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Abstract: Large thin walled cylindrical above ground tanks have become more susceptible to failure by buckling during earthquakes. 
In this study, three different geometries of tanks with H/D (height to diameter) ratios of 2.0, 0.56, 1.0, and D/t (depth to thickness) 
ratios of 960.0, 1,706.67 and 640.0 respectively were analyzed for stability when subjected to the El Centro earthquake at the base. The 
Budiansky and Roth procedure was used to find the buckling loads when the tanks were empty and when they were filled with liquid up 
to 90% of their depth. Also, nonlinear time history analysis using ANSYS finite element computer program was performed. Analysis 
results show that the dynamic buckling occurs for empty tanks at very high PGA (peak ground accelerations) which are unrealistic even 
for major earthquakes. Furthermore, when the tanks filled with water up to 90% of its height, analysis results show that when the H/D 
ratio reduced by two times (i.e., from 2 to 1), the PGA for the buckling increased by six times (increase from 0.25g to 1.5g). Hence, H/D 
ratio plays an important role in the earthquake stability design of over ground steel tanks. 
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1. Introduction 

The above ground storage tanks are designed as flat 

bottom cylindrical vessels with different kinds of roofs. 

These cylindrical tanks are used to store petroleum 

products, water, oil, chemicals and so on. The storage 

tank can leak and contaminate soil and drinking water 

supplies. Any spill can pose a serious threat to the 

human health and environment, resulting in substantial 

cleanup costs. The proper design and detailing of 

storage tanks is very important from the potential 

environmental and safety considerations. Large thin 

walled cylindrical shells used as tanks have become 

more susceptible to failure by buckling, because the 

thickness of the shells has reduced due to the 

availability of high strength materials. 

Buckling occurs when a structure under compressive 

loading undergoes a change in geometry which leads to 

its ability to resist loads while finding new equilibrium 
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configurations. Lots of previous research was 

conducted in the area of static buckling [1-3]. In recent 

years, cylindrical shell buckling under seismic loading 

has been a subject of great interest because damage in 

the above ground storage tanks have occurred due to 

major earthquakes as shown in Fig. 1. 

Cooper and Wachholz [4] reported damage of 

petroleum steel tanks due to the earthquakes of Long 

Beach (1933), Alaska (1964), San Fernando (1971), 

Imperial Valley (1979), Loma Prieta (1989), Landers 

(1992), Northridge (1994), and Kobe (1995). Veletsos 

and Yang [5], Haroun and Housner [6] studied the 

effect of hydrodynamic fluid structure interaction on 

the seismic response. Other investigators have 

conducted investigations into the response of ground 

supported isolated tanks and showed that the isolated 

structure exhibited reduced hydrodynamic pressures 

[7-10].  

Dynamic buckling of the above ground steel storage 

tanks with conical roofs was investigated by the finite 

element models having height to diameter ratios of  

0.40, 0.63 and 0.95 and liquid level at 90% of the height 
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shown in Fig. 2. 

One half of the tank was modeled due to symmetry. 

The first buckling mode shape of cylindrical tank 

model A is  shown in Fig. 3.  The eigenvalue  buckling 
 

 
Fig. 2  Shear loads on the cylindrical tank Model A in the 
finite element analysis.  
 

 
Fig. 3  First buckling mode shape of the cylindrical tank 
Model A.  
 

 
Fig. 4  Load deflection curve for Model A tank.  

analysis gives an approximate value of the static 

buckling load that is more than the actual value. This 

analysis was used to give an idea of the shear buckling 

load and the node where the maximum deflection 

occurs to help in the nonlinear static analysis. The load 

multiplier of 1,646 lbs. (7,321 N) was found. Hence, 

the buckling load is 1,632 × 96 = 156,672 lbs. (7,321 × 

96 = 702,816 N) because there are 48 × 2 = 96 nodes on 

the top perimeter of the tank. 

3.3 Nonlinear Static Buckling Analysis 

Large deflection analysis was performed on the 

empty tank and the arc length method was used to find 

the buckling load. The load deflection graph was 

plotted as shown in Fig. 4. The buckling occurred when 

the horizontal force of 816 lbs. was applied at each 

node at the top perimeter except at the end nodes where 

half the force was applied because of symmetry. The 

total buckling load is 816 × 96 = 78,336 lbs. (3,672 × 

96 = 352,512 N).  

