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Abstract: The basic properties and some examples of the differential groupoids are studied.

Key words: Differential space, groupoid.

1. Introduction

In 1981 the notion of differential group and the
notion of group differential structure (based on the
notion of Sikorski's differential space — see [9]) was
introduced and investigated by the second author in
his PhD thesis [4]. Independently, in the same time, an
analogous notions was investigated by P.
Multarzynski in his PhD thesis (prepared in the
Jagiellonian University in Krakov). Some results of
this works have been published in [5], [6], [7], and [3]
however most of them have never been presented in in
the form of an article. Meanwhile, during last ten
years, an interest in the theory of differential groups
and groupoids appeared, concerned in applications of
them in general relativity and cosmology (see
references in [8]). This article is the first of the series
of papers concerning differential groupoids and
describing main results and many details of the theory
of differential groups.

Section 2 of the paper contains basic definitions
concerning theory of groupoids
differential
concerning groupoids can be find in [10] and [11]

and theory of

spaces. Basic definition and facts

whereas foundations of theory of differential spaces
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can be find in [9]. In Section 3 we give the definition
of a differential groupoid which is illustrated by an
elementary example. Section 4 contains two another
examples of topological and differential groupoids.
Without any other explanation we use the following
symbols: N-the set of natural numbers; Z-the set of

integers; R-the set of reals.
2. Preliminaries

Definition 1. The sequence (G,X,a,B,m,¢,T) is
called a groupoid G over the base X if G and X are
arbitrary nonempty sets and: (i) the map a:G - X
called a target and the map B:G — X called a source

are surjections; (i) the map m: G® — G, where

G¢@ :={(g,h) € G xG:p(g) = a(h)},

called a multiplication satisfies the following
conditions:

s (gh)k = g(hk) - associativity,

* a(gh) = a(g) and B(gh) = B(h)
for each g, h,k € G (instead of m(g, h) we write gh);
(iii)) the embedding e:X — G called the identity

section is such that:
e(a(9))g = g = ge(B(@))
a(e(x)) =x= ,B(E(X))

foreach g € G and x € X;
(iv) the map 7:G — G (denote by g~ =1(9))

called the inverce map is such that
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g7(9) = e(a(g)) and 7(9)g = £(B(9))
for each g € G.

For the definition, basic properties and applications
of groupoids see [10] or [11].

Definition 2. A subgroupoid of the groupoid
(G, X,a, B, m, & 1) is a sequence

(H,a(H),a|H, By m|H(2)'£a(H)'T|H) , where H is
nonempty subset of G which is closed under the
multiplication and the inverse i. e. (i) if g,h € H and
(g,h) €GP | then ghe H; (ii) if h€H, then
h~' € H.

Definition 3. The groupoid (G,X,a, B, m, &, 1)
over the set X is called a topological groupoid, if G
and X are topological spaces, X is a Hausdorff
space and the mappings «,f,m,e and Tt are
continuous. Then 7 is a homeomorphism.

We recall now the definition of a (Sikorski’s)
differential space. Let M be a nonempty set and let C
be a family of real valued functions on M. Denote by
Te the weakest topology on M with respect to which
all functions of C are continuous. A subbase of the

topology 7, consists of sets of the form

{p:f(p) <a} and {p:f(p) > a},

where a €R and f €C. A function f:M - R is
called a local C-function on M if for every m € M
there is a neighborhood V of m and a € C such
that fi, = a)y. The set of all local C-functions on M
is denoted by C,. Note that any function f € Cy is
continuous with respect to the topology 7o. Then
Tey = Te (see [1], [2]).

A function f:M — R is called C -smooth function
on M if there exist n €N, w € C°(R") and
Q... € C such that

f=we(a,. ay).
The set of all € - smooth functions on M is
denoted by scC .

superposition w o (al,...,an) is continuous with

Since CcscC and any

respect to T, we obtain Tg.e = T (see [1], [2]).
Definition 4. A set C of real functions on M is

said to be a (Sikorski’s) differential structure if: (i) C

is closed with respect to localization i.e. C=Cy; (i1) C
is closed with respect to superposition with smooth
functions i.e. € = scC.

