attributed to chance variation in random sampling, H0 is rejected. 

Let oi represent observed frequencies, ei represent expected frequencies, oi  ei represent the difference 

between corresponding observed and expected frequencies, then 

𝑌 =
(𝑜1−𝑒1)2

𝑒1
+

(𝑜2−𝑒2)2

𝑒2
+ ⋯ +

 𝑜𝑘−𝑒𝑘 
2

𝑒𝑘
=  

(𝑜𝑖−𝑒𝑖)
2

𝑒𝑖
 𝑘

𝑖=1 .                   (37) 

It is a Chi-square variable (𝜒𝛿
2) with degrees of freedom 

δ = k  1  m                                  (38) 

where, k = number of classes, m = number of estimators calculated before expected frequencies are calculated 

(m = 0, 1, 2, …) 

Each of the k theoretical classes must have at least five items in it, for the Chi-square approximation to be 

valid. If one or more classes have expected frequencies of fewer than five items, the classes will need to be 

combined before forming the differences oi  ei, and determine the degrees of freedom δ, after the regrouping 

of classes. When δ = 1, equation (37) is modified by introducing a continuity correction factor of 1/2 in 

computing the value of the variable Y or 

       𝑌 =  𝜒𝓈
2 =   

  𝑜1−𝑒1 −
1

2
 

2

𝑒1
      𝑖𝑓  𝑜𝑖 − 𝑒1 ≥

1

2

                     0   𝑖𝑓  𝑜𝑖 − 𝑒1 <
1

2

𝑘
𝑖=1

                .                   (39) 

They consist of problems, which test the frequencies of two classes (in which the continuity correction 

factor of 1/2 must be used) and tests on the frequencies of more than two classes (in which the continuity 

correction factor of 1/2 is not used). The use of this test will be illustrated using the following example. 
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Three coins are tossed 100 times to determine whether the three coins are fair and the following data were 

obtained by counting the number of times obtained (0, 1, 2, 3 heads, i.e. these are the observed frequencies), as 

shown in Table 2 below. 
 

Table 2 

Observed Frequencies  

X 0 1 2 3 

Oi(X) = n(X) 14 34 36 16 

 

The expected frequencies are obtained by using the binomial law or  

100𝑏  𝑥, 𝑛 = 3, 𝑝 =
1

2
 = 100  

𝑛!

𝑥!𝑛−𝑥)!
P𝑥 1 − 𝑝 𝑛−𝑥                   (40) 

where 𝑏  𝑥, 𝑛 = 3, 𝑝 =
1

2
  is the binomial distribution with n = 3 and p =1/2.  

When n = 3, x = 0, 1, 2, 3, from equation (40), it can be obtained that P(x = 0) = 1/8, P(x= 1) = 3/8, and P(x 

= 2) = 3/8, and P(x = 3) = 1/8, and 100P(x = 0) = 100(1/8) = 12.5, 100P(x = 1) = 100(3/8) = 37.5, 100P( x= 2) = 

100(3/8) = 37.5, 100P(x = 3) = 100(1/8) = 12.5. 
 

Table 3 

Expected Frequencies 

xi 0 1 2 3 

E(xi) 12.5 37.5 37.5 12.5 

 

Therefore, the expected frequencies are as shown in (Table 3). 

Then this paper performs the following test to check the validity of the claim: 

H0: The distribution of heads is the same as that produced by three fair coins. 

H1: The distribution of heads is different from that produced by three fair coins. 

Let the level of significance α = 0.05, define the test statistic Y = 
 

2

4
2 2

3
1

k
i i

i
i

o e
x x

e







  , with k = 4 and 

δ = k  1 = 3 or 

Y = 
       

2
2 2 2

12 2 2 2 3 3 4 41

3

1 2 3 4

+ + +
o e o e o e o e

x x
e e e e



   
   

= 
       

2 2 2 2

14 12.5 34 37.5 36 37.5 16 12.5
+ + +

12.5 37.5 37.5 12.5

   
 

= 0.18+0.32667+0.06+0.98=1.54667. 

