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Two methods for construction of new stochastic processes with discrete time are presented. One of the methods 

employs as the defining tool “triangular (more specifically ‘pseudoaffine’) transformations” which are extended 

from the Euclidean Rn to infinite dimension space. They transform any well-known discrete time stochastic process 

into the constructed one. The other more flexible method is the “method of parameter dependence”, extended to 

infinite dimension. Properties of the obtained stochastic processes (by either method) indicate the possibility to 

apply them for financial analysis, as an alternative for the classical time series models. The advantage of the 

presented models over the existing ones first of all relies on expected better accuracy. This follows from the fact 

that the typically held assumption on Markovianity in the existing models can easily be relaxed. The defined 

processes may incorporate a quite long memory including, among others, the k-Markovian cases for k ≥ 2. 

Regardless the non-Markovianity of the models they still are tractable in an analytical or numerical way. The 

stochastic processes defined in this paper provide more flexible and more general tools than the existing time series 

models for modeling financial problems. Among others, they make it possible to incorporate the influence of 

environmental (explanatory) random variables on the underlying stochastic models’ behavior. These additional 

features turn out to be describable by the method of parameter dependence. Some suggestions for an associated 

preliminary statistical analysis are included. 

Keywords: stochastic dependence, stochastic processes, alternative for time series financial models, parameter 

dependence method of construction, k-Markovianity 

Introduction   
In this work, a pattern for construction of new stochastic models is proposed. The models are a modification 

of the classical time series frameworks for financial analysis (Tsay, 2005). As such they are considered as a 
possible alternative to these known ones. They can be obtained by two different methods. One of the methods 
employs triangular transformations (J. K. Filus, L. Z. Filus, & Arnold, 2010), as the defining tool and may 
therefore be more useful in a further statistical analysis and possible simulation studies. This method is described 
in section two and three. The other, described in section four, relies on application of the “parameter dependence 
method” (J. K. Filus & L. Z. Filus, 2012, 2013), which is more flexible than the first method in the sense that it 
produces more models. The models obtained by either of the two methods are stochastic processes whose terms 
have financial meanings especially the meaning of log returns for a single asset.  

All the stochastic processes obtained by the triangular transformations method may also be obtained by the 
parameter dependence (not conversely), but the possibility of a nice statistical and simulation analysis as 
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provided by the transformations is sometimes lost. This was the reason why both methods were introduced. 
Any of the two is very general. The patterns employed allow the author to define wide classes of conditional 
probability distributions of any term Xt, given realizations X1, …, XT-1 of all past terms X1, …, Xt-1 of the 
defined stochastic processes. Notice that such conditional distributions are very seldom explicitly given in 
efficient forms in the literature. The classical exception lies within the pattern of the multivariate normal case. 
The obtained conditional distributions are then used for further construction of joint probability distributions of 
all the random vectors (X1, …, Xt), t = 2, 3,… if an initial distribution of X1 is given. 

Perhaps the most amazing fact that follows is the easy possibility of defining non-Markovian (as well as 
the Markovian) stochastic processes incorporating long pasts and still analytically tractable. Additionally,  
the method of parameter dependence allows the author to include into the model, typically occurring in 
practice, “state random variables” that describe a “stochastic environment” in which the processes evolve 
over time.  

The generality of these new models (from a financial perspective) inclined the author rather to 
concentrate on the formulation of fundamental ideas as beginning to possibly new theories. Therefore, in order 
to avoid unnecessary dissipation, the number of examples was purposefully limited. Statistical analysis 
problems of the new stochastic models are only mentioned. Also references are limited, somewhat, especially 
because the results presented are possibly at first in a financial setting. However, somewhat similar, from a 
pure mathematical point of view, but generally different results were published in the work by J. K. Filus and 
L. Z. Filus (2008).  

Defining Transformations 
Then the author considers a sequence of log returns Rt of a single asset, t = 0, 1, …, T (Tsay, 2005), as 

given by the following sequence T = 1, 2,… of transformations:  
R0 = V0 

R1 = V1(R0)X1 + B1(R0) 
R2 = V2(R0, R1)X2 + B2(R0, R1) 

.         .          . 

.         .          . 

.         .          . 
RT = VT(R0, R1, …, RT-1)XT + BT (R0, R1, …, RT-1) 

T = 1, 2,…                                   (1) 
where the random variables X1, …, XT are assumed to be independent and identically distributed.  