In this case a pair (M, C) is said to be a (Sikorski’s)
differential space (see [9]). Any element of C is
called a smooth function on M (with respectto C).

It is easy to prove that the intersection of any family
of differential structures defined on a set M # @ is a
differential structure on M (see [1], [2], Proposition
2.1).

Let F be a set of real functions on M. Then the
intersection C of all differential structures on M
containing F is a differential structure on M. It is the
smallest differential structure on M containing F. One
can easy prove that C = (scF)y. This structure is
called the differential structure generated by F and is
denoted by gen(F). Functions of F are called
generators of the differential structure C. We have
also T(scr),, =Tser = T

Let (M,C) and (N,D) be differential spaces. A
map F: M — N is said to be smooth if for any f €
D the superposition f o F € C. We will denote the

fact that F is smooth writing
F:(M,C) - (N,D).
If F:(M,C)—> (N,D) 1is a bijection and
F~L(N,D) > (M,€) then F is
diffeomorphism.

called a

If A is a nonempty subset of M and C is a
differential structure on M then C, denotes the
differential structure on A generated by the family of
restrictions {a| PR AS C’}. The differential space
(A,¢,) is called a differential subspace of (M,C).
One can easy prove that if (M,C) and (N,D) are
differential spaces and F: M — N then
F:(M,C) -» (N,D) iff F:(M,C) » (F(M),F(M)p).

If the map F:(M,C)— (F(M),F(M)p) is a
diffeomorphism then we say that F:M - N is a
diffeomorphism onto its range (in (N,D)). In
particular the natural embedding

Aomwi(m)=meM
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is a diffeomorphism of (A4,C,) onto its range in
M, ).

If {(MyCdlies is an
differential spaces then we consider the Cartesian

[T

i€l

arbitrary family of

product

as a differential space with the differential structure
®C;
i€l

generated by the family of functions

Fi={a;opri:i €1l,a; € C;},

l_[Mi 5 (m;) & pry((my)) = m; € M;
for any j € I. The topology

T@Ci

i€l

coincides with the standard product topology on
[T
iel
We will denote the differential structure
® C*(R)
i€l
on R/ by C*(R') . In the case when I is an
n-element finite set the differential structure C*(R!)
coincides with the ordinary differential structure
C*(R™) of all real-valued functions on R"™ which
posses partial derivatives of any order (see [9]). In any
case a function a:R' >R is an element of
C*(R) iff for any a = (a;) € R! there are n € N,
elements i,i,,:+,i, €1, a set U open in R™and a
function w € C*(R™) such that
a € Uliq, iz, -, ip]
i={(x) € RE: (o, 5, X1 )
€ U}

and for any x = (x;) € U[iy,ip,*,i,] we have

a(x) = w(xil,xil,---,xin).

Let F be a family of generators of a differential
structure C on a set M. The generator embedding of
the differential space (M,C) into the Cartesian space
defined by F is a mapping

br: (M, C) > (RT, COO(Rf))
given by the formula

$5(m) = (a(m))

a€F

(for example if F = {ay,a, a3} then ¢pr(m) =
(a1(m), ay(m), az(m)) € R® = R¥). If F separates
of M the
diffeomorphism onto its image. On that image we

points generator embedding is a

consider a differential structure of a subspace of

([R{T, C°°(]R§T)) (see [2], Proposition 2.3).

3. Basic Properties of Differential Groupoids

Definition 5. Let (G, X, a, 8, m,&,7) be a groupoid.
A differential structure C on G is called a groupoid
differential structure, if the following conditions are
satisfied: (i) the multiplication map m:G® — G is
smooth with respect to the differential structure of the
differential subspace on G @) c G x G; (ii) the inverse
map 7:G = G and the mappings €oa:G = G and
€of:G = G are smooth..

A groupoid G equipped with a groupoid differential
structure C is called a differential groupoid.

On GXG we differential
structure of the Cartesian product which we denote by
c®c.