The RR must be the upper end of the Chi-square distribution because any departure from the expected 

frequencies will result in an increased value for the Chi-square value. Then the RR is defined by  

2 2

1 3
( ) (0.05) 7.815

k
x x


 

 

Do not reject H0, because 1.54667Y  < 
2

3
(0.05) 7.815x  . Therefore the three coins are fair. 
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On many occasions, it appears that the population under investigation follows a specific probability model, 

such as uniform, normal, exponential, etc.. A statistical procedure exists which can be used to verify the 

validity of such preliminary conclusions, called a ―goodness of fit‖ test and consists of the following steps 

(Carlson & Thorne, 1997). 

(a) formulating the null hypothesis that a given population has a specific probability model (such as: 

uniform, normal, poisson, exponential, etc.); 

(b) obtaining a random sample from the population and analyze it to derive the observed frequencies; 

(c) using the theoretical distribution, specified in H0 to generate expected frequencies, by multiplying the 

probability values for the classes by the sample size; 

(d) after these preliminary steps, the Chi-square test for goodness-of-fit becomes similar to the procedure 

used in the test for frequencies; 

(e) illustrating the use of this test using the following example (Freund & Williams, 1982): 

Supposing a die is tossed 120 times, the following results are obtained, as shown in Table 4 below. 
 

Table 4 

Observed Occurrences 

Number showing 1 2 3 4 5 6 Total 

Observed occurrences 10 19 30 29 21 11 120 

 

Are these results consistent with the hypothesis that the die is fair at α = 0.01? 

Following the general testing procedure, the goodness-of-fit test becomes: 

H0: The number showing is uniformly distributed (or the die is fair); 

H1: The number showing is not uniformly distributed (or the die is not fair). 

Let the level of significance α = 0.01, The test statistic is 𝑌 = 𝜒𝛿=6−1
2 = 𝜒5

2 =  
(𝑜𝑖−𝑒𝑖)

2

𝑒𝑖

6
𝑖=1 . The observed 

data oi comes from the table above, while the expected data comes from the assumed uniform distribution 

which implies that P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6, and the expected number of occurrences for 

each number are equal to 120P(1) = 120P(2) = 120P(3) = 120P(4) = 120P(5) = 120P(6) = 20. 

Then 

             
2 2

2 2 2 2 2
6

12 2 2 3 3 4 4 5 5 6 61

5

1 1 2 3 4 5 6

+ + +

k
ii

i i

o e o e o e o e o e o e o e
Y x

e e e e e e e





      
     

=  

= . 

The rejection region is the upper tail of the Chi-square distribution and is given by: 

2

5
x (0.01)  15.806. 

Reject H0, because Y =18.2 > 
2

5
x  (0.01) = 15.806, and conclude that the die is not fair (or that the 

numbers showing are not uniformly distributed). 

           
20

2011

20

2021

20

2029

20

2030

20

2019

20

2010
222222


















             2.18364
20

1
919101)10(

20

1 222222 
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In the test on frequencies discussed above populations, samples are classified by a single characteristic. 

When populations or samples are classified by two (or more) characteristics, this paper uses ―tests of 

independence‖ to determine whether the characteristics are statistically independent or not. Tests for 

independence are also called ―contingency-table tests‖, and the types of hypotheses being tested here are 

(McClave et al., 2001): 

H0: The two characteristics are independent; 

H1: The two characteristics are dependent. 

In such tests, the observed frequencies may, in general, occupy r rows and c columns, while the smallest 

possible ―contingency table test‖ consists of two rows and two columns. For each observed frequency in an r  

c contingency table, there is a corresponding expected frequency which is defined by the null hypothesis (H0) 

being tested. The total frequencies in each row or column are called ―marginal frequencies‖, while the observed 

and/or expected frequencies of each cell of the contingency table are called ―cell frequencies‖.  

To test the hypotheses above, the following is used 

 
2

2

1

rc
ii

i i

o e
x

e





                                  (41) 

which is the same x
2
 test used in the frequency tests, except that  

δ = degrees of freedom= (r  1)  (c  1)                     (42) 

when r = 2 and c = 2 (smallest possible contingency table), δ = 1, for large samples the continuity correction 

factor can be ignored. However, for small samples, the continuity correction factor of 1/2 should be used in 

equation (39). 