This is then a general white noise pattern which is a source of randomness for the considered log returns 
R1, …, RT,….  

V0 represents a nonnegative constant initial value, while the functions V1, …, VT are arbitrary positive 
and piecewise continuous with respect to each argument. If the variance of each random variable Xt is 1, then 
V1, …, VT will have the “conditional volatilities” interpretation conditioned on realizations of past returns R0, 
R1,… prior to a given Rt. Also conditioned on the same realizations of the past returns are the conditional 
expectations  

E[Rt | R0, R1, …, Rt-1] = Bt(R0, R1, …, Rt-1) 
where B1, …, BT are arbitrary, piecewise continuous with respect to each argument, functions of realizations of 
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past returns.  

 

Example  
The functions Vt( ) and Bt( ) (t = 1, …, T) may be arbitrary continuous. However, in practical applications 

one could choose, for example, the following simple functions:  
Vt(r0, r1, …, rt-1) = 1 + a0r0

2 + a1r1
2 + … + at-1rt-1

2 
Bt(r0, r1, …, rt-1) = b0r0 + b1r1 + … + bt-1rt-1 

where the coefficients a0, a1, …, at-1 are real nonnegative and b0, b1, …, bt-1 are arbitrary real. These 
coefficients are to be statistically estimated. Also, if appropriate, one can choose as model:  

Vt(r0, r1, …, rt-1) = exp[a0r0
2 + a1r1

2 + … + at-1rt-1
2] 

and 
Bt(r0, r1, …, rt-1) = exp[b0r0 + b1r1 + … + bt-1rt-1] 

with arbitrary real coefficients a0, a1, …, at-1 and b0, b1, …, bt-1 . Other examples of such functions can easily be 
given. 

Returning to the main subject, it is noticed that the sequence of the random vector transformations (X1, …, 
XT)  (R1, …, RT) (T = 1, 2,… ) defined by equation (1), is the pseudoaffine version of sequence of triangular 
transformations RT  RT (Filus et al., 2010). 

Here it is proposed to apply them as a general financial model for values of log returns. This model can be 
seen as a slightly different version of time series and is proposed to be named “triangular model”. It is realized 
that all the transformations (1) are easily invertible and their inverses are given as follows: 

R0 = V0 
X1 = [R1 − B1(R0)] / V1(R0) 

X2 = [R2 − B2(R0, R1)] / V2(R0, R1) 
.           .            . 
.           .            . 
.           .            . 

XT = [RT − BT(R0, R1, …, RT-1)] / VT(R0, R1, …, RT-1) 
T = 1, 2,…                                   (1*) 

For realizations x1, …, xT and r0, r1, …, rT of the underlying random variables, denoted by the 
corresponding capital letters, the jacobians, JT(r1, …, rT) = ∂(x1, …, xT) / ∂(r1, …, rT), have the simple form of 
the inverse of the volatilities’ products  

JT(r0, r1, …, rT-1) = [V1(r0) V2(r0, r1) … VT(r0, r1, …, rT-1)]-1              (2) 
for each T = 1, 2,… 

One can see that if the sequence of probability densities (pdf) of the random vectors (X1, …, XT) is known 
(which is mostly the case), then from equations (1*) and (2) one immediately can derive the corresponding 
sequence of joint pdfs of the random vectors of the returns (R1, …, RT), T = 1, 2,…. 

In such a way, one defines a wide class of stochastic processes {RT}T = 1, 2,… (The Kolmogorov 
consistency theorem easily applies to this case). The author considers these processes as “modified time series” 
processes for log returns R1, R2,…. Clearly, the model given by equation (1) is heteroscedastic as the 
underlying conditional volatilities, Vt(r0, r1, …, rt-1), t = 1, 2,… (conditioned on elementary events R0 = V0 = r0, 
R1 = r1, …, Rt-1 = rt-1), are, in general, distinct. 
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It follows from equation (1) that the introduced model is, in general, not Markovian but still analytically 
tractable.  

Actually, when using model (1), one can incorporate in each conditional pdf gT(rT | r1, …, rT-1), at present 
time T, all the past information on the returns and underlying calculations is still performable. However, this 
computational advantage is overshadowed by limitations of a statistical nature. As T grows, the number of 
parameters to be estimated also grows without bounds, so some restrictions on the past must be provided. For 
that one can apply the notion of k-Markovianity that limits the past to the last k observations (k = 1, 2,… ). The 
case k = 1 means the ordinary Markovianity. The general k-Markovian version of model (1) can be defined as 
the following sequence of transformations: 

R0 = V0 
R1 = V1(R0)X1 + B1(R0) 

R2 = V2(R0, R1)X2 + B2(R0, R1) 
.        .           . 
.        .           . 
.        .           . 

