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Abstract: This paper deals with the application of data mining techniques to the conceptual design knowledge for a LV (launch 
vehicle) with a HRE (hybrid rocket engine). This LV is a concept of the space transportation, which can deliver micro-satellite to the 
SSO (sun-synchronous orbit). To design the higher performance LV with HRE, the optimum size of each component, such as an 
oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle, should be 
acquired. The Kriging based ANOVA (analysis of variance) and SOM (self-organizing map) are employed as data mining techniques 
for knowledge discovery. In this study, the paraffin (FT-0070) is used as a propellant of HRE. Then, the relationship among LV 
performances and design variables are investigated through the analysis and the visualization. To calculate the engine performance, 
the regression rate is computed based on an empirical expression. The design knowledge is extracted for the design knowledge of the 
multi-stage LV with HRE by analysis using ANOVA and SOM. As a result, the useful design knowledge on the present design 
problem is obtained to design HRE for space transportation. 
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1. Introduction 

The kind of rocket presently used for space 

transportation is either a solid rocket or liquid rocket 

(Fig. 1). The HRE (hybrid rocket engine) is a different 

type of rocket that uses a liquid oxidizer and a solid 

fuel. This rocket has advantages of being high safe, 

low cost and environment-friendly. Therefore, there 

are expectations for the HRE as a safe and green 

means of propulsion for future space transport. The 

HRE was successfully put to practical use for 

Space-Ship One [1], which completed the first private 

manned space flight. 

On the other hand, the most serious problem of the 
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HRE as a form of space transportation is the low fuel 

regression rate which is the melting rate of the solid 

fuel. Due to the low regression rate, if the engine 

design is not appropriate, the thrust of the HRE will be 

insufficient compared with that of the solid rocket and 

liquid rocket engines. The thrust of the HRE is 

affected by the mass flow of the vaporized fuel. The 

mass flow of vaporized fuel is decided by the oxidizer 

mass flow, the fuel grain length and the inner radius of 

the fuel grain port. If these parameters are combined 

optimally, the thrust will be sufficient. Since these 

parameters also decide the engine geometry, the 

weight and trajectory are also affected. As a result, 

knowledge discovery techniques are desirable for a 

multi-disciplinary design of an HRE for a LV (launch 

vehicle). 

A previous study [2] developed a MDO 
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can achieve a higher regression rate [7], is assumed. 

For this purpose, the empirical multiplication with the 

coefficient of Eq. (2) is carried out. 

   
 

0.3905
_ _ _

-3
_ 0.1561 10

port m m oxi m

m

r t a G t
a 

 
 

&

 

        (3) 

In this study, this coefficient, a_m, is a part of the 

design variables that determine the strength of the 

oxidizer swirl. The range of α used to decide the 

design range of a_m is from 4 to 10. The estimation 

methods for the engine size and performance are 

presented in the following sections. 

2.1 Grain Configuration 

The combustion chamber considered in this study 

contains solid fuel with a single port to supply the 

oxidizer. rport_m(0) and Lfuel_m are calculated for each 

stage as follows:  

   
 

_
_

_

0
0

0
oxi m

port m
oxi m

m
r

G




&            (4) 

 
   

_
_

_ _

0

2 0 0
fuel m

fuel m
port m port m fuel

m
L

r r 


  

&

&
     (5) 

Here,  0_ mfuelm  is obtained from the definition of 

O/F (      tmtmtFO fueloxi  / ), 

   
 0

0
0

_

_
_

m

moxi
mfuel FO

m
m


             (6) 

 0_ moxim , Goxi_m(0), and O/F_m(0) are part of the 

design parameters listed in the developed evaluation 

module. 

2.2 O/F and Chamber Pressure Evaluation 

O/F at time t is calculated as the absolute value of 

 sir n  can be written as:  

   
 tm

tm
tFO

mfuel

moxi
m

_

_
_ 


             (7) 

 tm mfuel _  is estimated based on  tr mport _  obtained 

from Eq.(3) as follows: 

     _ _ _ _2fuel m port m fuel m fuel port mm t r t L r t & &  (8) 

Pch_m at time t is calculated as:  

   
mthr

mprop
mch A

Ctm
tP

_

_
_

*



           (9) 

Here,  tm mprop _  is obtained by adding  tm moxi _  

and  tm mfuel _ . C*(t) is obtained from O/F_m(t-Δt), 

P_m(t-Δt) and ε_m using the NASA-CEA (National 

Aeronautics and Space Administration-Chemical 

Equilibrium with Applications) program [8]. 

2.3 Weight Estimation 

In this study, LOX is employed as an oxidizer and 

WAX (FT-0070) is used as the fuel. The required 

oxidizer mass, Moxi_m, and fuel mass, Mfurl_m, are 

calculated for each stage as follows: 

 _

_ _0
d

mtc

oxi m oxi mM m t t             (10) 

 _

_ _0
d

mtc

fuel m fuel mM m t t           (11) 

Here, tc_m is one of the design parameters. Helium 

gas is used as the pressurizing gas. The mass of the 

pressurizing gas required is obtained by solving the 

state equation as follows: 

RTiMVolP mHemprempt ___ )0(         (12) 

Assuming that Ppt_m is equal to Pot_m when the 

supply of helium gas is stopped, the state equation can 

be expressed as follows: 

  RTfMVolVoltcP mHemresmpremmot _____ )(   (13) 

Eliminating Volot from Eqs. (12) and (13), MHe_m 

can be calculated. The temperature of helium after 

combustion, i.e., Tf, is calculated as: 


 1

_

_

)0(

)(














mpt

mot

P

tcP
TiTf          (14) 

The initial helium temperature Ti is 273 K, and its κ 

is 1.66. In this study, Ppt_m(0) is one of the design 

variables. 