4. Dynamic Analysis 

4.1 Modal Analysis 

Modal analysis was performed for each cylindrical 

model tank. It determines vibration characteristics 

(natural frequencies and mode shapes) of each model. 

The natural frequencies and mode shapes are important 

parameters in the design of a structure for dynamic 

loading conditions. The equation of motion for an 

undamped system vibrating freely is given by: 

 Mu Ku 0              (2) 

where, M = structural mass matrix, K = structural 

stiffness matrix, ሷ࢛  = nodal acceleration vector, and u 

= nodal displacement vector. For a linear system, free 

vibration will be of the harmonic form expressed as: 

࢛ ൌ  (3)                            ݐcos߱௜࢏ࣘ

where, Ԅi = eigenvector representing the mode shape of 

the ith natural frequency, ωi = ith natural circular 

frequency in radians per unit time, t = time in s. 

Substitution of Eq. (3) in Eq. (2) gives: 

ሺെࡹ ൅ ࢏ሻࣘࡷ ൌ 0          (4) 
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equilibrium equations that also take into account inertia 

ሺࡹ ሷ࢛ ሻ and damping force ሺ࡯ ሶ࢛ ሻ. The ANSYS program 

uses the Newmark time integration method to solve  

Eq. (6) at a discrete time point. The Newmark method 

uses finite difference expansions in the time interval Δt, 

in which it is assumed that: 

ା૚ሶ࢔࢛ ൌ ሶ࢔࢛ ൅ ሾሺ1 െ ሷ࢔ሻ࢛ߜ ൅ ା૚ሷ࢔࢛ߜ ሿ∆(7)    ݐ 

ା૚࢔࢛ ൌ ࢔࢛ ൅ ሶ࢔࢛ ቂቀ+ݐ∆
ଵ

ଶ
െ ቁߙ ሷ࢔࢛ ൅ ା૚ሷ࢔࢛ߙ ቃ  ଶ (8)ݐ∆

where, α, δ are the Newmark integration parameters; 

ሶ࢔࢛ ,࢔࢛  , and ࢛࢔ሷ  are the nodal displacement, velocity, 

and acceleration respectively at time tn. Similarly, 

ା૚࢔࢛ ା૚ሶ࢔࢛ , , and ࢛࢔ା૚ሷ  are the nodal displacement, 

velocity, and acceleration at the time tn+1; Δt = tn+1 − tn. 
The governing Eq. (6) is written at time tn+1 to calculate 

 :ା૚ as follows࢔࢛

ା૚ሷ࢔࢛ࡹ ൅ ା૚ሶ࢔࢛࡯ ൅ ା૚࢔࢛ࡷ  ൌ  ሺ࢚ሻ        (9)ࡲ

The quantity ࢛࢔ା૚  is calculated by rearranging  

Eqs. (7) and (8) as follows: 

ା૚ሷ࢔࢛ ൌ ܽ଴ሺ࢛࢔ା૚ െ ሻ࢔࢛ െ ܽଶ࢛࢔ሶ െ ܽଷ࢛࢔ሷ     (10) 

ା૚ሶ࢔࢛ ൌ ሶ࢔࢛ ൅ ܽ଺࢛࢔ሷ ൅ ܽ଻࢛࢔ା૚ሷ       (11) 

where, ܽ଴ ൌ
ଵ

ఈ∆௧మ ,  ܽଶ ൌ
ଵ

ఈ∆௧
,  ܽଷ ൌ

ଵ

ଶఈ
െ 1 , ܽ଺ ൌ

ሺ1ݐ∆ െ ሻ, and ܽ଻ߜ ൌ  .ݐ∆ߜ
ା૚ሷ࢔࢛  in Eq. (10) can be substituted in Eq. (11), and 

the equations for ࢛࢔ା૚ሷ  and ࢛࢔ା૚ሶ  are thus expressed 

in terms of unknown ࢛࢔ା૚  and the known 

displacements ࢛࢔ , velocities ࢛࢔ሶ , and accelerations 

ሷ࢔࢛  at the time tn. The equations for ࢛࢔ା૚ሷ  and ࢛࢔ା૚ሶ  

are then substituted in Eq. (9) to get: 

ሺܽ଴ࡹ ൅ ܽଵ࡯ ൅ ା૚࢔ሻ࢛ࡷ ൌ ሺ࢚ሻࡲ ൅ ࢔࢛ ሺܽ଴ࡹ ൅

ܽଶ࢛࢔ሶ ൅ ܽଷ࢛࢔ሷ ሻ ൅ ࢔ሺܽଵ࢛࡯ ൅ ܽସ࢛࢔ሶ ൅ ܽହ࢛࢔ሷ ሻ            (12) 

where,  ܽଵ ൌ
ఋ

ఈ∆௧
,  ܽସ ൌ

ఋ

ఈ
െ 1, and ܽହ ൌ

∆௧

ଶ
ቀ

ఋ

ఈ
െ 2ቁ. 