Example 1. Let (X, D) be a differential space. Then
the groupoid of pairs (G = X X X — see [11]) with the
differential structure C:=D ® D is a differential
groupoid.

consider natural

Let C be a groupoid differential structure on a
groupoid (G, X, a, B, m, &, 7). We know that £(X) c G.
On the set &(X)
differential subspace of G, i. e. C¢(x). Then we will

there exists the structure of
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consider X as a support of the differential space
X,D) , differential
{foe:fECE(X)} is said to be induced from the
differential structure Cgxy (or C) by the map €. One

where the structure D =

can easy show that the identity section ¢, the target
map « and the source map [ are smooth with respect
to D i e &XD)-(GC) and a,pB:(G,C) -
(X, D).

Let H be a subgroupoid of a groupoid G
endowed with a groupoid differential structure C.
It is easy to show that the set Cy is a groupoid
differential structure on H. Then the pair (H,Cy)
differential
differential groupoid (G, C). We will write shortly then
H is a differential subgroupoid of a differential

is called a subgroupoid of the

groupoid G.

4. Examples of Topological and Differential
Groupoids

Example 2. Let G be a set of all diffemorphisms
between compact subsets of R™. For arbitrary
element g of the set G we have:
g: (K1, €*(RM)g,) = (K5, €*(R™)g,) , where K; i

K, are compact subsets in R™ or shortly g:K; = K.

We denote by X, the family of all non-empty
compact subsets in R™. Let the value of the
a:G - X, at the element g € G be the image of
the map g:K; - K, i. e. a(g) = K,, and the value
of the map $:G — X, at g be the domain of the
diffeomorphism g, i. e. B(g) = K;. The value of
the embedding e:X,, > G for each compact set
K € X,, is the identity map i. e.e(K) = idg. The
value of the map 7:G — G at g € G is equal to the
(@=9g".
put G® ={(g1,9.) € G*B(g1) = a(g)} . The
multiplication m: G®® — G is defined by equation:

inverse map 1. e. As Dbefore we

m(g1,9,) = g1 °© g2, Where o is an ordinary mappings
Then the
(G, X,,a,B,m,&,7) is a groupoid.

composition. sequence

Let for any two compact sets K;, K, € X,, and any
two diffeomorphisms g4,g, € G

(s, ) = sup (inf llx = 1)
YEK;

x€K,

= sup (;é}i”x - 1)

YEK,
and

dn (g1, 92) = dan(graf g1, graf g,).

Then d, and d, are metrics on X, and G,

respectively. Mappings «,B,m,e and T are
continuous with respect to the topology 7,4, and
74, given by metrics d,, and d, respectively. Hence
(G, X,,a,B,m,¢1) is a topological groupoid. We
will denote this groupoid by DCS(R™).

Example 3. Let G be such as in Example 2 and let
Gy € G contains all diffeomorphisms g € G for

which the domain D, is the cloasure of its interior i.e.
D, = cl (int(D)).

Let us consider the set
G = {(g,a) € Gy XR"ace€ Dg},

where n € N is constant.

As the base of the groupoid
G = (G,X, a,fB,m,e, T) we take the set X composed
of all pairs (K,a), where K is a compact subset of
R™ and a € K.

The source and target maps are defined in the

following way:

a(g,a) = (Rg,g(a)) oraz f(g,a) = (Dy,a),

where Dg is the domain and Ry is the image of the
diffeomorphism g.

Groupoid action m on pairs (g,a) and (h,b) is
D,=R; and b=g(a) Then
m((h,b),(g,a)) = (ho g,a). The identity secion &
we define by:

* ¢(K,a) = (idg, a) for any (K,a) € X and the
inverse map 7 has the value

* 7(g,a) = (974 g(a)) for any (g,a) €G. On
the set G we consider the family of

* functions F =F, UF, UF;, where F; is a

done, if
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family of functions of the form
* folg.a) =n(g(@) for
n € C*(R"),
F, is a family of functions §;, where for any
multiindex i € (N U {0})"we have

(g,a) €G  and

all ~
6;(g,a) = B_j(a) for (g,a) € G

D. =

because g

(all partial derivatives exists

cl (int(Dy))) and F; is a family of
functions p;, defined by

Py (g,@) =n(a) for (g,a) € G,
where n € C*(R™).