Rj = Vj(R0, R1, …, Rj-1)Xj + Bj(R0, R1, …, Rj-1) if j − 1 ≤ k 
.          .                  . 
.          .                  . 
.          .                  . 

Rt = Vt(Rt-k, …, Rt-1)Xt + Bt(Rt-k, …, Rt-1) if t −1 ≥ k 
.            .               . 
.            .               . 
.            .               . 

RT = VT(RT-k, …, RT-1)XT + BT(RT-k, …, RT-1)                    (3) 
k = 1, 2, …, T = 1, 2, …, k < T 

The k-Markovian conditional pdfs of Rt | R0, R1, …, Rt-1 as derived from equation (3) are given by:  

gt(rt | r1, …, rt-1) if t − 1 ≤ k and gt(rt | rt-k, …, rt-1) if t −1 ≥ k. 

Thus, in this setting, the (conditional) distribution of the present asset log return RT only depends on   
the last k moments (months, years) in the past. The earlier times are considered irrelevant and are    
neglected. Nevertheless, even in the case k = 2 (bi-Markovian), the amount of information incorporated in the 
stochastic model is significantly bigger than that in the Markovian case, so one may expect more accurate 
predictions.  

Examples 
The following examples are based on equations (1) and (3).  

Example 1  
It is assumed that, for each T, the random variables X1, …, XT are independent, each having the standard 

normal N(0, 1) pdf. Using standard calculations based on the knowledge of equations (1*) and (2), one first 
obtains the (unconditional) normal pdf g1(r1) = N[B1(R0), V1(R0)] for R1 and then for each t = 2, 3, …, T, one 
obtains the conditional pdf:  

gt(rt | r1, …, rt-1) = 

[Vt(r0, r1, …, rt-1)√2π ]-1exp [- (1/2) {(rt − BT(r0, r1, …, rt-1)) / Vt(r0, r1, …, rt-1)}2]   (4) 
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It is realized that the latter conditional pdf is normal with respect to the single variable rt. The joint 
probability density gT(r1, …, rT) for each random vector (R1, …, RT), T = 2, 3,… is given by the common 
formula:  

gT(r1, …, rT) = g1(r1) Πt=1
T gt(rt | r1, …, rt-1),                   (5) 

where gt(rt | r1, …, rt-1) is given by equation (4). The so obtained T-dimensional pdf is the FF-normal (former 
name “pseudonormal”) (Kotz, Balakrishnan, & Johnson, 2000).  

Example 2  
Considering the following “pseudolinear” part of the pseudoaffine transformation (1) which one obtains 

by setting in equation (1) all the “pseudotranslation” coefficients Bt(R0, R1, …, Rt-1) to zero, one then has the 
pseudolinear transformations:  

R0 = V0 
R1 = V1(R0)X1 

R2 = V2(R0, R1)X2 
.      .     . 
.      .     . 
.      .     . 

RT = VT(R0, R1, …, RT-1)XT                              (6) 
T = 1, 2,…  

It is investigated how the transformations (6) act on set of independent Pareto distributed random variables 
Xt(t = 1, 2, …, T; T = 1, 2,… ) so, in this case, the expected values of Xt’ s are positive. Recall that the Pareto 
density is given by  

ft(xt) = 1 / β (1 + xt / βγ )1+γ                          (7) 
where β and γ are positive real parameters. Using equation (6), for every t = 1, …, T, expresses xt as xt = rt / 
Vt-1(r0, r1, …, rt-1) (assuming Vt-1(r0, r1, …, rt-1) ≠ 0). 

Also it is realized that the jacobian of inverse to equation (6) equals to the inverse product: 
JT(r0, r1, …, rT-1) = [V1(r0) V2(r0, r1) … VT(r0, r1, …, rT-1)]-1 

As the next step, one obtains (for each t = 1, 2, …, T) the conditional pdfs gt(rt | r0, r1, …, rt-1)  
of each rv Rt, given the past realizations r0, r1, …, rt-1 of the rvs R0, R1, …, Rt-1, as follows:  

gt(rt | r0, r1, …, rt-1) = f(xt) | ∂xt / ∂rt | = f(rt / Vt-1(r1, r2, …, rt-1)) | Vt-1(r1, r2, …, rt-1) |-1 
= 1 / { β | Vt-1(r1, r2, …, rt-1)| [1 + rt / β | Vt-1(r1, r2, …, rt-1) | γ ] 1+γ}          (8) 

So, the effect of each t-th line in transformation (6) on the rv Xt is to change its Pareto density (7) for the 
(conditional) Pareto density (8) of Rt. The two Pareto densities (7) and (8) only differ by the scale parameters, 
namely: β in (7) was transformed into the product β | Vt-1(r1, r2, …, rt-1) | in equation (8).  