The displacements ࢛࢔ା૚  are obtained from Eq. 

(12). Eqs. (10) and (11) are used to update the 

velocities and accelerations. The Newmark parameters 

are related to the input as follows: 

ߙ ൌ
ଵ

ସ
ሺ1 ൅ ߜ ሻଶ, andߛ ൌ

ଵ

ଶ
൅  (13)            ߛ

where, γ is the amplitude decay factor. The solutions of 

Eq. (9) are stable if γ ൒ 0 [14]. The default value of γ is 

0.005. 

The analysis was performed for the empty tank 

models and for the tanks when they were filled with 

water up to 90% depth. The cylindrical shell was 

formed by using ANSYS Shell Element 181, whereas 

the fluid content in the tanks was modeled with 

ANSYS Fluid 80 elements to simulate water. The Fluid 

80 element input data include eight nodes and the 

isotropic material properties. The bulk modulus of 

water is taken as 300,000 psi (2,068.5 MPa), and the 

viscosity property of water to compute the damping 

matrix is taken as 1.639 × 10-7 lbf.-sec./in.2 (1.13 × 10-9 

N-sec./mm2). Dynamic buckling analysis of the 

tank-fluid system was modeled with geometric and 

material nonlinearities. Large deformation and 

elasto-platic properties, and stress-strain properties 

were assumed for the cylindrical shell. Plasticity was 

included using bilinear isotropic hardening with yield 

stress of 50 psi (345MPa) and a tangent modulus of 2 × 

106 psi (13,790 MPa). The earthquake force was input 

to the base of the tanks as time-history acceleration 

corresponding to the El Centro earthquake [15] shown 

in Fig. 7. The north-south component having the 

maximum ground acceleration (PGA) of 0.319g was 

used. The first 7.04 s of the earthquake record was used 

because the maximum amplitudes of the earthquake 

occurred before that period. 

For determining the dynamic buckling load, a 

qualitative but fairly well defined criterion [16] was 

used. This criterion is based on computing the 

time-dependent responses for gradually rising load 

amplitudes (rising PGA for a particular earthquake in 

the case of earthquakes). When the response, measured 

at the control point, shows a steep rise in the maximum 

amplitude for a small change in the load amplitude 

(PGA for earthquake), it is assumed that the buckling 

load has reached. It was found that, for empty tanks, the 

critical PGA was unrealistically high. The Models A, B, 

and C buckled at PGA values of 21g, 28g, and 90g, 

respectively. This means that the empty tanks will not 

buckle under the influence of any possible real world 

earthquake. 
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The critical PGA for the Model C tank is 1.5g shown 

in Fig. 12. The study supports the previous findings [17] 

that for tanks the critical PGA decreases with decrease 

in natural frequencies. 

5. Conclusions 

For static buckling analysis, the theoretical results 

compared well with the numerical analysis by the finite 

element method. Hence the finite element modeling 

can be used to study the stability of cylindrical shells 

under seismic loading. 

It is interesting to note that static buckling occurs 

when the tanks are empty whereas dynamic instability 

occurs in tanks when they have liquid stored in them 

because of added mass. Finite element analysis results 

show that the dynamic buckling occurs for empty tanks 

at very high PGA which are unrealistic even for major 

earthquakes. 

Nonlinear time history analysis results of three 

cylindrical tanks with different dimensions show that: 

Model A (H/D = 2.0 and D/t = 960.0) had buckling at 

PGA of 0.25g; the Model B (H/D = 0.56 and D/t = 

1760.67) had the buckling at PGA of 0.39g; and Model 

C (H/D = 1.0 and D/t = 640.0) buckled at the PGA of 

1.50g. It means that when the H/D ratio reduced by two 

times (i.e., from 2 to 1), the PGA for the buckling 

increased by six times (increase from 0.25g to 1.5g). 

Hence H/D ratio plays an important role in the 

earthquake stability design of over ground steel tanks. 
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