The family of functions F generates the differential
structure Con G (C = gen F).

We will prove that C is a groupoid differential
structure on G. For it is enough to show that each
compositions of functions from families F;, F, and
F; with mappings m,t,eoca and &off are
smooth.

Let us take an arbitrary function f, € F;. Then we

have

fy (m(( 5, (9,@)) = fy(h o g,a)

=n((ho 9)(@) =1 (h(g(a)))
= n(h(b)) = f; (h, b)

(fyem)(,0) = £,(&) for

all (¢,0) € G?. Hence fpom is an element of the
differential structure C®C on the space G2. We
have also

f(x(g. @) = f,(974 9(@) =1 (g7 (9(@))

=n(a) = p,(g,a)
for each element (g,a) € G which means that fao
T=p, EFz3CC.

which means that

Subsequently, for each element (g,a) € G

fi(eo (g @) = f, (e(alg @) =
I (8 (Rg.g(a))) =fa (ing, g(a)) =

n (ing(g(a))) =1(9(@) = f,(g, ).
Then fo(eoa)=f, € F cC. Similarly, for

each element (g,a) € G

fi(e o B)(g.0) = £, (e(B(g. @) = £, ((Dg, @)

= 1y (idn,. @) = 1 (id, (@)
=n(a) =py(g,a)
which means that
fae(eeB)=p, €F3CC.

Now we can make similar considerations for an

arbitrary function

8 (m((h,b), (g,®)) = 8i(ho g,a) =

glil
= (o g)@ =

Ll

Kk, O
1<[71=lil

Ikey |-+ e =]

Iy |+--+Isnl=il

keq kn
Isnl

ols

1l
Cj,sl,-n,an(h(g(a))) axslg(a) axsng(a)
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7,518

1=|jl=lil
[kq|+-+|kn|=1]]
[s1l+:++[spl=lil

kyk
where ¢, ™

i syensy € L - Then §; om is a polynomial

function of several variables composed with elements
of F, and because of that it is an element of C.
Let us consider the superposition §; o . We have

8i(t(g, @) = 8:(g7" 9(@) =

= %g‘l(g(a)).

It is know from the course of calculus that the
derivative % g~ 1(b) is a rational function of partial
derivatives of the map g taken at the point g~1(b).
Then % (g_l)(g (a)) is a rational function of partial

derivatives of the map g taken at the point a (which
are elements of F,). Hence it belongs to C.
Subsequently we consider the

5;((g° a)).

superposition

5i((e 2 )(g,@)) = 6; (¢(a(g, )

=5 (¢ (R 9(@))

alil
=01 (ide, 9(@) = Fzide, (@)

lil

Oxt

g(a) = Si(g; a)
for each element (g,a) € G. Then §;0 (o) =6; €
F, c C. Similarly
5i((e 2 B) (g, ) = 8, (=(8(g,0))) =
il
&; (E(Dg,a)) =; (idDg,a) = %id,)g(a) =

constant (0 or1).

Since 6;((e° B)) is a constant function it belongs

8;(h,b)5 (g, @) -+ 57 (g, @)

to C.
Let’s take any function p,, € F3. Then we have

py (m((h,b),(g,@)) = py(heg,a) =n(a) =

Py (g, @).
Then (pn om)(§,0) = py(§) forall (§,0) € G®,
It means that the superposition p, em is a element of

the differential structure C®C on the space G@.
We have

py(1(g.0)) = py(97% 9(@) = n(g(@) = f,(g, )
for each element (g,a) € G. Hence PypeT="fy €
F; € C. Since

py((e 2 @)(g, @) = p, (e(alg @)

=Dy (e (Rg.g(a)))

= by (ids, 9(@) = n(9(@)
= (g a)

for each element (g,a) €G we obtain that

ppe (eca) = f, €F; c C. Similarly
py((e 2 B)(9,0)) = p (£(B(g. D))

= py (e(Dg, a)) =py (idDg,a)

=n(a) =p,(g, @)

for each element (g,a) € G. It means that pyo(ee
B) = p, €EF; CC.
Finally we see that C is a groupoid differential

structure on G i.e. (G,C) isa differential groupoid.
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