Given the conditional densities (8), one obtains the joint density of each random vector (R0, R1, …, RT), T 
= 1, 2,… using formula (5). In such a way, the “Pareto stochastic process” {RT}T = 1, 2,… is well defined.  

Example 3 
In the same way as for the independently Pareto distributed random variables X1, …, XT (T = 1, 2,… ), one 

can apply transformation (6) to any sequence of independent identically, and exponentially distributed random 
variables that will be denoted by the same symbols Xt’s. If, for any t = 1, 2, …, gt(xt) is the exponential density 
of Xt given by the expression (1/θ) exp[-xt / θ] then it can easily be verified that the corresponding conditional 
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density of Rt | R0, R1, …, Rt-1 will be given as follows: 
ht(rt | r0, r1, …, rt-1) = (1 / θ | Vt-1(r0, r1, …, rt-1) |)exp[- rt / θ | Vt-1(r0, r1, …, rt-1) |] 

It is then clear that as in Example 2, the parameter θ is multiplied by the “coefficient” | Vt-1(r0, r1, …, rt-1) |.  
The same actually will happen with the parameter σ in Example 1, if one would assume that all the 

random variables Xt in (1) are normal N(0, σ). Also in this case, the parameter σ will be turned to the 
conditional volatility of Rt:  

σ | Vt-1(r0, r1, …, rt-1) |  
This regularity for the parameter transformations will be applied in the next section.  

Parameters Dependence Models 
In all three examples in the previous section, transformation (1) or (6) was used in order to obtain the 

conditional densities, say, φt(rt | r0, r1, …, rt-1) describing the stochastic dependence of the return Rt on the past.  
It is realized that in this derivation, the underlying operations only result in changing the value of a 

parameter of the given density of Xt, into other value that depends on the past return values r0, r1, …, rt-1. This 
observation opens the way for the method of conditioning (on values r0, r1, …, rt-1), which is significantly more 
efficient than the method of triangular transformations (1) or (6). This method, called the “parameter 
dependence”, is presented in J. K. Filus and L. Z. Filus (2012, 2013). In the considered framework, one can 
describe this method as follows. 

It is supposed that there is given a sequence of independent random variables (now, instead of Xt, denoted 
by Rf t t = 1, 2,…) all having the same arbitrary probability density ft(rt ; α), α ∈ A. In this situation, any past in 
this artificial “no memory process” has no influence on the current density ft(rt ; α) of Rf t. The density depends 
on a constant (original) scalar or vector parameter α. Instead of applying transformation (1) or (6) to the 
random vectors (Rf1, …, RfT), one can “directly transform” each density ft(rt ; α) into a conditional density φt(rt | 
r0, r1, …, rt-1) of Rt | r0, r1, …, rt-1 just by setting the parameter α of ft(rt ; α) to “become” a function of the 
values r0, r1, …, rt-1. In such a way, one defines the sequence of conditional pdfs by the formula:  

φt(rt | r0, r1, …, rt-1) = ft(rt ; αt(r0, r1, …, rt-1)), t = 1, 2,…             (9) 
which, for an arbitrary function αt(r0, r1, …, rt-1), defines a legitimate density with respect to rt if all the values 
αt(r0, r1, …, rt-1) still belong to the set A of the parameters α of ft(rt ; α).  

Each sequence of the so obtained conditional densities {φt(rt | r0, r1, …, rt-1)}t = 1, 2,… defines a 
corresponding stochastic process {Rt} t = 1, 2,…  

The parameter dependence method allows for relatively free choice for the functions αt(r0, r1, …, rt-1) and 
therefore the class of the so obtained stochastic processes is much wider than that obtained by the triangular 
transformation from the same sequence of independent random variables Xt or Rft. On the other hand, the factor 
that, in applications, often may limit the range of choices of the functions αt(r0, r1, …, rt-1) is reality.  