To test the hypothesis that high-income families choose to send their children to private universities and 

low-income families to state universities, 2,000 families were selected at random, nationwide, and the 

following results were obtained, shown in Table 5 below. 
 

Table 5 

Observed Data 

Income level 
University type 

Totals 
Private Public 

Low 632 618 1,250 

High 548 202 750 

Totals 1,180 820 2,000 

 

From this table, it is obvious that a greater proportion of high-income families 548/750 = 0.73 send their 

children to private universities than low-income families 632/1250 = 0.51. To determine whether this 

proportional difference is statistically significant or not, this paper uses the Chi-square test for independence. 

But this paper first constructs a table of expected data based on assumption that income level and type of 

university are independent. Under this assumption expect the proportion of all families that send their children 

to private universities, it will be equal to 1,180/2,000 = 0.59. Then, the expected number of low-income 

families that send their children to private universities is = (1,180/2,000)  1,250 = 738. The other cell values 

could be calculated in a similar manner. But, since the ―marginal frequencies‖ of the observed data are known, 

once one of the cell values has been found, the other cell values can be calculated by inspection. This statement 
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explains why the degrees of freedom = DOF = δ = 1 for a 2  2 contingency table. Then the expected data are 

shown in Table 6 below. 
 

Table 6 

Expected Data 

Income level 
University type 

Totals 
Private Public 

Low 738 512 1,250 

High 442 308 750 

Totals 1,180 820 2,000 

 

The tests of independence proceeds are as follows: 

H0: Income level and university choice are independent; 

H1: Income level and university choice are dependent. 

Level of significance α = 0.05, test statistic, Y, with δ = (r  1)  (c  1) = (2  1)  (2  1) = 1. 

RR is defined by  

𝑌 = 𝜒2∗ =
(632−738)2

738
+

(618−512)2

512
+

(548−442)2

442
+

(202−308)2

308
= 99.072. 

Since x
2

 falls in the rejection region (for all α values shown), H0 is rejected and it concludes that family 

income level and type of university selection are not independent. 

The continuity correction factor (CCF) of 1/2 was not used (in the calculation of x
2

), because the sample 

size is large (see equation 39). 

When it is said that ―things‖ are homogeneous, it means that they have something in common, that they 

are the same, or that they are equal. Here is the question: Are two or more independent random samples drawn 

from the same population or from different populations? Tests on homogeneity can be considered as an 

extension of the Chi-square test for independence. Both of these tests are concerned with the analysis of 

cross-sectional data, and both use the same test statistic 
 

2

2

1

rc
ii

i i

o e
x

e





 . 

But these tests also have their differences, which mainly are due to the types of problems solved in each 

case (Vasilopoulos, 2007). 

In tests of independence, a single sample is obtained from one population and the problem is to determine 

whether two characteristics of the elements of the population, from which the sample came from, are 

independent of each other (Lang & Iannario, 2013). 

In tests of homogeneity, however, two or more independent samples have been obtained and the problem 

is to determine whether these samples come from the same population or from different populations. 

Three random samples of students are taken at a university. The first sample consists of 100 graduate 

students, the second of 100 seniors, and the third of 100 sophomore students. Each group is asked to grade the 

course instruction they are receiving at the university as excellent, good, or average. The following results were 

 

































01.0
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1.0
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024.5

801.3

706.2
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obtained (observed data), as shown in Table 7 below. 
 

Table 7 

Observed Data for Example Above 

Student classification 
Instruction quality 

Excellent Good Average Totals 

Graduate 77 12 11 100 

Senior 73 7 20 100 

Sophomore 85 10 5 100 

Totals 235 29 36 300 

 

The null hypothesis being tested here is: H0: The three samples come from the same population (i.e. the 

three classifications of students are homogeneous in their opinion about quality of instruction). If this 

hypothesis is true, then the best estimates for the proportions specifying. 