The structure of the engine is assumed to be the 

same as that of the solid rocket M-V [9]. In this study, 

the combustion chamber and the pressurizing tank are 
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assumed to be made of CFRP (carbon-fiber-reinforced 

plastic) to reduce the structural weight. The 

thicknesses of the shells used for the chamber and the 

tank are calculated by assuming that σch and sf values 

for these tanks are 2.4 GPa and 1.5 GPa [2], 

respectively. Mch_m and Mpt_m are calculated using: 

4

__
_ 103.17 

 mchmch
mch

VolP
M            (15) 

4

__
_ 103.17 

 mptmpt
mpt

VolP
M          (16) 

Here, the denominator on the right-hand side is the 

measure of the structural performance. In this study, 

the same values as those used in Ref. [9] have been 

used in Eqs. (15) and (16). The oxidizer tank is 

assumed to be made of CFRP with an aluminum liner, 

which can prevent microcracks at extremely low 

temperatures. This tank has a 0.05 m thick 

heat-insulating material. The thickness of the shell 

used for the tank is calculated by assuming that σot and 

sf are set to 2.4 GPa and 1.5 GPa [2], respectively. 

The LOX tank used in this study is assumed to have a 

structure similar to the conventional the liquid helium 

(LHe2) tank. In this study, Pot_m(0) is twice of Pch_m. 

Mot_m is calculated as follows: 

4

__

4

__
_

104.4

)0(2
104.4

)0(







motmch

motmot
mot
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         (17) 

Here, Pot_m (0) and Ppt_m(0) are design variables. In 

this study, the length (Lch_m, Lpt_m and Lot_m), diameters, 

and volumes (Volch_m, Volpt_m and Volot_m) of the 

chamber and tanks of the designed engine are 

determined using the same calculation procedure as 

that used in Ref. [2]. 

An empirical equation [10] as expressed by Eq. (18), 

is used to calculate Mnoz_m: 

2 1

3 4
_ _

_ 125.0
5,400.0 10.0

prop m m
noz m

M
M

   
    
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(18)

 

Here, Mprop_m is obtained by adding Moxi_m and 

Mfuel_m. ε_m is one of the design parameters.  

Using an empirical equation [10], the mass of other 

equipment (an injector, an igniter, ducts and control 

devices) is found to be approximately 30% of the total 

structural mass of the engine Mtot_m. Therefore, the 

total mass of the m-th stage is expressed by Eq. (19) 

as: 

 mnozmptmotmch

mHempropmpaymtot

MMMM

MMMM

____

____

3.1 


 (19) 

The rocket length Ltot_m is calculated by taking the 

sum total of Lch_m, Lpt_m, Lot_m and Lnoz_m. In order to 

load the payload on the 3rd stage, Ltot_3 is multiplied 

by the coefficient 1.5. 

2.4 Trajectory Estimation 

This study assumes the rocket to be a mass point 

from the time of launch to the target orbit. Its 

equations of motion are expressed as: 

d
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Th_m is calculated as: 

  meamemmpropCCFm APPuemTh ____*_    (26) 

In this study, ηCF is assumed to be 0.98 and ηC* is 

assumed to be 0.95 in magnitude [9, 10]. ue_m and Pe_m 

can be obtained from O/F_m(t), Pch_m(t) and ε_m using 

NASA-CEA program. 

The drag estimation is based on the flight data of 

JAXA’s solid rocket S-520 [11]. Fig. 4 shows the 
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for a rocket to deliver a heavier payload. Fig. 9c 

shows maps colored with design variables. Here, dv1, 

dv5, Pch_1(0) (dv6), dv9, Pch_3(0) (dv14), and dv17 

were selected according to the ANOVA results (Fig. 

7) and correlation among attribute values (Fig. 8a) 

According to Figs. 9b and 9c, dv5, dv6 and dv14 

should be smaller, and dv9 and dv17 should be larger. 

Remarkably, dv1 did not need to be maximized for the 

design of an efficient LV (i.e., high Mpay/Mtot). Because 

an excessively large or small dv1 does not allow for a 

high Mpay/Mtot, it should be carefully determined. 

6. Conclusions 

In this study, knowledge discovery techniques were 

used to discover the design knowledge for an LV with 

an HRE that delivers micro-satellites to an SSO. The 

launch vehicle performances (the flight, the weight 

and the propulsion) were evaluated based on empirical 

model. The evaluated functions were to the total mass 

of the rocket, the maximum payload mass and to 

maximize the ratio of the payload mass to the total 

mass in terms of the cost. The results were visualized 

by ANOVA and SOM. ANOVA result showed that 

the oxidizer mass flow of every stage is very 

important. The oxidizer mass flow at the 1st stage has 

predominant effect to the vehicle total mass. On the 

other hand, the oxidizer mass flow at the 2nd and 3rd 

stages effective to the payload and total mass ratio. 

SOM result suggested that a tradeoff between 

Mpay/Mtot, and Mtot. In addition, the relationship among 

design variables and evaluated performances could be 

visualized. 
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