Every “educative guess” for such a function must be statistically verified. So, first of all, the chosen 
function itself usually has its own parameters (parametric approach) that must be estimated by any statistical 
method such as, the maximum likelihood method. Then the properly arranged parametric hypothesis should be 
verified. Finally, the choice of the best fitting to data function αt(r0, r1, …, rt-1) should be based on statistical 
methods as to be the best one from several candidates (the choices made in the beginning). This then should be 
declared as the final model.  

It is common that the general stochastic model for log returns of a given single asset from a portfolio is a 
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joint probability distribution (Tsay, 2005). 
P(R1 < r1, …, RT < rT | Y1, …, Yk) = GT(r1, …, rT; Y1, …, Yk) 

= G1(r1; Y1, …, Yk) Πt=2
T Gt(rt | r1, …, rt-1 ; Y1, …, Yk)              (10) 

where G1(r1; Y1, …, Yk) is the cdf of the random variable R1 and, for t = 2, 3, …, T, Gt(rt | r1, …, rt-1; Y1, …, Yk) 
is the conditional distribution function of Rt, given realizations r1, …, rt-1 of the random variables R1, …, Rt-1.  

However, the above joint and conditional distributions also depend on the state random variables Y1, …, Yk 
that summarize the “environment” in which asset return is determined (Tsay, 2005, p. 13). 

One can apply the parameter dependence method to define the conditional distribution functions  
P(R1 < r1, …, RT < rT | y1, …, yk) 

where:  
y1, …, yk are (measured) realizations of the states Y1, …, Yk. 

For that it is enough to set parameter αt(r0, r1, …, rt-1) (which already determines the conditional 
distribution Gt(rt | r1, …, rt-1 )) to be additionally dependent on the values y1, …, yk. Thus, for a given t, the 
conditional distribution of Rt | r1, …, rt-1; y1, …, yk will be determined by a parameter(s) αt of Rt’s distribution 
as follows: 

Gt(rt | r1, …, rt-1 ; y1, …, yk ) = Gt(rt ; αt (r1, …, rt-1 ; y1, …, yk ))         (11) 
If the values (realizations) y1, …, yk are measured then the joint distribution (10) is already determined. If 

not, one needs to have joint probability density f(y1, …, yk) of the random vector (Y1, …, Yk). It seems that often 
one may assume stochastic independence of the components Y1, …, Yk of this vector.  

Finally, as typically, it may be needed to multiply the resulting GT’s distribution (10) conditioned on y1, …, 
yk by the density f(y1, …, yk). As an example of the parameter function αt (r1, …, rt-1; y1, …, yk ), one may 
consider the following: 

αt (r1, …, rt-1; y1, …, yk ) = α (1 + a1r1
2 + … + at-1rt-1

2)exp[b1y1 + … + bkyk] 
where α is the constant original parameter of the density ft(rt ; α) of the random variable Rf t.  

{Rf t}t = 1, 2,… is the original stochastic process with the independent terms. Furthermore, a1, …, at-1 and 
b1, …, bk are real coefficients. Obviously, when all the coefficients b1, …, bk are small enough then the impact 
of the states y1, …, yk on the parameter (so on the conditional distribution) is insignificant.  

According to the knowledge, the above application of the parameter dependence method to incorporate the 
random states Y1, …, Yk impact on the returns’ distributions is not yet present in literature.  

Final Remark 
The core achievement when employing either of the two methods, is opening the way for easy 

constructions of the conditional probability distributions of Xt | X1, …, Xt-1 , given in compact analytical forms 
ready for the calculations. Underlying calculations can be analytical or, if necessary, relatively simple 
numerical. Having the conditional distribution functions (11) in analytical forms allows for extending many 
classical regression models, usually being in the form of conditional expectation, say,  

E[Rt | r1, …, rt-1 ; y1, …, yk] 
by replacing them with the full probability distribution (11).  

It is noticed that the latter regression is the expected value of (11), so it is only part of the wider model 
considered here. In what is called “enforced regression” (J. K. Filus & L. Z. Filus, 2014), the numerical 
characteristics like conditional expectations or covariance coefficients can be replaced by richer functional 
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characteristics such as the conditional distributions or joint probability distributions respectively. This idea is, 
apparently, different from that (nonparametric) considered by Koenker and Bassett (1978), and followers, for a 
wider discussion of this subject (J. K. Filus & L. Z. Filus, 2014).  
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