―Excellent instruction‖, ―good instruction‖, and ―average instruction‖, respectively, should be 235/300, 

29/300, and 36/300. Therefore, for the 100 graduate students, the expected frequencies for the three categories 

become 235/300 = 78.33, 29/300 = 9.67, and 36/300 = 12 and similarly for the 100 senior and 100 sophomore 

students.  

Therefore, the expected data are shown in Table 8 below. 
 

Table 8 

Expected Data for Example Above 

Student classification 
Instruction quality 

Excellent Good Average Totals 

Graduate 78.33 9.67 12.00 100 

Senior 78.33 9.67 12.00 100 

Sophomore  78.33 9.67 12.00 100 

Totals 234.99 29.01 36.00 300 
 

The test for homogeneity becomes: 

H0: The three samples are drawn from the same population; 

H1: The three samples are drawn from different populations. 

Level of significance α = 0.05, test statistic 

 
2

2 29

2

1 1 1

300=
rc rc

ii i i

i i ii i i

o e o o
x n

e e e


  


                            (43) 

with δ = (r  1)  (c  1) = (3  1)  (3  1) = 4. 

RR is defined by ( )
2 2

4
x x


  (α = 0.05)  9.488. 

Value of test statistic is: 

ϒ = 

2 2 2 2 2 2 2 2 2

2 77 12 11 73 7 20 85 10 5
( ) ( ) ( )
78.33 9.67 120 78.33 9.67 120 78.33 9.67 120

x

          = 311.75 – 300 = 11.75 

Since 𝜒4
2∗ = 11.75 > 𝜒4

2 0.05 = 9.488, H0 is rejected and it concludes that ―different level students‖ 
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have ―different opinions‖ concerning the quality of instruction at the university. 

The definition of 
 

2

2

1

rc
ii

i i

o e
x

e





  can be shown to be equal to 

2

1

rc

i

i i

o
n

e

 . This equivalent formula 

was used in the calculation of x
2

, and it appears to be somewhat easier, because it avoids having to take 

differences between observed and expected frequencies before squaring. 

If the level of significance was changed from α = 0.05 to α = 0.01, then 
2

4
(0.01) 13.277x  , and H0 is not 

rejected and it would conclude that the three samples came from the same population (or that the three 

classifications of students are homogeneous in their opinion about the quality of instruction). 

Conclusions 

The Chi-square (x
2
) distribution is very versatile and has many applications, some of them parametric and 

some of them nonparametric. It is used, as a parametric test, to solve hypothesis test problems and construct 

confidence intervals for the population parameter σ
2
 (and also σ), because the sampling distribution of 𝑠 2, 

which is the estimator if σ
2
 is distributed as a Chi-square variable with n  1 degrees of freedom (𝜒𝑛−1

2 ). But the 

Chi-square (x
2
) distribution can also be used as a non-parametric test (or distribution-free statistic) to perform 

the following tests: tests on frequencies, goodness-of-fit tests, test on independence or contingency-table tests, 

tests on homogeneity (two or more independent random samples drawn from the same population of from 

different populations). 

Most of the parametric tests discussed (test on σ
2
 and σ for example) are well known, but the test on the 

equality of three or more population variances, using the Barlett B statistic, is not. 

This paper has discussed many nonparametric tests in which the parameters of the distribution continue to 

be important, but the nature of the distribution, from which the sample data used in the analysis came, is not 

important and is not needed to perform these tests. This is in contrast to the parametric tests, which depend very 

much on the nature of the population from which the data set came from.  

Some of the non-parametric tests have corresponding parametric tests; but the majority of them do not.  

Examples were included, for all the tests discussed, to make their understanding and applications easier. 

The non-parametric methods can solve the same type of problems that parametric methods can solve  

(but with reduced efficiency) and can also solve additional problems when no parametric methods are  

available. 

The use of a statistic software tool, like minitab, simplifies the application of these tests considerably. 

Unfortunately, not every non-parametric test is supported by minitab, but most parametric tests are. 

Minitab uses the p-value (i.e. observed level of significance), instead of α (the a-priori level of 

significance), to reject or not to reject a hypothesis. 
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